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Abstract 
 

We construct a uniquely detailed, comprehensive dataset of trader 
positions in U.S. energy futures markets.  We find considerable changes in 
the make-up of the open interest between 2000 and 2010 and show that 
these changes impact asset pricing.  Specifically, dynamic conditional 
correlations between the rates of return on investable energy and stock 
market indices increase significantly amid greater activity by speculators 
in general and hedge funds in particular (especially funds active in both 
equity and energy markets).  The impact of hedge fund activity is 
markedly lower in periods of financial market stress.  Our results support 
the notion that the composition of trading activity in futures markets helps 
explain an important aspect of the distribution of energy returns, and have 
ramifications in the debate on the financialization of energy markets.   
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Introduction 
 

In the past ten years, financial institutions have assumed an ever greater role in energy 

futures (or “paper”) markets.  We provide novel evidence of this “financialization” and show that 

it helps explain an important aspect of the distribution of energy returns.   

Several recent papers examine the respective impacts of commodity supply and demand 

factors and of financial speculation on energy prices.  In particular, Hamilton (2009), Kilian and 

Murphy (2011), Büyükşahin and Harris (2011) and Singleton (2011) investigate the 2004-2008 

oil boom-bust price cycle.  We focus on a different element of the energy return distribution in 

the past decade: the extent to which they move in sync with the returns on equity investments.  

Understanding the drivers of commodity return comovements is critical for hedgers as 

well as investors.  Starting with Pindyck and Rotemberg (1990), numerous studies have used 

various techniques to disentangle the relevance of fundamental values vs. market frictions and 

investor sentiment.  That literature focuses on the excess comovements of different commodities 

– see Ai, Chatrah and Song (2006), Tang and Xiong (2011) and references cited therein.  Amid 

widespread concern that commodities and equities may have become a “market of one”,2 we 

investigate empirically whether energy-commodity correlation patterns have changed and, in the 

affirmative, whether the financialization of commodities helps explain this transformation.   

We start from the premise that, if many commodity market participants face restrictions 

on their choices of trading strategies, then an influx of financial traders subject to fewer trading 

constraints should help alleviate price discrepancies and improve risk transfers across markets 

(e.g., Başak and Croitoru, 2006; Rahi and Zigrand, 2009).  In ordinary times, this theoretical 

intuition and the fact that hedge funds are less constrained than other investors (e.g., Teo, 2009) 

together suggest that greater hedge fund participation could affect the strength of cross-market 

linkages.  Additionally suppose that, during periods of financial market stress, value arbitrageurs 

and convergence traders face borrowing constraints or other pressures to liquidate risky assets.  

Their exit from “satellite” asset markets (in our case, energy paper markets) after a large shock in 

a “central” market (in our case, U.S. equity markets), then, could in theory lead to cross-market 

contagion – see Gromb and Vayanos (2010) and papers cited therein.  Depending on the market 

composition (i.e., who trades), correlations could remain high long after the initial shock, even if 

the fundamentals driving asset returns are independent (Danielsson, Shin and Zigrand, 2011a-b).   
                                                
2 See Büyükşahin, Haigh and Robe (2010) and references cited therein.   
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Taken as a whole, those arguments suggest that not only economic fundamentals, but also 

the make-up of trading activity, could influence the distribution of energy returns, and that 

financialization should affect cross-market linkages differentially in periods of stress.  We 

provide empirical support for these hypotheses.  Controlling for macroeconomic and energy-

market fundamentals, we document that energy-equity comovements are positively related to 

greater energy market participation by speculators in general and by hedge funds in particular – 

especially by hedge funds that take positions in both equity and energy futures markets.  We 

show that the impact of hedge fund activity depends on overall market conditions.  In particular, 

it is weaker during periods of turmoil in financial markets.   

Key to our contribution is our unique dataset.  In general, investigating whether specific 

types of traders contribute to cross-market linkages is empirically difficult because doing so 

requires detailed information about the trading activities of all market participants as well as 

knowledge of each participant’s main motivation for trading.  We overcome this critical pitfall 

by constructing a daily dataset of individual trader positions in U.S. futures markets for energy 

(crude oil, heating oil, natural gas) and equities (S&P 500 e-Mini).  The underlying data are not 

public: they come from the U.S. Commodity Futures Trading Commission’s (CFTC) large trader 

reporting system.  The CFTC collects daily information on the positions of every large trader at 

the close of each of these markets as well as information on each trader’s purpose for trading and 

main line of business.  On average, our dataset covers the individual positions of more than 83% 

of the total open interest in the largest U.S. energy futures markets between 2000 and 2010.   

We focus on the linkages between energy and equity markets for several reasons.  First, 

energy futures markets are among the largest commodity paper markets in the world – making 

them a natural candidate for investigating the possible impact of paper market activity on return 

distributions.  Second, we need comprehensive data on trader positions.  Energy futures markets 

are ideal in this respect as energy price discovery generally takes place on futures exchanges 

rather than over-the-counter (e.g., Kofman, Michayluk and Moser, 2009) and it is precisely about 

the futures open interest that we have comprehensive information.  Third, energy-equity 

conditional correlations fluctuate much more than the linkages between equities and other asset 

classes (Büyükşahin, Haigh and Robe, 2010; Chong and Miffre, 2010), offering fertile ground to 

analyze whether fundamentals, trading, or both drive those fluctuations.  Fourth, and most 

importantly, we join the debate on the financialization of commodity markets.   
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In this last regard, we make three contributions.  First, we provide a decade’s worth of 

detailed information on the growing importance of financial traders in three major energy futures 

markets.  Second, we document that several types of energy futures traders (especially, hedge 

funds) also trade equity futures and that such cross-market trading has grown substantially. Third, 

we use this novel data to investigate the impact of financialization on cross-market linkages.   

