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Abstract

In this paper we investigate the optimal harvesting of a renewable natural resource.
While in most standard approaches the resource is located at a single point, we
allow the resource to be distributed spatially. Consequently, an agent who exploits
the resource has to travel from one location to another. For a fixed planning
horizon, we investigate the speed and the path of harvesting chosen by the agent.
We show that the agent adjusts this speed so as to visit each location only once,
even in the absence of travelling cost. Since the agent does not return to any
location for a second harvest, it is optimal to fully deplete the resource upon arrival.
A similar type of bang-bang solution results when we drop the assumption of a
constant harvesting rate: allowing for a variable harvesting rate, the agent chooses
to fully exploit the resource either in the last or in the first travelling period. A
society interested in conserving some of the resource thus has to take measures to
limit the exploitative behaviour of the agent.
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1. Introduction

The economics of the optimal harvesting of renewable resources is well established.

The fundamental papers for the case of fisheries by both Gordon (1954) and Scott

(1955) are both almost 60 years old by now. Whereas the former pointed to

the problem of overexploitation due to the absence of property rights at sea, the

latter established the path of sophisticated dynamic modelling of optimal resource

management, providing the foundation for many refined research efforts in more

recent decades.

Indicating current research trends and opportunities in natural resource eco-

nomics, Deacon et al. (1998, p. 390) are critical of the plethora of such refinements

due to their tendency to suppress important (but technically challenging) details

when seeking analytical insights from simpler constructs. As the most important

insights from standard models have already been obtained, an extension of these

models should be attempted to incorporate more of the “real world circumstances”

with which the managers of fisheries, biologists, and others are concerned.

A most urgent extension of this kind is the recognition of the spatial dimen-

sion prevalent in harvesting contexts. Despite its obvious relevance, none of the

previous extensions along this line can be found in recent comprehensive textbooks

on the topic (e.g. see Conrad, 2010; Perman et al., 2011). Emphasizing this exten-

sion, Hannesson (2011a) observes that: “The spatial distribution of fish is rarely

analysed in the existing literature, but it could make a difference.”

Our aim in this paper is to elaborate on this difference. We thus follow the

agenda put forward in Deacon et al. (1998) who also forcefully demand increased

realism of resource economics models by acknowledging spatial dimensions: “The

spatial dimension of resource use may turn out to be as important as the exhaus-

tively studied temporal dimension in many contexts. Curiously, the profession is

only now beginning to move in this direction” (p. 393). In their survey paper

on “The economics of spatial-dynamic processes,” Smith, Sanchirico, and Wilen

(2009) similarly note that whereas there is a long tradition in resource economics

of being concerned with the dynamic aspects of resource use, and economics has

a long history addressing spatial aspects of economic activity, the two approaches

have rarely been integrated into a single model ever since Hotelling separated them

in his two seminal papers (1929) and (1931).

Some authors have taken this call seriously. Recent work that simultane-

ously allows for spatial characteristics and a time dimension includes Sanchirico

and Wilen (2005) and Costello and Polasky (2008). Both papers work within the

framework of meta-population models with discrete patches, but with connectivity
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between these (e.g. diffusion).1 Sanchirico and Wilen (2005) characterize the opti-

mal way to distribute harvesting effort over space and time in order to maximize

discounted profit and compare it with the results derived when ignoring these spa-

tial processes. Once the biological dispersal process is further specified, optimal

instruments are shown to be sensitive to spatial gradients of both rents and the

chosen disposal, and first and second best solutions are compared.

Costello and Polasky (2008) allow for a meta-population model with random

events, that is, stochastic growth of the resource within each patch and stochastic

dispersal of the resource between patches. Economic variables can also be spatially

heterogeneous. In this very general setting they are able to derive optimal spatially

explicit harvesting strategies that maximize the expected present value of profit

from harvesting. Whereas interior solutions will be time and state independent, the

optimal strategy will in general vary across space. In the case of corner solutions,

it may be optimal to close some patches for some periods.

Similar to Deacon et al. (1998), Smith, Sanchirico, and Wilen (2009, p. 105)

conclude that “research addressing integrated spatial-dynamic processes is needed

and arguably overdue.” Wilen (2007, p. 1135) contrasts this lack of attention

by (resource) economists with the prominence of spatial dynamic systems in the

hard sciences such as mathematics and physics whose tools have been employed by

scholars even to study biological and ecological issues (see e.g. Neubert, 2003; Kell-

ner et al., 2007; and Neubert and Herrera, 2008). The latter assume that the fish

itself can move by introducing a diffusion coefficient. This particular extension,

where the resource is assumed to move from areas of high to low concentration,

is also taken up in recent comprehensive work of Brock and Xepapadeas (2010)

and their investigation of commercial fishing in Brock, Xepapadeas, and Yanna-

copoulos (2013), and allows them to investigate robust methods to control such

interconnected spatiotemporal systems.

An alternative approach is to bundle the choice of an agent’s harvesting speed

with the amount that can be extracted, making the analysis more manageable.

This approach, which is usually referred to as a search model, has been followed

by a series of papers, among them Robinson, Williams, and Albers (2002) and

Robinson, Albers, and Williams (2008) in a resource extraction (timber gather-

ing) model. A similar approach has been chosen by Belyakov, Davydov, and Veliov

(2013), whose paper is the closest to ours. These authors make similar assumptions

about the spatial dimension of the renewable resource (that is, it is a single-aged,

homogeneous population of a motionless resource)2 and the harvesting technology.

1Further examples of this line of research are given in Smith, Sanchirico, and Wilen (2009,

fn 11).
2As pointed out by an anonymous referee, this is equivalent to assuming a continuum of

independent homogeneous stocks. With an age-homogeneous population, spatial diffusion of the
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However, while their model also allows for heterogeneous space, the speed of move-

ment and the harvesting intensity are interdependent, thereby effectively reducing

the set of controls to a singleton. Also, the harvesting agent may decide to wait

for some time in each round, but will optimally decide not to do so if the het-

erogeneous data of the model reveals a sufficiently large regeneration-harvesting

effectiveness ratio. In our setting, though, the speed and the harvesting intensity

are treated as separate choice variables (this was motivated by thinking about

fishing nets as harvesting tools), while temporary waiting is not allowed. Also, in

Belyakov, Davydov, and Veliov (2013) there is no discounting of future yield. Still,

their approach has important similarities in method and intuition and should be

seen as highly complementary to our paper.

While we believe our approach to be more general and broadly applicable,

e.g. to agriculture and various renewable natural resources, we follow the literature

and use the case of fishery for illustration and motivation.3 The critical point from

which virtually all of the existing resource models abstract is that fish are (as are

other resources) distributed spatially, namely in oceans, seas, and rivers. A fisher

thus has to travel by boat to catch fish at each spot visited.