We find that, besides economic fundamentals, variations in the composition of the energy 

futures open interest help explain long-term fluctuations in the strength of energy-equity return 

linkages.  Specifically, a 1% increase in the overall energy-futures market share of hedge funds 

is associated ceteris paribus with an increase in dynamic conditional energy-equity return 

correlations of about 5%.  We establish this result via ARDL regressions that include lagged 

values of the variables in the regressions to tackle serial autocorrelation and endogeneity issues 

(due to the possibility that speculation could increase amid high volatility and correlations, rather 

than the other way around).   

We find that the positions of other categories of energy traders (commodity index traders, 

in particular) have little explanatory power for equity-energy return correlations.  Furthermore, it 

is not simply changes in energy speculation that help explain the observed correlations.  Rather, 

the explanatory power relates more narrowly to the activities of one type of speculators – hedge 

funds, especially those active in both equity and energy futures markets (which, we find, hold 

much larger positions than other hedge funds).  To our knowledge, the latter two findings 

provide the first empirical evidence of the need to use actual trader behavior to account, in 

energy futures markets, for heterogeneity among different sorts of hedge funds (i.e., among 

market participants that all share the same CFTC classification of “managed money traders”).   

We document that financial market stress affects energy-equity linkages in two ways.  

First, energy-equity return comovements are positively related to our proxy for stress, the TED 

spread.  Prior to the collapse of U.S. investment bank Lehman Brothers (from July 2000 to 

August 2008), a 1% increase in the TED spread brought about a 0.19% to 0.30% increase in the 

energy-equity dynamic conditional correlation estimate.  Intuitively, hedge funds could be an 

important transmission channel of negative equity market shocks into the energy space.  In fact, 

the sign of an interaction term we use to capture the behavior of hedge funds during financial 

stress (“high TED”) episodes is statistically significant and negative.  In other words, the impact 

of hedge fund activity is reduced during periods of elevated financial market stress.   
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Second, we show that energy-equity correlations soared in the Fall of 2008 after Lehman 

Brothers’ demise and remained exceptionally high through Spring 2011.  Over and above the 

explanatory power of the TED spread, a time dummy that captures the post-Lehman period 

(September 2008 to March 2010) is highly statistically significant in all of our model 

specifications.  This finding suggests that the recent crisis is qualitatively different from previous 

episodes of financial market stress and that this difference is reflected, in part, by an increase in 

cross-market correlations.   

The remainder of the paper proceeds as follows.  Section I places our contribution within 

the exisiting literature.  Section II provides evidence on energy-equity linkages.  Section III 

presents our data on trader positions and documents the financialization of energy futures 

markets.  Section IV contains regression analyses tracing changes in the strength of energy-

equity comovements to market fundamentals, financial stress, and hedge fund activity.  Section 

V concludes.   

 

I. Related Work 

Our paper contributes to a fast-growing literature that investigates the financialization of 

commodity markets in the past decade.  Part of that literature analyzes the consequences of 

financialization through the lens of commodity risk premia (e.g., Acharya et al, 2010; Hong and 

Yogo; 2010; Etula, 2010; Singleton, 2011).  Not unlike our findings that the activities of specific 

financial traders impact an aspect of the commodity return distributions and that financial market 

stress affects this behavior, two of those studies find evidence that the risk-bearing capacities of 

broker-dealers (Etula) and the risk aversion of energy producers (Acharya et al) play significant 

roles in determining commodity risk premia.   

Those four papers use publicly-available position data and focus on the first moment of 

the commodity return distribution.  We focus instead on the comovements between the returns 

on investable energy and stock indices.  Through this lens and thanks to a unique dataset, we 

show that the composition of the futures open interest is an important explanatory factor of this 

aspect of energy returns’ distribution.  Consistent with some theoretical models, we find that the 

participation levels of hedge funds that trade in equity and commodity markets influence the 
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strength of cross-market linkages.  Consistent also with theoretical work on limits to arbitrage,3 

we find that the explanatory power of speculative positions drops in times of high market stress.   

Our analysis is also related to several empirical studies of the impact of financialization 

on intra-market (Büyükşahin, Haigh, Harris, Overdahl and Robe, 2009) or cross-market linkages 

(Stoll and Whaley, 2010; Büyükşahin and Robe, 2010; Tang and Xiong, 2011).   

Stoll and Whaley (2010) and Tang and Xiong (2011) use publicly-available data to ask 

whether the arrival of index traders in commodity futures markets brought about an increase in 

the comovements between various commodities.  Büyükşahin et al (2009) use non-public CFTC 

position data (2000-2008) to show that, amid growth in commodity index trading and improved 

contract liquidity, greater hedge fund activity in long-dated crude oil futures has helped link oil 

prices across the futures maturity curve.  Rather than the linkages between diverse commodities 

or between different-maturity contracts on a single commodity, we focus on the co-movements 

between energy and equity paper markets.  Our paper also differs from those studies in terms of 

how we measure comovements and in terms of the types of financial traders we consider (not 

only CITs but also hedge funds and various other types of traders).   