We assume that the boat starts at some harbour, follows a given route,4 and

eventually returns to its point of departure. The time of this journey (round-trip)

depends on the speed of the boat, which is controlled by the fisher. We assume that

the planning horizon of the fisher is finite. This may be interpreted as either that

the fisher is concerned with only one season of fishing (or harvesting), or possesses

a fishing license with fixed finite maturity, or that the planning horizon equals the

fisher’s working lifetime—and other interpretations may also come to mind. For

this fixed planning horizon, the number of journeys that can be undertaken also

depends on the speed of the boat. As all fishing is done using fishing nets, the

fisher has control over the fraction of the stock to be caught by the choice of mesh

size, boat type, and effort.

It is a common precept that society has a concern for sustaining wildlife in

the oceans and seas. Also, it is well known (as emphasized by Gordon, 1954) that

resource would result in inflows to and outflows from a location to net out. Therefore, only if we

allowed for a heterogeneous population and diffusion would movements affect the age-structure

of the resource. Since the focus of our paper, similar to Belyakov, Davydov, and Veliov (2013), is

on the movement of the agent, not that of the resource, we refrain from adding these additional

complications at this point to the benefit of clear cut analytical results.
3Since the resource will not move, the reader may prefer to think of the resource as some

(generic) plant or agricultural product rather than fish.
4The assumption of a route given at the beginning of the trip does not represent any restriction

as long as there is no uncertainty about the location of the resource and hence no necessity to

search: we may simply think of the given route as the most lucrative route available, determined

beforehand.
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there exist critical externalities resulting from the general absence of property

rights. In the case of a renewable resource such as fish, sustainability can also be

in the interest of the fisher, as a fish stock of a given size that has not been fully

harvested will recreate itself after some time, allowing for a larger catch in the

future. Yet, for any reasonable modelling of costs, our model reveals that it will

be privately optimal for the fisher to fully exploit the fish stock by only making

the journey once. Thus, the fisher adjusts the speed of the boat in a way so as to

complete exactly one round of travelling, and will therefore deplete the resource

totally.

From a technical perspective, our solution can be seen as a robustness check

for the solution of non-spatial models with similar assumptions about the data

where the solution will also be of the bang-bang type. If we dispense with the

assumption of a constant harvesting rate and the agent can vary the rate freely, a

form of bang-bang solution prevails. The timing of total exploitation now depends

on whether the growth rate of the resource exceeds the discount rate. Whenever

it remains optimal for the fisher to go for only one fully exploitative round (and

is not allowed to wait), the two solutions—harvesting in the first and harvesting

in the last round—coincide. Moreover, we show that this result continues to hold

if we allow for travelling costs.

Clearly, with extinction being irreversible, this outcome cannot be in the in-

terest of society at large. As it is very costly to control the actual catch (see

Hannesson, 2011b, for details), society has to consider alternative mechanisms

and policies to restrict the amount of fish caught. One possible remedy for over-

exploitation would be to guarantee that the agent undertakes several fishing jour-

neys. With multiple journeys within the fixed time horizon, it will then be in

the agent’s private interest not to over-exploit the resource in the first visit. The

underlying idea is that with multiple journeys, the tendency to over-exploit the

resource is mitigated as the remaining stock will recover after some time providing

the potential for an even larger catch in the future.

An alternative instrument in fishery management is to grant the fisher a resid-

ual or salvage value for the stock of the resource remaining at the end of the fishing

period. Rather than imposing an input control on the fishing activity, this policy

aims directly at the fisher’s economic incentives: with a salvage payment increasing

in the remaining stock of the resource, it is in the fisher’s own economic interest not

to exhaust the stock unduly. When chosen appropriately, both policy instruments

are equivalent in terms of conservation of the stock of the resource.

Also, an instrument frequently observed in practice is the establishment of

harvesting quotas or catch shares. Here, a regulator determines a species-specific
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total allowable catch, and allocates portions of this catch to individuals, institu-

tions, or countries. While originally designed to prevent over-exploitation of a

common property resource by multiple agents, these instruments may be applied

even if only a single agent has access to the resource. If social and private in-

terests diverge, society may impose harvesting quotas or catch shares to prevent

overfishing irrespective of the number of fishers.

Finally, a complementary instrument, which our model allows for explicitly, is

the specification of a minimum mesh size. This policy lets small fish to escape and

thus provides the conditions for replenishing the stocks. All of these instruments

are intended to preserve the stocks and to promise higher future yields at the cost

of a smaller catch today.

The rest of this paper is structured as follows: In Section 2 we describe our

formal model. In Section 3 we characterize the agent’s optimal harvesting policy

when bound to choose a constant speed along with a constant harvesting rate. In

Section 4 we demonstrate that our results are robust to possible costs of movement.

A detailed analysis of the first period can be found in Section 5. In Section 6 we

show that our result of a totally exhaustive harvesting round prevails even if we

do not require the agent to choose a constant harvesting rate. We conclude in

Section 7.

2. The Model

Consider an economic agent (we may think of a fisher),5 exploiting or cutting a

renewable natural resource (e.g. a fish stock). Since this resource expands over the

space, harvesting requires the agent to travel from one location to another. That

is, when the yield at one particular point in the space is collected, the agent has

to move to the next location in order to proceed with the harvesting. Movement,

though, may be costly, but this cost can be avoided by reducing the speed of

movement—and instead exploiting the resource at each point more severely. While

a lower speed implies foregone revenue from the yield of the subsequent points in

space that cannot be reached within the given time frame, an intensified extraction

leaves the stock with less beneficial conditions for future growth of the resource.

The agent thus has to choose both the speed of the movement and the amount

to be harvested at each point within this region. We assume that the harvesting

capacity of the agent is fixed so that at each point in time the harvest is bounded

from above. In other words, we assume that at any point in time and space the

agent may collect any non-negative amount of the resource which neither exceeds

the stock nor the fixed harvesting capacity.

5We henceforth speak of the agent and the fisher interchangeably.
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For the sake of tractability, we reduce the dimension of the extension of the

resource. Instead of literally modelling the extension of the resource and the

movement of the agent in a two-dimensional space, we consider a one-dimensional

setting. We assume that the resource is located on the periphery of a unit circle and

that the movement of the agent is a journey on this periphery.6 We therefore have

to keep track of time and location. We denote the fixed time horizon (harvesting

period) by T ≡ [0, T ], an instant of time within it by t ∈ T , a fixed location by

x ∈ S ≡ [0, 2π], and the location of the agent at time t by s(t) ∈ S. The size of the
stock at location x at time t is denoted by f(t, x). Thus f(t, ·) is the distribution

of the resource on the periphery at time t.

The natural resource is autonomously growing at rate g. We allow the growth

rate of the stock at a particular location to depend on the stock, but neither

on time nor on location directly. That is, we assume that the growth function

does not change in time and is the same for all locations on the periphery. The

growth of the stock is governed by the differential equation ft(t, x) ≡ ∂
∂t
f(t, x) =

g(f(t, x)), ∀x ∈ S, t ∈ T ,7 except at some finite set of points of discontinuity

of f(·, x). In addition, the stock of the resource at location x is reduced by the

harvest at time t whenever the agent’s location at time t equals x, i.e., s(t) = x.