Closest to our endeavor is a contemporaneous study by Büyükşahin and Robe (2010) on 

return linkages between broad, well-diversified commodity and equity portfolios.  That study 

also has access to confidential CFTC data, but uses the latter to construct measures of trader 

activity that are aggregated across seventeen commodities.  In the present paper, we instead 

provide uniquely detailed information on trader positions and on cross-trading patterns in energy 

paper markets.4  We use this heretofore unavailable information to show that not only 

macroeconomic variables (as in Büyükşahin and Robe), but also fundamental factors specific to 

physical energy markets as well as the intensity of hedge fund activity in energy paper markets, 

help explain the extent to which energy and equity returns move together.   

                                                
3 See Kyle and Xiong (2001), Gromb and Vayanos (2002), and Danielsson et al (2011a-b) for theoretical analyses of 
how wealth constraints hamper cross-market arbitrage.  See Gromb and Vayanos (2010) for review of that literature.   
4 We obtained clearance from the CFTC to summarize its non-public energy-market information in a manner that 
respects the confidentiality laws under which the agency operates.  Only a handful of published studies are based on 
non-public CFTC futures position data.  They include Harzmark (1987, 1991), studying the trading performance of 
individual traders in nine commodity futures markets from July 1977 to December 1981; Leuthold, Garcia and Lu 
(1994), extending Harzmark’s work; Chang, Pinegar & Schachter (1997), whose dataset includes six futures markets 
from 1983 to 1990; Ederington & Lee (2002), analyzing heating-oil NYMEX futures position from June 1993 to 
March 1997; and Haigh et al (2007), analyzing possible connections between hedge fund activity and energy futures 
market volatility between August 2003 and August 2004.   
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We find that the impact of hedge fund activity varies depending on the overall state of 

financial markets.  This result complements a large body of work in economics on the financial 

vs. fundamental drivers of cross-market linkages.  Part of that literature asks whether financial 

shocks get propagated internationally through financial channels such as bank lending (e.g., van 

Rijckeghem and Weder, 2001) and international mutual funds (e.g., Broner, Gelos and Reinhart, 

2006) or whether, instead, such shocks spread internationally through real economy linkages 

such as trade relationships (e.g., Forbes and Chinn, 2004).  Our findings suggest that, in periods 

when the TED spread shows elevated levels of financial-market stress, higher hedge fund 

participation ceteris paribus weakens (rather than strengthens) cross-market correlations.   

Finally, our documentation of hedge fund activity and impact in energy markets links the 

present paper to a vast finance literature on hedge funds.  Closest here is the body of empirical 

work on whether hedge funds can destabilize markets.  In equity markets, Brunnermeier and 

Nagel (2004) and Griffin, Harris, Shu and Topaloğlu (2011) argue that hedge funds moved stock 

prices during the technology bubble.  In energy futures markets, Büyükşahin and Harris (2011) 

conclude that hedge funds do not affect price levels yet are key to the functioning of these 

markets through the liquidity which they provide to other types of traders5.  Those empirical 

papers focus on price levels for a given type of asset (i.e., on the first moments of an asset’s 

returns).  Our paper, which measures the linkages between two types of asset markets, instead 

deals with the second moments of the joint distributions of asset returns.   

 

II. Commodity-Equity Co-movements, 1991-2011 

The present paper investigates whether, in addition to macroeconomic and commodity-

specific fundamentals, the market activities of certain types of traders (speculators generally and 

hedge funds or index traders especially) explain how “satellite” asset markets (in our case, 

energy futures) comove with “core” asset markets (in our case, U.S. equities).   

This Section summarizes our return data and plots our estimates of the dynamic 

conditional correlation between the weekly returns on passive equity and energy investments.  

Our sample covers the full two decades in which commodity index vehicles have been readily 

                                                
5 In other types of financial markets, the evidence on whether hedge funds are destabilizing is mixed.  See Chan, 
Getmansky, Haas and Lo (2006) for a review of the prior literature on hedge funds.   
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available to investors (1991-2011).  Our analysis extends a number of prior studies documenting 

changes over time in the extents to which commodity returns move together with the returns on 

other kinds of investments.6  It also complements a number of studies on the susceptibility of 

stock prices to oil shocks (see, e.g., Kilian and Park, 2009) and on excess comovements between 

commodities (see, e.g., Stoll and Whaley (2010) or Tang and Xiong (2011)).   

A. Return Data  

We analyze weekly returns on benchmark energy and stock market indices.7  We obtain 

price data from Bloomberg.  We use return data from January 1991 (when Goldman Sachs’ 

commodity indices were first introduced as investable benchmarks) to May 2011.   

For energy, we use the unlevered total return on Standard and Poor's S&P GSCI-Energy 

index (“GSENTR”), i.e., the return on a “fully collateralized energy futures investment that is 

rolled forward from the fifth to the ninth business day of each month.”  The GSCI-Energy index 

averages the prices of six nearby energy futures contracts, using weights that reflect worldwide 

production figures.  As a result, the GSCI-Energy index is tilted toward crude oil (see Table 1).  