If we denote the extraction of the resource at time t at point x by q(t, x) and

the agent’s harvest by h(t), we have h(t) ≡ q(t, s(t)) and q(t, x) = 0, ∀x 6= s(t).

This reflects the fact that extraction at point x may only take place if x is the

actual location of the agent—and if so, the harvest leads to a jump of the stock by

∆f(t, x) ≡ f(t+, x)−f(t−, x) = −h(t) = −q(t, s(t)).8 Thus, for any given location

x, the set of arrival times of the agent at x, J(x) := {t1(x), t2(x), . . .}, equals the
set of times of (potential) jumps in the stock f(·, x). Putting the pieces together,

the stock of the resource obeys the law of “motion”

ft(t, x) = g(f(t, x)) ∀t ∈ T \ J(x), x ∈ S, (1)

f(t−, x)− f(t+, x) = h(t) ∀t ∈ J(x), x ∈ S, (2)

with f(0, x) = f0x for all x ∈ S. Note that although h is non-negative for all

t ∈ T , harvesting only leads to a jump in f(·, x) if and when the agent arrives at

location x, that is at times t ∈ J(x).

6Clearly, fishing nets are neither dimensionless, nor are fishing grounds one dimensional in

the real world. However, our model may accommodate such extensions easily, as any two-

dimensional fishing route may be projected onto a line (here the periphery of a circle), and any

one dimensional fishing net onto a single point (on that line).
7We assume g(y) ≥ 0 on some interval [y, ȳ].
8t+ denotes the limit on the right at t: t+ ≡ limsցt s; and t−, the limit on the left at t:

t− ≡ limsրt s.
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As the resource is distributed over the periphery of the circle, the agent is

required to travel along the periphery in order to proceed with harvesting from

one location to the next. There are two natural specifications of how the speed may

be controlled: either the agent can control the speed of movement v directly, or

cannot control v directly but only the acceleration. We follow the former approach

for now. Note that the law of motion of the resource does not depend on the speed

of the agent, but only on the local harvesting activity.

At any instant of time, the agent faces a capacity constraint h̄ limiting the

possible harvest at each location to [0, h̄]. At each moment the agent’s harvest is

therefore restricted to h(t) ∈ H(t) := [0,min{h̄, f(t, s(t))}], ∀t ∈ T . The problem

of the agent is then to maximize the discounted profit flow consisting of instanta-

neous revenue net of instantaneous cost C(v(t), h(t)), which generically depends

on both speed v and harvest h, for a given planning horizon T . Let ρ ≥ 0 denote

the discount rate of the agent, and normalize the price of one unit of the harvested

resource to unity,9 then the optimisation problem is

max
{v,h}

∫ T

0

e−ρt (h(t)− C(v(t), h(t))) dt (3)

s. t. ṡ(t) = v(t), ∀t ∈ T
ft(t, x) = g(f(t, x)) ∀t ∈ T \ J(x), x ∈ S

f(t−, x)− f(t+, x) = h(t), ∀t ∈ J(x), x ∈ S
h(t) ∈ H(t), ∀t ∈ T

f(0, x) = f0x, ∀x ∈ S
s(0) = 0,

The last condition requires the agent to start, without loss of generality, at loca-

tion 0. In addition, we may also require the agent to terminate the trip at the point

of departure, that is, require s(T ) = s(0) = 0. While this represents a reasonable

restriction when the agent can only terminate the trip at home, we allow for the

fisher to end the trip at any point (that may also be a harbour) along the route.

Yet, as we shall see, even though we allow the agent to go for any real-valued

number of rounds, the agent decides to travel complete rounds.

9Our assumption of a revenue that is linear in the harvest h implies classical competitive

behaviour of the agent. While we think that price-taking is a reasonable assumption for our mo-

tivational example, we also do not want our focus on optimal harvesting with a spatial structure

to be obstructed by an analysis of non-competitive behaviour at present.
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3. Constant Speed and Constant Harvesting Rate

For convenience, we disregard an initial acceleration period and assume that the

agent may immediately start with some non-negative speed which is maintained

until time T . Whence we assume that the agent circulates with some constant

speed v(t) = v at all times t ∈ T . Also, here we disregard the harvesting cost.

In this way, the analysis of this section represents a first step towards a thorough

solution of Problem (3). In particular, we take into account the harvesting cost in

Section 4, provide a detailed analysis of the first period in Section 5, and eventually

allow for non-constant harvesting rates in Section 6. In each of these cases we show

how and to what extent the results of this section will continue to apply.

3.1. Evolution of the stock at a fixed location. Assume that the growth

function g is linear,10 i.e., g(y) = ry, and that the initial stock is constant on the

periphery of the circle, i.e., f(0, x) = y0. Taken together, these conditions imply

for each x ∈ S = [0, 2π]:

ft(t, x) = rf(t, x) with f(0, x) = y0, ∀t ∈ T \ J(x), x ∈ S,
yielding

f(t, x) = f(0, x)ert = y0e
rt =: f̃(t, y0),

provided that q(s, x) = 0, ∀s ∈ [0, t]. Since the agent does harvest, we now derive

the evolution of the stock taking into account (interim) harvesting activity.

Assuming the agent travels with constant speed along the periphery, i.e.,

v(t) = v, ∀t ∈ T , we define the time necessary to traverse the periphery of the

circle once by θ(v) ≡ 2π/v (see Figure 1). Thus v/(2π) = 1/θ(v) represents the

frequency or speed of circling. Simplifying θ(v) to θ from now on, we may express

this and the subsequent formulae in terms of either circling time θ or speed v.

The time of the first passage of the location x ∈ [0, 2π] then equals t1(x) =
θx
2π

= x
v
, and the size of the stock at this moment is given by

f (t1(x), x) = y0 exp

(

r
θx

2π

)

= y0 exp
(

r
x

v

)

.

More generally, we define tn(x) as the time of the nth arrival at location x, which

is given by

tn(x) ≡ (n− 1)θ +
θx

2π
, ∀n ∈ N \ {0}. (4)

10Clearly, exponential growth cannot prevail for sufficiently large values of the stock due to

the limited carrying capacities of the environment. So this growth process is to be understood as

an approximation of the evolution of a stock below a critical size—which constitutes the relevant

and interesting case.
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s(0) = 0

s(1) = π/2

s(2) = π

s(3) = 3π/2

Figure 1. Movement of the agent on the periphery with constant

speed θ = 4.