In robustness checks, we therefore use the total (unlevered) returns on the second most widely 

used investable benchmark, Dow-Jones's DJAIG (since May 2009, DJ-UBSCI) Total-Return 

Energy Index.  This second index was designed to provide a more “diversified benchmark for the 

commodity futures market.”  We find similar results for the GSCI and DJAIG indices.  Hence, 

we focus the discussion on the results obtained using GSCI weekly data.   

For equities, we focus on Standard and Poor’s S&P 500 index.  This stock index is broad-

based, making it a natural choice. Further, trading activity in the Chicago Mercantile Exchange’s 

(CME) S&P 500 e-Mini futures far exceeds that in other equity-index futures in the United 

States, making the S&P 500 futures market the ideal benchmark to test the hypothesis that cross-

market traders may contribute to commodity-equity linkages.  In robustness checks, we find 

quite similar energy-equity correlation patterns using the Dow-Jones Industrial Average equity 

index, so there is no loss of generality in using the S&P 500.8   

                                                
6 See, e.g., Gorton and Rouwenhorst (2006, using data from 1959-2004), Erb and Harvey (2006, using data from 
1982 to mid-2004), Chong and Miffre (2010, using data from 1991-2006), Büyükşahin, Haigh and Robe (2010, 
using data from 1991 to Fall 2008), and Silvennoinen and Thorp (2010, using data from 1990 to mid-2009).   
7 Precisely, we measure the percentage rate of return on the Ith investable index in period t as rI

t = 100 Log(PI
t / PI

t-1), 
where PI

t is the value of index I at time t.   
8 We use equity returns that omit dividend yields.  This approach leads to an underestimation of the expected returns 
on equity investments (Shoven and Sialm, 2000).  Insofar as large U.S. corporations smooth dividend payments over 
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B. Dynamic Conditional Correlations 

In order to obtain dynamically correct estimates of the intensity of commodity-equity co-

movements, one must take into account volatility changes that would restrict inferences about the 

true nature of the relationship between equity and energy returns.  Engle (2002) shows the 

advantages of doing so by computing dynamic conditional correlations (DCC).  In essence, the 

DCC model is based on a two-step approach to estimating the time-varying correlation between 

two return series.  In the first step, we estimate time-varying variances using a GARCH(p,q) 

model.  For our sample, p=q=1.  In the second step, we estimate a time-varying correlation 

matrix using the standardized residuals from the first-stage estimation.   

Figure 1 plots, from January 3, 1991 to May 10, 2011, the dynamic conditional 

correlations between the weekly unlevered rates of return on the GSCI-Energy investable index 

and on the S&P 500 (“SP”) equity index.  For comparison, it also plots the DCC between the 

weekly rates of return on the GSCI Energy and MSCI World Equity (“MXWO”) indices.   

Several facts emerge from Figure 1.  First, energy-equity correlation patterns appear 

broadly similar for U.S. and world equity indices although, after 2003, energy-equity DCC 

estimates are often slightly higher for the MSCI than for US-only equity indices.9 Second, there 

is no visible up-trend in energy-equity correlations (DCC) before September 2008.  Until 2008, 

the figure shows that energy-equity correlations instead fluctuated substantially over time: prior 

to the demise of Lehman Brothers, the range was (-0.37, 0.38).  Third, and perhaps most 

strikingly, since the end of November 2008 energy-equity weekly return correlations have 

hovered around levels unseen in the prior two decades (almost always well above 0.34, up to 

0.62).   

 

                                                                                                                                                       
time (Allen and Michaely, 2002), however, the correlation estimates that are the focus of our paper should be 
essentially unaffected.   
9 Tang and Xiong (2011) and Büyükşahin and Robe (2010) find a similar difference using broad-based commodity 
indices.  They show that the difference is due to the emerging market component of the MSCI World equity index.  
Tang and Xiong interpret the latter component as a “proxy for the economic growth of emerging economies” that 
pushed up commodity prices after 2003.  In our regression analysis of correlation drivers in Section IV, we control 
for “macro” fundamentals by means of a non-equity based measure of world economic activity (Kilian, 2009).   
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III. The Financialization of Energy Futures Markets, 2000-2010  

Trading activity and open interest levels in most commodity futures markets are greater 

now than a decade ago.  In this Section, we construct a comprehensive dataset of trader positions 

in U.S. energy futures markets to show that the latter’s growth entailed major changes in the 

composition of the overall open interest.  We find substantial increases in the activities of hedge 

funds and commodity index traders, extending over time and generalizing across energy 

commodities the findings of Büyükşahin et al (2009) in the specific case of crude oil.  Further, 

we provide the first evidence of the extent to which equity futures traders are also active in 

energy paper markets.   

We construct our dataset from confidential CFTC data on individual trader positions in  

key U.S. energy (crude oil, natural gas and heating oil) and equity (S&P 500 e-Mini) futures 

markets.  These data provide the foundation for the regression analyses that examine, in Section 

IV, whether these structural changes have explanatory power for energy-equity returns linkages.   