Without (interim) harvesting, the size of the stock of the resource at the time of

the agent’s nth arrival at location x equals

y0 exp

(

(n− 1)rθ + r
θx

2π

)

= y0 exp

(
r

v
(2π(n− 1) + x)

)

,

which is displayed in Figure 2.

f (tn(x), x)

Figure 2. Size of the stock of the resource at time of arrival: f (tn(x), x).

Assuming that at each location x the agent harvests a constant fraction of the

stock, say 1−α (α ∈ [0, 1]), the stock at location x in the nth period immediately
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before the nth harvest amounts to

f (tn(x), x) = y0α
n−1 exp

(

(n− 1)rθ + r
θx

2π

)

,

and accordingly the stock at x after the nth time of passing this location equals

y(x, n) ≡ f
(
t+n (x), x

)
= y0α

n exp

(

(n− 1)rθ + r
θx

2π

)

, ∀n ∈ N \ {0}.

Define y(x, 0) ≡ y0. It is important to realize that y(x, n) equals the starting value

of the n+ 1th growth period of the resource at location x. With this initial value

of each round of growth at hand, we can now define the effective growth time since

the last arrival of the agent at location x:

τ(x, t) =

{

t if 0 ≤ t < θx
2π

mod
(
t− θx

2π
, θ
)

if t ≥ θx
2π
,

where mod denotes the modulo-function. Defining Q(x, y) ≡
⌊
x
y

⌋

as the integer

quotient of real numbers x and y, Q(T, θ) denotes the maximal number of complete

rounds which can be completed in time T if the time required to complete one

round equals θ. Here ⌊·⌋ denotes the floor function, yielding the greatest integer

less than or equal to its argument. Correspondingly, mod(T, θ) ≡ T − θ Q(T, θ)

denotes the time remaining after the maximal number of rounds in time T with

circulating time θ has been completed. Consequently the number of times the

agent has passed location x at time t is given by

m(x, t) =

⌊

t− θx
2π

θ

⌋

+ 1.

Using y, τ , andm we may now derive the resulting stock of the resource at location

x and time t:

f(t, x) = f̃ (τ(x, t), y(x,m(x, t))) .

The resulting stock is displayed (for x = π/2, θ = 4, y0 = 1 and α = 2/3) in

Figure 3.

3.2. Aggregate harvest. We now derive the present value of the aggregate har-

vest. Recall that the discount rate equals ρ ≥ 0. If we sum over all x ∈ [0, 2π] the

discounted harvest at location x, we obtain for the first round of circling

E(1) = (1− α)y0

∫ 2π

0

exp((r − ρ)t1(x)) dx

= (1− α)y0

∫ 2π

0

exp

(

(r − ρ)
θx

2π

)

dx

= (1− α)y0
2π

(r − ρ)θ

(
e(r−ρ)θ − 1

)
,



11

t

f(t, x)

0.5

1

1.5

2

2.5

3

2 4 6 8 10 12

Figure 3. Growth of the stock at location x = π/2 (with θ =

4, y0 = 1, α = 2/3)

where we have made use of the fact that t1(x) = θx
2π

is the time of first passage

of location x, and that θ = 2π/v is the time necessary to traverse the periphery

once.

Similarly, the total discounted harvest of the nth period equals

E(n) ≡ (1− α)αn−1y0

∫ 2π

0

exp(−ρtn(x)) exp
(

(n− 1)rθ + r
θx

2π

)

dx

= (1− α)αn−1 2πy0
(r − ρ)θ

(
e(r−ρ)θ − 1

)
e(n−1)(r−ρ)θ , (5)

where we have made use of the definition of the general arrival time tn(x) as defined

in Equation (4). More generally, let us define E(n, x) as the discounted harvest of

the nth period up to location x, which is given by

E(n, x) ≡ (1− α)αn−1y0

∫ x

0

exp(−ρtn(ξ)) exp
(

(n− 1)rθ + r
θξ

2π

)

dξ

= (1− α)αn−1 2πy0
(r − ρ)θ

(

e(r−ρ) θx
2π − 1

)

e(n−1)(r−ρ)θ . (6)

Now E(x, n) is the present value of the harvest of period n if harvesting is only

done for locations in [0, x] but not for those in (x, 2π].
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Finally, summing the per-period harvest over all periods up to period n, we

obtain the aggregate harvest after n growth and harvesting periods:11

n∑

i=1

E(i) = (1− α)y0
2π(exp((r − ρ)θ)− 1)

(r − ρ)θ

(1− αn exp(n(r − ρ)θ))

1− α exp((r − ρ)θ)

= (1− α)
2πy0

(r − ρ)θ

(
e(r−ρ)θ − 1

) (
αnen(r−ρ)θ − 1

)

αe(r−ρ)θ − 1
(7)

If s(T ) 6= 0, that is, if the final period ends before the agent completes the last

round-trip, we have to add the resulting fraction of the last period. Adding to the

above sum the term E(n+1, s(T )), we arrive at the discounted aggregate harvest

collected within time T ,

G(θ, α) ≡
Q(T,θ)
∑

i=1

E(i) + E(Q(T, θ) + 1, s(T ))

=(1− α)
2πy0

(r − ρ)θ

(

αQ(T,θ)
(
e(r−ρ) mod (T,θ) − 1

)
eθ(r−ρ)Q(T,θ)

+

(
eθ(r−ρ) − 1

) (
αQ(T,θ)eθ(r−ρ)Q(T,θ) − 1

)

αe(r−ρ)θ − 1

)

. (8)

For any fixed time horizon T , G represents the discounted gross payoff of the agent

travelling the periphery with circling frequency 1/θ while harvesting the fraction

1−α of the stock at each location. From this gross payoff the agent has to subtract

the cost of motion.

We now investigate the properties of G. For any given location x, the stock,

more precisely the function f(·, x), is discontinuous at the time of the arrival of

the agent. Now, accounting for the movement of the agent and continuity of

the growth function, we see that the stock of the resource along the path of the

agent f(tn(·), ·) is also continuous, unless the agent completes a full circle, which

happens at location x = 0. Since the harvest is proportional to the stock, h(t)

is also discontinuous only at times t ∈ J(0). This implies that G(·, α) has kinks

whenever mod(T, ·) = 0 and is thus not differentiable at these points. However

between any two adjacent kinks, say θ1 and θ2, G(·, α) is differentiable and convex

as can be seen from Figure 4. Note that G(·, α) is not necessarily quasi-concave,

as the green graph in Figure 4 reveals. On the other hand G(θ, ·) is differentiable
and quasi-concave as displayed in Figure 5. (In each figure the graph of the lowest

parameter value is displayed in red.)

11Note that we do not need to assume r > ρ, i.e., that the growth rate exceeds the discount

rate. In fact, as we show in Appendix A, E(n, x) is always positive and the optimal solution to

our problem does not depend on whether r − ρ is positive or negative.
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Figure 4. G evaluated at α = 0.07, 0.1, 0.1106, 0.15, 0.2, 0.25, 0.3,

0.4 (with y0 = 1, r = 1/10, ρ = 1/20, T = 10).