Section III.A contrasts our information with the less-detailed, publicly available data on 

energy futures open interest mostly used in prior literature.  Section III.B establishes that, 

compared to commercial activity, speculative activity has grown substantially since 2000.  We 

then provide more specific evidence on the growth of commodity index trading (Section III.C), 

hedge fund activity (Section III.D), and cross-market trading (Section III.E).   

A. Trader Position Data 

We construct a database of daily trader positions in U.S. energy futures markets from 

July 1, 2000 to March 1, 2010.  We proceed similarly for S&P 500 e-Mini futures.   
 
1. Raw Data on the Purpose and Magnitude of Individual Positions 

The raw position data we utilize, and the trader classifications on which we rely, originate 

in the CFTC’s Large Trader Reporting System (LTRS).  Specifically, to help fulfill its mission of 

detecting and deterring market manipulation, the CFTC’s Division of Market Oversight collects 

position-level information on the composition of open interest across all futures and options-on-

futures contracts for each commodity.  It gathers this information for each trader whose position 

exceeds a certain threshold (which varies by market).  The CFTC also collects information from 
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each large trader about its respective underlying business (hedge fund, swap trader, crude oil 

producer, refiner, etc.) and about the purpose of its positions in different U.S. futures markets.   

Many smaller traders’ positions are also voluntarily reported to the CFTC and are thus 

included in the raw data made available for the present study.  Depending on the specific energy 

futures and time period, our dataset covers between 75% and over 95% of the total open interest.   

The CFTC receives information on individual positions for every trading day.  In our 

weekly analysis, we focus on the Tuesday reports because the underlying raw information is 

what the CFTC summarizes in weekly “Commitment of Traders (COT) Report” published every 

Friday at 3:30 p.m (U.S. Eastern Time).  Thus, the information we provide in this Section can be 

contrasted with numerous extant studies of commodity markets that rely on COT data.   
 
2. Publicly Available Information  

 For every futures market with a certain level of market activity, the CFTC’s weekly COT 

reports provide information on the overall open interest.  They also break down this figure 

between two (until 2009) or four (since 2009) categories of traders.   

Prior to September 2009, the COT reports separated traders between two broad categories 

– “commercial” vs. “non-commercial.”  The CFTC classified all of a trader's futures and options 

positions in a given commodity as “commercial” if the trader used futures contracts in that 

particular commodity for hedging as defined in CFTC regulations.  A trading entity generally is 

classified as “commercial” by filing a statement with the CFTC that it is commercially “engaged 

in business activities hedged by the use of the futures or option markets”.10  The “non-

commercial” group aggregated various types of mostly financial traders, such as hedge funds, 

mutual funds, floor brokers, etc.   

Since September 4, 2009, the CFTC’s COT reports differentiate between four (rather than 

just two) kinds of traders.  It now splits commercial traders between “traditional” commercials 

(e.g., energy producers, refiners, oil dealers and merchants, etc.) and commodity swap dealers (a 

category that includes commodity index traders in most markets).  It also now differentiates the 

reportable positions of non-commercial traders between those of managed money traders (i.e., 

hedge funds) and those of “others”.  As of Summer 2011, however, the CFTC has not indicated 

                                                
10 In order to ensure that traders are classified accurately and consistently, the CFTC staff may exercise judgment in 
re-classifying a trader if it has additional information about the trader’s use of the markets.   
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plans to make this more detailed information available retroactively prior to 2006 or to break 

down the publicly-available position data by contract maturity.   
 
3. Non-Public Information 

The LTRS data allow for much more differentiation than the simple COT classifications.  

Specifically, each reporting trader is classified into one of 28 (rather than a few) sub-categories.  

Appendix 1 illustrates the increased level of disaggregation that is possible using the LTRS data. 

Because the LTRS data are not only commodity-, but also maturity-, specific, they allow 

us to disentangle the activities of various kinds of traders at the near and far ends of the 

commodity-futures term structure.  In contrast, the COT reports do not separate between traders’ 

positions at different contract maturities.  Section IV shows that this additional disaggregation is 

critical, in that it is the positions held by hedge funds in shorter-dated energy contracts (rather 

than further along the three maturity curves) that help explain energy-equity return 

comovements.   

Crucially, the LTRS identifies a given trader by the same number in all markets.  We use 

this information to provide the first evidence of the extent to which some traders are active in 

both equity and energy paper markets.  Section IV shows the usefulness of this information, in 

that it is the positions of hedge funds that are active in both equity and energy markets (rather 

than hedge fund activity as a whole) that hold explanatory power for cross-market linkages.   

 

B. Increased Excess Speculation  

To measure the extent and growth of speculative activity in energy futures markets, we 

use Working’s (1960) “T”.  This commonly used index compares the activities of all “non-

commercial” commodity futures traders (often known as “speculators”) to the net demand for 

hedging originating from “commercial” traders (also known as “hedgers”).   
 
1. Measuring “Excess Speculation” 

Working’s “T” is predicated on the idea that, if long and short hedgers’ respective 

positions in a given futures market were exactly balanced, then their positions would always 

offset one another and speculators would not be needed in that market.  In practice, of course, 

long and short hedgers do not always wish to trade simultaneously or in the same quantity.  
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Hence, speculators must step in to fill the unmet hedging demand.  Working’s “T” measures the 

extent to which speculation exceeds the level required to offset any unbalanced hedging at the 

market-clearing price (i.e., to satisfy hedgers’ net demand for hedging at that price).   