α
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Figure 5. G evaluated at θ = 10/6, 10/5, 10/4, 10/3, 10/2, 10 (with

y0 = 1, r = 1/10, ρ = 1/20, T = 10).

Quasi-concavity in conjunction with differentiability of G(θ, ·) allows calcu-

lating the optimal harvesting share α∗ using the first order condition

α∗ :
∂G(θ, α)

∂α
= 0.

As the explicit expression of this derivative provides little insight, we relegate it

to Appendix B, see Equation (B.1). Note however, that due to the lack of quasi-

concavity, the optimal time for one round cannot be found by differentiation. Yet,
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as the objective function is convex on any compact interval [a, b] whenever a and b

are two adjacent kinks, G(·, α) attains its maximum (if it exists) at either a or b (or

both). It thus suffices to compare the values of G(·, α) at a countable number of

kinks. Since these kinks accrue whenever the agent adjusts the speed of harvesting

so as to manage to complete exactly an integer number of rounds, i.e., the agent’s

final position s(T ) equals 2π, we have to compare the discounted payoffs from

completing exactly n = 1, 2, . . . circles within time T . The optimal time of circling

θ∗ must then equal T/n for some suitable n ∈ N. In the example used in Figures 4

and 5 we set T = 10, so that the kinks appear at θ = 10, 5, 10/3, 5/2, 2, 10/6, . . .,

that is, at n = 1, 2, 3, 4, 5, 6, . . ., respectively. These θ-values are indicated by

dashed vertical lines in Figure 4.

We now exploit the important finding that in an optimal solution the agent

travels an integer number of circles n ∈ N. It follows that θ = T/n and τ = 0.

Observe that with n = T/θ ∈ N the objective function G, defined by Equation (8),

reduces to the simpler form (7). Similarly we may use this observation to simplify

the first order condition for the optimal α. Provided that eρθ − αerθ 6= 0, the

condition (B.1) reduces to

αn−1enrθ
(
α(n(α−1) + 1)erθ − (n(α−1) + α)eρθ

)
+ e(n+1)ρθ − eθ(nρ+r) = 0

⇔ αn−1enσθ
(
α((α− 1)n+ 1)eσθ − α(n+ 1) + n

)
−
(
eσθ − 1

)
= 0 (9)

where we have introduced the shorthand σ ≡ r − ρ. For each given number of

rounds of circling n, the admissible optimal values of α are given by the positive

roots within the unit interval of the first-order condition (9). Note that the optimal

value of α depends only on the difference σ, and not on the individual values of r

and ρ.

For n = 1, Equation (9) has no solution, which suggests that the optimal

value of α is either zero or unity. As E(1) is linearly decreasing in α, the agent

chooses α(1) = 0 and harvests the complete stock of the resource. We investigate

this case in detail in the next section.

For n = 2, the unique admissible solution of Equation (9) is given by

α(2) =
1

2

(
1− e−θσ

)
,

from which we infer that ∂α(2)
∂σ

= 1
2
θe−σθ > 0. For σ = 1/20 and T = 10, and

thus θ = 5, this formula yields α(2) = 1
2

(
1− e−1/4

)
≈ 0.1106, which brings about

the maximum of the green graph of G in Figure 5 and the left maximum of the

green graph of G in Figure 4. Note that the maximum is not unique, as for this

value of α a single round of circling, i.e., θ = 10 brings about the same value of G

as G(5, 0.1106) = G(10, 0.1106) = 7.25046. However, neither of these constitutes
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a solution of the problem as the total exploitation of the resource with a single

round of circling yields G(10, 0) = 8.15207.

For n = 3 we obtain two roots of the first-order condition,

α1,2(3) =
1

3
e−σθ

(

eσθ − 1±
√

eσθ + e2σθ − 2
)

.

Clearly, since eσθ+e2σθ−2 = (eσθ−1)2+3(eσθ−1) > (eσθ−1)2, only the “plus-root”

α1 is positive, and thus represents the unique admissible solution. Differentiating

α1(3) with respect to σ yields

∂α1(3)

∂σ
=

θ

N
(

4− eσθ + 2
√

eσθ + e2σθ − 2
)

>
θ

N
(
2 + eσθ

)
> 0,

with N ≡ 6eσθ
√
eσθ + e2σθ − 2 > 0.

Finally, for n = 4, we obtain three roots of the first-order condition

4α3e3σθ + α2
(
3e2σθ − 3e3σθ

)
+ α

(
2eσθ − 2e2σθ

)
− eσθ + 1 = 0,

and again those within the unit interval represent the admissible solutions.

The analysis of the cases n = 2, 3, and 4 suggests the following results:

• The optimal value of α is increasing in n: The more often the agent chooses

to extract from the resource, the lower is the rate of extraction.

• The optimal value of α is increasing in σ: The higher the growth rate of

the resource (or the lower the agent’s discount rate) the lower is the rate

of extraction.

The contours of the objective function G are displayed in Figure 6. We

have drawn horizontal lines for θ = 1, 5/3, 2, 5/2, 10/3, 5, and 10, i.e., for n =

10, 6, 5, 4, 3, 2, and 1, respectively. In Figure 6 it is easy to identify the kinks

which we have observed in Figure 4. We readily infer from Figure 6 that G has a

unique maximum at (θ, α) = (10, 0) yielding G(10, 0) = 8.15207. The agent thus

chooses to fully exploit the resource during the single round of circling. Plots cor-

responding to Figure 6 for r = 1/5, r = 1/2, and r = 1, are displayed in Figures 7,

8, and 9 respectively. Comparing the results for different values of r shows that a

change in the growth rate of the resource does not affect the qualitative features

of our results.

It is noteworthy that the structure of the solution of the agent’s optimization

problem turns out to be robust to the introduction of our spatial framework: with

the instantaneous profit (payoff) being linear in the harvest, and the growth of

the resource being linear in both the stock and the harvest, the resulting Hamil-

tonian is linear in y and h. This linear structure generically leads to bang-bang

solutions if the control h is bounded, and to impulse controls if it is not, with the
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Figure 6. Objective function G with r = 1/10 (y0 = 1, ρ =

1/20, T = 10).
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Figure 7. Objective function G with r = 1/5 (y0 = 1, ρ =

1/20, T = 10).
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Figure 8. Objective function G with r = 1/2 (y0 = 1, ρ =

1/20, T = 10).
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Figure 9. Objective function G with r = 1 (y0 = 1, ρ = 1/20, T = 10).
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optimal harvesting policy depending on whether the net growth rate σ is positive

or negative.12

4. The Cost of Movement

Until now we have assumed that the agent can travel on the periphery of the circle

at any speed or frequency without incurring a cost. The assumption of a costless

choice of speed is innocuous if the cost of movement depends on travelling time

only, and not on speed. However, as travelling cost typically depends on the speed

chosen, it is necessary to scrutinize whether and how our results change once we

take into account such costs. To this end, let us assume that the agent incurs

some constant cost k > 0 per unit of distance. With this specification, travelling

costs increase linearly with speed v. For example, the travelling cost for n rounds

of circling amounts to n2πk = vTk. With this specification, the discounted cost

of movement of the first round up to location x equals

∫ x

0

ke−ρt1(ξ) dξ =

∫ x

0

ke−
ρθξ
2π dξ =

2πk
(

1− e−
ρxθ
2π

)

ρθ
.