For each energy markets in our sample (i = 1, 2, 3), we compute Working’s T every 

Tuesday from July 1, 2000 to March 1, 2010.  In each market, we compute two “T” indices – one 

for short-term futures only (!"!!,!), and one for all contract maturities (!"#!,!).  This second 

measure can be computed using the publicly-available COT reports, which allows readers 

without access to the LTRS data to replicate our results.   

For !"!!,! we use position data from the three shortest-maturity contracts with non-trivial 

open interest.  The idea is that it is near-dated futures prices that form the basis of the GSCI-

Energy return benchmark.  Formally, in the ith energy market in week t:  
 

!"!!,! ≡ !!,! =
1+   

!!!,!
!"!,! + !"!,!

    !"  !"!,! ≥ !"!,!

1+   
!"!,!

!"!,! + !"!,!
  !"  !"!,! ≥ !"!,!

               ! = 1,2, 3  

 

where !!!,! ≥ 0 is the (absolute) magnitude of the short positions held in the aggregate by all 

non-commercial traders (“Speculators Short”); !"!,! ≥ 0 is the (absolute) value of all non-

commercial long positions; !"!,! ≥ 0 stands for all commercial short positions (“Hedge Short”) 

and !"!,!  ≥ 0 stands for all long commercial positions.   

We then average these individual index values to provide a general picture of speculative 

activity across energy paper markets:  
 

!"#"! =    !!,!

!

!!!

!"!!,! 

 
where the weight !!,!  for commodity i in a given week t is based on the weight of the commodity 

in the GSCI-Energy index that year (Source: Standard and Poor), rescaled to account for the fact 

that we focus on the three U.S. markets (out of six GSCI-Energy markets) for which position 

data are available.  Table 1 lists the annual commodity weights per commodity, per year.   
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 To get a picture of excess energy speculation across all contract maturities, we compute:  
 

!"#$! =    !!,!

!

!!!

!"#!,! 

 

 
2. Excess Speculation in U.S. Energy Futures Markets, 2000-2010 

Table 3A provides summary statistics of the weighted average speculative indices (WSIS 

and WSIA) between July 2000 and March 2010.  During that period, the minimum value was 

approximately 1.05 for short-dated as well as for all energy contracts; the maximum was 1.57 in 

near-term contracts but lower (1.46) across all maturities.  Put differently, speculative positions 

averaged 5% to 57% more than what was minimally necessary to meet net hedging needs at the 

market-clearing prices.   

Figure 2A shows the relative growth of speculation in energy paper markets in the past 

decade.  Excess speculation increased substantially, from about 5-10% early in the decade to 37-

57% in 2008.11 A comparison of the WSIS and WSIA plots shows similar excess speculation 

patterns in near-dated and other contracts prior to the Summer of 2006.  Between the Summer of 

2006 and the Summer of 2009, however, short-term excess speculation was often 10% greater 

than further out on the futures maturity curve. Excess speculation fell notably in 2009, especially 

in near-term contracts (WSIS peaked at 1.57 in April 2008 but fell to 1.34 in late 2009).   

In sum, Figure 2A identifies a long-term increase, but also substantial variations, in 

excess commodity speculation.  Those patterns will be of particular interest in the analysis of 

Section IV.  Before proceeding to regression analyses, however, we investigate whether the 

changes in overall speculative activity hide differential patterns for distinct types of financially-

motivated traders: index traders (III.C), hedge funds (III.D) and cross-market traders (III.E).   

C. Increased Commodity Index Trading (CIT)  

CIT’s arrival in energy markets has received a lot of attention from policy makers (ITF, 

2008) and academic researchers (e.g., Irwin and Sanders, 2011; Singleton, 2011).  We utilize the 

LTRS data to provide novel evidence of CIT’s growing importance in energy futures markets.   
 

                                                
11 The values for energy markets in Figure 2 are generally lower than for agricultural commodities.  Peck (1981) 
gets values of 1.57-2.17; Leuthold (1983), of 1.05-2.34.  See also Irwin, Merrin and Sanders (2008).   
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1. Measuring Index Trading Activity 

While the non-public data to which we were granted access yields precise information to 

compute market shares for most trader categories (including, importantly, hedge funds – see 

Section III.D), the LTRS does not identify CIT activity in energy markets at the daily or weekly 

frequency.  This is because CIT activity percolates into energy futures partly through CIT 

interactions with commodity swap dealers but, even in the CFTC’s non-public data, CIT-related 

positions in energy markets cannot be identified within the overall positions held by commodity 

swap dealers in those markets.   

Various approaches have been suggested to circumvent this pitfall using publicly 

available data (see Appendix 2 for a discussion).  The present paper draws instead on the 

granularity of the non-public CFTC data and on the fact that CIT activity has tended to 

concentrate in near-dated contracts.  Specifically, we approximate the near-term (overall) CIT 

market shares in our three energy futures markets each week by the shares of the near-dated 

(overall) open interest held by swap dealer in each of these three markets.  We compute similar 

market share figures for hedge funds (see Section III.D) and for traditional commercial traders.   