Similarly, the discounted cost of movement of the nth round up to location x

amounts to

∫ x

0

ke−ρtn(ξ) dξ =

∫ x

0

ke−
ρθ(2π(n−1)+ξ)

2π dξ =
2πke−(n−1)ρθ

(

1− e−
ρxθ
2π

)

ρθ
.

Summing the Q(T, θ) = ⌊T
θ
⌋ complete rounds plus the residual part mod(T, θ) of

the last round we obtain aggregate discounted cost of movement as

2πk
(
1− e−nρθ

)

ρθ
=

2πk
(
1− e−ρT

)

ρθ
=: C(θ).

Note that C smoothly depends on the speed of movement θ. Unlike the aggregate

discounted revenue G(·, α) given by Equation (8), C does not exhibit kinks and is

differentiable everywhere. For that reason the previously observed kinks of G(·, α)
carry over into kinks of the profit function G(·, α) − C(·) for any given value of

α ∈ (0, 1).

As C does not depend on α, the conditionally optimal harvesting or conserva-

tion rate α(n) is not affected by the introduction of a cost of movement. Finally,

because C ′ < 0, the discounted profit decreases with lower values of θ. As a conse-

quence, the introduction of a cost of movement strengthens the agent’s incentives

to choose a high value of θ. To sum up: the introduction of a speed-dependent

cost of motion strengthens our previous result that the agent chooses a complete

12For more details on this, see, for example, Feichtinger and Hartl (1986), Conrad and Clark

(1987), Clark (1990) or Kamien and Schwartz (1992).
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number of rounds n = T/θ and that without any additional constraint on n or θ

the agent’s profit is maximized by the choices of n = 1 and α(1) = 0. The agent

visits each location of the resource only once and the stock is completely depleted

following this first visit.

Next we wish to explore the consequences of introducing harvest dependent

costs. Assume that the speed of circling can be freely chosen at no cost, but that

the harvesting cost amounts to C(α) with C ′ < 0 and C(1) = 0. This reflects

the idea that a higher harvesting rate increases the cost of harvesting while full

conservation of the resource can be accomplished at no cost. As harvesting costs

are independent of θ, it is easiest to interpret C(α) as a cost per unit of time and

to integrate the harvesting cost over time:
∫ T

0

c(α)e−ρt dt =
1− e−ρT

ρ
C(α).

The discounted marginal harvesting cost amounts to 1−e−ρT

ρ
c′(α), which has to

be subtracted from the marginal yield of harvesting derived above (see Equa-

tion (B.1)). Obviously for a marginal cost c′ that becomes sufficiently large as α

approaches zero, the complete depletion result obtained above will cease to hold

and interior solutions (i.e., α > 0) will result. Moreover a suitable specification of

c may even lead to a reversal of the negative relation between the optimal value

of α and θ. As we see no reason for the cost function to exhibit these features, we

will not further discuss what we believe are rather pathological cases.

5. Detailed Analysis of the First Period—With a Capacity Constraint

Assume that the agent chooses to circulate at most once, arriving at each point

x ∈ [0, 2π] either once or never. We presume here that the agent chooses at most

the minimal speed required to travel the full periphery 2π within the given time

T . Let φ ∈ [0, 2π] denote the location of the agent at time T , i.e., φ = s(T ).

To be more precise, we should write φ(v, T ) instead of φ, since the final position

of the agent depends on both the chosen speed and the travelling time. Using

Equation (6), the total harvest amounts to

E(1, φ) =

∫ φ

0

(1− α)y0 exp
(

σθ
x

2π

)

dx = (1− α)
2πy0
σθ

(

exp

(

σθ
φ

2π

)

− 1

)

.

Replacing θ by v we may express the total harvest as

E(1, φ) = (1− α)y0
v

σ

(

exp
(σφ

v

)

− 1

)

= (1− α)y0
v

σ

(

eσT − 1
)

.

The last equality follows from the fact that with constant speed v, the agent arrives

at location φ after travelling time T , i.e., φ = vT .
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5.1. Non-Binding capacity constraint. Suppose that the agent’s harvesting

capacity h̄ is sufficiently high so that the capacity constraint is never binding

within the time interval [0, T ], i.e., h̄ ≥ y0e
rθ ≥ y0e

rt1(φ). Clearly with a non-

binding harvesting capacity constraint, the agent depletes the total stock at each

x ∈ [0, φ], for the agent will never come back to benefit from any future growth of

the resource. Hence, with α = 0, the total discounted harvest equals

E(1, φ)
∣
∣
α=0

= y0
v

σ

(

exp

(
σφ

v

)

− 1

)

= y0
v

σ

(

eσT − 1
)

. (10)

If we disregard the cost of movement, the problem is nondescript as the agent

would choose the maximally admissible speed, i.e., the minimum speed required

to complete a full circle—that is, choose v∗ = v̄ ≡ 2π/T , and the final location of

the agent at time T would be φ(v∗) = 2π. Correspondingly, the optimal discounted

harvest equals

G∗ = E(1, 2π)
∣
∣
α=0

= E(1)
∣
∣
α=0

= y0
2π

σT

(

eσT − 1
)

.

However, with the cost of movement being some increasing and strictly convex

function of speed c : [0, v̄] → R+, the agent has to solve

max
v

y0
v

σ

(

eσT − 1
)

− c(v), (11)

yielding the optimal speed

v∗ = c′−1
(y0
σ

(
eσT − 1

))

if and only if

c′(0) <
y0
σ

(
eσT − 1

)
< c′(v̄).

5.2. Binding capacity constraint. In order to broaden the applicability and

enhance the realism of our model, we shall now assume that the agent’s harvesting

capacity h̄ is sufficiently low so that the capacity constraint is always binding, i.e.,

h̄ ≤ y0, and the agent harvests at full capacity for all t ∈ T . Hence, the total

discounted harvest equals
∫ φ

0

exp

(

−ρθx
2π

)

h̄ dx =
2πh̄

ρθ

(

1− e−
ρxθ
2π

)

=
h̄v

ρ

(
1− e−ρT

)
.