Formally, for each sub-category of traders, we compute the open-interest or “market” 

share of a given category of traders, in each energy futures market each Tuesday, by expressing 

the average of the long and short positions of all traders from this group in that market as a 

fraction of the total open interest in that market that same Tuesday.  We then average these 

commodity-specific market shares across our three energy futures markets, using the commodity 

weights from Table 1.  We compute these market shares across the three nearest-maturity futures 

with non-trivial open interest as well as across all contract maturities.   

We denote by WMSS_MMT, WMSS_AS, and WMSS_TCOM the respective weighted-

average market shares of hedge funds (or MMT, “managed money traders”), commodity swap 

dealers (AS, including CIT – commodity index traders), and traditional commercial traders 

(TCOM) in short-dated contracts.  We denote each type of traders’ contribution to the total open 

interest (i.e., across all contract maturities) as WMSA_MMT, WMSA_AS, and WMSA_TCOM.   
 
2. Index Trading in U.S. Energy Futures Markets, 2000-2010 

Figure 2A plots WMSS_AS (WMSA_AS), i.e., the weighted-average market shares of 

commodity swap dealers in near-dated (all) energy futures.  Both WMSS_AS and WMSA_AS 
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peaked in the second half of October 2008 before sharply falling in the following two months 

and then recovering slowly in 2009 and 2010.   

Throughout our sample period (2000-2010), commodity swap dealers’ positions account 

for approximately 10% more of the overall open interest than they contribute to the near-dated 

open interest.  For the near-dated energy futures (where CIT activity has tended to concentrate), 

Figure 2A shows that swap dealers’ market share grew approximately by two thirds between 

early 2003 and the beginning of 2007.  Interestingly, following the dismal last quarter of 2008 

and amid a strong rebound of the energy futures open interest in 2009 and 2010, swap dealers’ 

positions now account for a greater proportion of the long-dated open interest than at any time 

earlier – suggesting a further lengthening of the maturity structure of their energy exposure, a 

pattern that was first identified in the crude oil market by Büyükşahin et al (2009).   

D. Increased Hedge Fund Activity 

Working’s T lumps together all non-commercial traders: floor brokers and traders, hedge 

funds, and other non-commercial traders that are not registered as “managed money traders”.  

Yet, there is little reason to believe that floor brokers in a specific market should affect energy -

equity linkages.  Hedge funds, in contrast, are much more plausible candidates for such a role.   
 
1. Measuring Hedge Fund Activity 

We utilize the LTRS data on the individual positions of “managed money traders” to 

compute hedge funds’ contribution to the total energy futures open interest (see Appendix 3 for a 

formal definition of a “hedge fund” in the context of U.S. energy futures markets).  We calculate 

hedge fund market shares across the three nearest-maturity futures with non-trivial open interest 

(WMSS_MMT) as well as across all contract maturities (WMSA_MMT).   
 
2. Hedge Funds in U.S. Energy Futures Markets, 2000-2010  

The red (blue) line in Figure 2B depicts changes in WMSS_MMT (WMSA_MMT) over 

time.  This chart, together with Tables 3B and 3C, highlights several important market changes.   

First and foremost, hedge funds’ contribution to the energy futures open interest more 

than tripled between 2000 and 2008.  Their market share grew from less than a tenth of the open 

interest prior to 2002 to between a quarter and a third of the total after 2006.   
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Second, Tables 3B and 3C, which provide summary statistics for various kinds of traders 

in near-term (3B) and all (3C) futures contracts, show that WMSS_TCOM and WMSA_TCOM 

both fell from over 60% to less than 20%.  That is, hedge funds’ greater market share echoes a 

sharp drop in traditional commercial traders’ relative contribution to the overall open interest.  

This finding generalizes, to a cross-section of energy futures markets, some of the observations 

of Büyükşahin et al (2009) in the specific case of WTI crude oil futures.   

Third, Figure 2A shows that the market share of hedge funds as a whole started trending 

downward in the Spring of 2008.  Interestingly, this trend persisted in 2009 and 2010, i.e., in the 

period when cross-market correlations were unusually elevated.  A natural question is whether, 

as a group, hedge funds pulled back from energy paper markets in the post-Lehman turmoil.  We 

debunk this notion in Section III.E, by showing that one particular kind of hedge funds did not 

pull back (in fact, increased their collective share of the open interest) during that period.   

E. Increased Cross-Market Trading  

Of particular interest for this study are commodity futures traders that are also active in 

equity markets.  Table 4 provides information on the number of such traders in each of the 

commodity futures market in our sample.  Figure 2B and Table 3B document their growing 

contribution to the overall commodity-futures open interest in the past decade.   
 
1. Measuring Cross-Trading Activity 

For each trading day, we use the unique ID of each energy futures trader active that day 

to ascertain whether that trader also held overnight positions in the CME’s e-Mini S&P 500 

equity futures at any point in our sample period.  In the affirmative, we consider such an energy 

futures trader to be a “cross-market trader”.  This exercise tells us how many cross-traders there 

are on a given trading day.   

While the number of cross-market traders is of some interest, their market share is of 

independent interest.  This is because intuition suggests that traders active in both equity and 

commodity markets are likely better capitalized, and hence can hold larger positions, than other 

futures traders.  We therefore compute these cross-market traders’ share of the overall open 

interest in a given commodity market on each trading day.  To do so, we use the approach of 

Section III.C-D: for each group or subgroup of traders, we compute the open interest attributable 
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to that group or sub-group as the average of the long and short positions of traders in that group 

in that market on that day as a fraction of the total open interest in that market on that same day.   