Disregarding the cost of movement, the problem is uninteresting as the agent would

choose v∗ = v̄ ≡ 2π/T . With some convex cost function c, though, the agent has

to solve

max
v

h̄v

ρ

(
1− e−ρT

)
− c(v), (12)

yielding the optimal speed

v∗ = c′−1

(
h̄

ρ

(
1− e−ρT

)
)

.
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5.3. Partially binding capacity constraint. Let us now turn to the more

interesting case that the agent’s harvesting capacity h̄ is intermediate, i.e., y0 <

h̄ < y0e
rθ. In this case the solution is a straightforward combination of the two

polar cases above. Define the critical level at which the stock of the resource equals

the agent’s harvesting capacity x̂(h̄) as the solution of

y0 exp

(

r
θx

2π

)

= h̄

Thus, x̂(h̄), or for short x̂, equals

x̂(h̄) =
2π

rθ
log

(
h̄

y0

)

.

Up to time t1(x̂(h̄)), the agent is able to harvest the total stock of the resource.

For the remaining time, i.e., given by the time interval [t1(x̂(h̄)), T ], the agent is

capacity constrained. The total discounted harvest is then given by

G(φ) =

∫ x̂

0

y0 exp

(

σ
θx

2π

)

dx+

∫ φ

x̂

h̄ exp

(

−ρθx
2π

)

dx

= y0
v

σ

(

r

ρ

(
h̄

y0

)σ
r

− σ

ρ

h̄

y0
e−ρT − 1

)

, (13)

where we used φ = vT and θ = 2π/v. Since G is linear in v, the optimal speed

is either 0 or 2π/T , depending on whether the term in brackets on the right-hand

side of Equation (13) is negative or positive. Since we know that G is positive,

the term in brackets must be positive as well—and the agent therefore chooses the

maximal speed, that is, the speed which allows completing one full round, i.e.,

v∗ = 2π/T .

6. Variable Harvesting Rates

We next relax the assumption of a constant harvesting rate and allow the agent to

choose any conservation rate (negative harvesting rate) α(t) ∈ [0, 1]. We show that

even in this unconstrained case, the agent will not choose an interior solution, but

the optimal conservation rate will be either 0 or 1 (or is indeterminate as the stock

is already totally depleted). In order to demonstrate this result, it is convenient to

consider some arbitrary but fixed location x ∈ S, and to let the agent maximize the

aggregate discounted harvesting revenue collected at location x over the planning

period T .

Since x is fixed, we suppress it as an argument. Accordingly, the arrival time

at location x in the nth harvesting period is denoted by tn, and the respective
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conservation rate, by αn ≡ α(tn). The present value of the harvesting revenue

from the nth arrival at location x then equals

y0(1− αn)e
tn(r−ρ)

n−1∏

i=1

αi .

Summing over N periods of harvesting and using the vector notation α ≡
(α1, . . . , αN), the aggregate discounted harvest amounts to

G(α) =

N∑

n=1

y0(1− αn)e
tn(r−ρ)

n−1∏

i=1

αi . (14)

Since this objective function G is a multilinear mapping,13 it follows that the

partial derivative of G with respect to αn is independent of αn. For this reason,

the optimal value of αn is either 0 or 1, or it is indeterminate.

We next show that the optimal conservation (negative harvesting) profile is

given byα+ = (1, . . . , 1, 0), if σ ≡ r−ρ > 0; and by anyα− of the type (0, •, . . . , •),
if σ < 0. (A bullet • at position i means that αi is indeterminate and can thus

take any value in [0, 1].)

Evaluating the gradient of G at the proposed maximizer α+ yields

∇G(α+) = y0
(
etNσ − et1σ, . . . , etNσ − etN−1σ,−etNσ

)

Accordingly, we have

sgn∇G(α+) =

{

(1, . . . , 1,−1), if σ > 0

(−1, . . . ,−1), if σ < 0

implying that the corner solution α
+ is optimal for σ > 0 and that 0 ≡ (0, . . . , 0)

is optimal for σ < 0. In the latter case, any vector α− of the type (0, •, . . . , •) is
optimal, as G(0) = G(0, •, . . . , •) = y0e

t1σ for any choice of α2, . . . , αN .

Alternatively, it is easy to check that

G(1, . . . , 1
︸ ︷︷ ︸

n−1

, 0, •, . . . , •
︸ ︷︷ ︸

N−n

) = y0e
tnσ.

Since t1 < t2 < . . . < tN , we have y0e
tnσ is maximal for n = N if σ > 0, and it is

maximal for n = 1 if σ < 0.

We have thus shown that with σ > 0, the agent will let the resource grow

freely so as to be able to totally deplete it in the last round, i.e., the agent will

not harvest the resource in the first N − 1 rounds at all. “Waiting” until the last

round by circling without harvesting is optimal as the growth rate of the stock

exceeds the agent’s discount rate. Here the agent is sufficiently patient so that the

13That is, for each n = 1, . . . , N the function Gn(α−n) : [0, 1] → R+ : αn 7→ Gn(αn, α−n) is

linear.
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total discounted revenue is maximized by letting the resource grow for as long as

possible. If σ < 0, i.e.. the agent is relatively impatient, the reverse argument

holds.

Finally, whenever there is only one round of travelling—either because the

agent chooses to go for only one round or because the agent is exogenously re-

stricted to visiting each location only once—the first and the last round coincide.

In this case, solutions α
+ and α

− coincide, implying that there is only one fully

exploitative round, α+ = (0) = α
−, irrespective of the sign of σ. In this way, the

analysis of this section confirms our result of Section 3.2, where we found that the

constant conservation rate is given by α(1) = 0, i.e., if there is only one round of

harvesting.

7. Conclusion

As argued in the Introduction, we believe that our paper makes an important

contribution to the technical side of renewable resource harvesting models that

simultaneously look at a time and a spatial dimension, and also has policy im-

plications. Countering the startling previous lack of attention by economists and

given the prominence of spatial dynamic systems in the hard sciences, as observed

by Wilen (2007), we have provided an attempt at a dynamic model with continu-

ous variables and have solved it for the steady state. To this end, we applied the

frequently used example of a fishery with spatially distributed fish.

On the technical side, we presented a simple way to introduce continuous

spatial dynamics into models of renewable resource harvesting in continuous time.

Models of optimal harvesting in fisheries economics are often specified in discrete

time in order to take into account the fact that “both reproductive and fishing ac-

tivities may have clear seasonal characteristics” (Tahvonen, 2009, p. 282). Despite

its setting in continuous time, in our model the attractive seasonal characteristic

prevails due to its cyclical structure.

On the policy side, we are able to show that left to their own devices, agents

will choose to go for one, fully exploitative round of harvesting therefore leading

to the immediate, i.e., at the time of the agent’s first arrival, extinction of the

species. One way of preventing this socially harmful result is to constantly monitor

and control the actual catch of the agent. Alternatively, a bound on exploitative

behaviour can be implemented by directly restricting the total catch by a quota.

Quotas as such however are relatively crude instruments and do not take into

account the growth potential of young fish and thus the reproduction capacity of

a species. Also, it is very hard to monitor the actual by-catch that is disposed

of at sea, which is a well-known problem. Our model sheds light on the more
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flexible policy alternative of a minimum mesh size regulation, provided that the

stock consists of a heterogeneous population.14 This policy takes into account the

actual heterogeneity of populations and their idiosyncratic growth potentials and

thus has numerous advantages over quotas (see Jones, 1984, for details). The

socially detrimental maximizing behaviour of the agent can only be pursued if

fishing with the minimal mesh size is feasible. If the minimal mesh size is bounded

below, incentives change and the agent will become concerned about the growth

potential of the stock that is left behind. Thus the social objective of preserving

the species for the future can be served.

We are convinced that the simplicity of our model and its implications war-

rant the interest of the economics discipline beyond the realm of resource and

environmental economics. Our model has a certain proximity to the two seminal

papers of Hotelling (1929, 1931). The wealth of applications of his static model

(1929) equally applies to our truly dynamic context. Hence, an extension of the

present dynamic model to an oligopoly situation with non-competitive behaviour

is immediate. Moreover, introducing further realistic properties such as potential

movement (or diffusion) of the resource or acceleration of the agent (boat) may

enhance the insights from spatial resource models.

As shown by Belyakov, Davydov, and Veliov (2013), a similar spatial setup

with a different growth process and different long run objectives can lead to situ-

ations in which the renewable resource is completely depleted in some areas but

not in others. Hence, the feasibility of a sustainability doctrine that is based

on the persistent existence of the renewable resource in all its original locations

is put into question and important issues about adequate alternative definitions

are raised. Such “exhausted areas” could realistically be expected to be repop-

ulated if the resource itself can move, as is modelled in the works of Brock and

Xepapadeas (2010) and Brock, Xepapadeas, and Yannacopoulos (2013). Such a

diffusion of the resource clearly enhances the insights from spatial resource models.

Similarly, we also expect that recent developments in age-structured population

models (see Hritonenko and Yatsenko, 2006; and Anita, 1998, for references) may

fruitfully contribute to a dynamic analysis of the economics of spatially distributed

renewable resources. Finally, varying the harvesting capacity by allowing varied

investment behaviour on the part of the agent, e.g. investments of the fisher in

boats and fishing nets without and with uncertainty, as investigated by Brennan

and Schwartz (1985), constitute challenging paths for future research.

14In our model, the stock of the resource may be interpreted as the aggregate of a heteroge-

neous population featuring a constant composition. Adding real heterogeneity into our spatial

model, though, will lead to a substantial increase in the complexity of the analysis, and is thus

beyond the scope of the present paper.
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Appendix A.

We know that the total discounted harvest
∑n

i=1E(i), given by Equation (7),

necessarily has to be positive. Since

(1− α)
2πy0

(r − ρ)θ

(
e(r−ρ)θ − 1

)
≥ 0 ∀r, ρ ∈ R+,

any parameter restriction on σ := r−ρ must result from the non-negativity of the

expression

ψ(n) :=
αnen(r−ρ)θ − 1

αe(r−ρ)θ − 1
.

Let ϕ(n) := αnen(r−ρ)θ−1. It then follows from Equation (7) that
∑n

i=1E(i) >

0 ⇔ ψ(n) ≡ ϕ(n)/ϕ(1) > 0, and thus ψ′(n) = ϕ′(n)/ϕ(1), with ϕ′(n) =

αnenθ(r−ρ)(log(α)+θ(r−ρ)). Since log(α)+θ(r−ρ) > 0 ⇔ ϕ(1) = αe(r−ρ)θ−1 > 0,

we infer that

ψ′(n) = ϕ′(n)/ϕ(1) > 0 ∀r, ρ ∈ R+.

Actually, we have that ψ(0) = 0 and ψ(1) = 1. We thus conclude that ψ is

positive and strictly increasing for all values of r and ρ, although we do not know

whether ϕ is decreasing (and negative) or increasing (and positive). Hence, the

only parameter restriction on σ amounts to

αe(r−ρ)θ − 1 6= 0 ⇔ eρθ − αerθ 6= 0. ⇔ σ ≡ r − ρ 6= logα

θ
.

This condition is given on page 14, immediately before Equation (9).

Appendix B.

Differentiating G(θ, α) with respect to the second argument yields

2πy0

θσ (eρθ − αerθ)2

(

− αnenrθ−ρT

(

−
(
α2 − 1

)
e2rθ+ρτ − 2αer(θ+τ)+ρθ

+ 2(α− 1)erθ+ρ(θ+τ) + erτ+2ρθ + α2er(2θ+τ)

)

+ n(α− 1)αn−1
(
αerθ − eρθ

)
enθσ−ρτ

(
(α− 1)erθ+ρτ + erτ+ρθ − αer(θ+τ)

)

− 2eθ(r+ρ) + e2rθ + e2ρθ

)

= 0. (B.1)
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Appendix C.

In order to show that (n, α) = (1, 0) is the maximizer of G, we have to compare

G(i, α(i)) for all i = 1, 2, . . .. We first show that G(1, α(1)) > G(2, α(2)). (The

values α(1) and α(2) are given on page 14.)

G(1, α(1)) > G(2, α(2))

⇔ 2πy0
(
eTσ − 1

)

Tσ
>
πy0e

−Tσ
2

(

e
Tσ
2 − 1

)(

e
Tσ
2 + 1

)2

Tσ

⇔ 2e
Tσ
2

e
Tσ
2 + 1

> 1.

The next step is to show that G(2, α(2)) > G(3, α(3)), which is equivalent to

πy0e
−b/2

(
eb/2 − 1

) (
eb/2 + 1

)2

Tσ

>
2πy0e

−b
(
eb/3 − 1

)

9Tσ

(

−
√

−2e2b/3 + eb + e4b/3 + eb/3 + 2e2b/3
)

×
(

eb/3
(

2
√

−2e2b/3 + eb + e4b/3 + 5
)

+ 2e2b/3 + 2eb +
√

−2e2b/3 + eb + e4b/3
)

⇔ − 4eb
(√

−2e2b/3 + eb + e4b/3 + 6
)

− 9eb/6 + 7e2b/3 + 9e7b/6 − 2e4b/3 + 5e5b/3

+ eb/3
(

12
√

−2e2b/3 + eb + e4b/3 + 14
)

− 8
√

−2e2b/3 + eb + e4b/3 > 0,

where b ≡ σT . In a similar manner we may proceed step by step, yet with the

terms becoming more and more involved. A numerical analysis readily shows that

G is decreasing as the number of rounds increases: more formally, that G̃(n) ≡
G(n, α(n)) is a strictly decreasing function. This is illustrated in Figure 10 for

n = 1, 2, 3.

T

G̃

5 10 15 20

Figure 10. Objective function G̃(n) ≡ G(n, α(n)) for n = 1, 2, 3

(red, green, blue).