We denote by CMSA_MMTi,t, CMSA _ASi,t and CMSA _ALLi,t the shares of the open 

interest in the ith commodity held respectively by cross-trading hedge funds (MMT), energy swap 

dealers (AS) and all energy-futures traders (ALL) (i = 1, 2, 3).  We then use the commodity 

weights from Table 1 to calculate the weighted-average market share of several trader types (xxx 

= MMT, AS or ALL) across the three energy futures markets in our sample:  
 

!"#$%_xxx! =    !!,!

!

!!!

!"#$_xxx!,! 

 
 
2. Equity-Energy Cross-Market Activity in U.S. Futures Markets, 2000-2010 

Table 4 provides information on the number of cross-market traders, and on the make-up 

of cross-trading activity, in the three energy futures markets in our sample.  In each of these 

energy markets, hundreds of traders also held positions in the Chicago Mercantile Exchange’s e-

Mini S&P 500 equity futures market (column 1).  Except for heating oil, well over a sixth 

(natural gas) or over a fourth (crude oil) of all large commodity futures traders also traded equity 

futures in that period (column 2).   

Hedge funds make up a plurality of cross-market traders, whereas commodity index 

traders make up a low-single-digit proportion of the total number of cross-traders.  Depending on 

the market, between 25% and 41% of those cross-market traders are classified as hedge funds in 

equity futures markets (column 8).   

The last four columns of Table 3C show that the median weighted average share of the 

commodity futures open interest held by equity-commodity cross-traders was 43% during the 

sample period (vs. 28% or less of the trader count in Table 4).  This difference confirms our 

intuition that cross-market energy futures traders hold much larger overnight positions than other 

types of market participants.  Furthermore, the green line in Figure 2B shows that the market 

share of cross-trading hedge funds increased substantially between 2000 and 2010, from less 

than 5% of the total energy futures open interest in 2000 and 2001 to around 20% by mid-2006.   

Most striking is the difference in Figure 2B between the behaviors of hedge funds as a 

whole (blue line) vs. hedge funds that also trade equity futures (green line).  In particular, the 
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market share of hedge funds that only hold positions in commodity futures markets started a 

downward trend several months before the Lehman crisis.  Notwithstanding some fluctuations, 

this trend accelerated the week following Lehman’s demise.  In contrast, cross-trading hedge 

funds’ market share was fairly stable during that period and then increased steadily after mid-

November 2008.  In other words, our investigation establishes, to our knowledge for the first 

time, a clear heterogeneity among two kinds of hedge funds that are active in commodity futures 

markets.  In the next section, we show that this heterogeneity helps explain the joint distribution 

of commodity and equity returns.   

 

IV. Economic Fundamentals, Speculation and Commodity-Equity Comovements  

 In Section II, we showed that the conditional correlation between the weekly returns on 

investible equity and energy indices fluctuates substantially over time.  In Section III, we utilized 

a unique dataset of daily trader positions to quantify various aspects of U.S. energy futures 

markets’ financialization during the same time period.  In this Section, we ask empirically 

whether long-term fluctuations in the intensity of speculative activity or the relative importance 

of some types of trader (in particular, hedge funds and index traders) help explain the extent to 

which energy returns move in sync with equity returns.   

Of course, as discussed in the introduction, a substantial theoretical literature predicts that 

macro-economic conditions, physical energy market fundamentals, and financial market stress 

should also affect commodity returns.  Section IV.A proposes a list of variables to control for 

real- and financial-sector factors.  Section IV.B discusses our ARDL regression methodology, 

which tackles possible endogeneity issues and the fact that some of our variables are stationary 

in levels while others are only stationary in first differences.  Section IV.C presents our results.   

A. Macroeconomic, Physical-Market and Financial-Market Conditions 

A number of theoretical models show the importance of macroeconomic and commodity-

specific fundamentals for energy price levels and volatility (Pirrong, 2011) and commodity risk 

premia (e.g., Breeden, 1980; Hirshleifer, 1989).  Although there is no unifying theory predicting 

time-variations in the correlations between the returns on commodity vs. other investments (Erb 

and Harvey, 2006), that prior literature suggests several variables for our empirical analysis.   
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1. Macroeconomic Fundamentals 

Equity and commodity inverstments are known to perform differentially at successive 

stages of business cycles (e.g., Gorton and Rouwenhorst, 2006; Dhume, 2010).  Furthermore, the 

response of U.S. stock returns to crude oil price increases depends on whether the increase is the 

result of a demand shock or of a supply shock in the crude oil space (Kilian and Park, 2009).  

These empirical regularities point to the need to control for world and U.S. business cycles when 

seeking to explain time variations in the strength of equity-commodity linkages.   

For global real economic activity, we draw on Kilian (2009), who shows that “increases 

in freight (shipping) rates may be used as indicators of (…) demand shifts in global industrial 

commodity markets.”  The Kilian (2009) measure is a global index of single-voyage freight rates 

for bulk dry cargoes including grain, oilseeds, coal, iron ore, fertilizer and scrap metal.  This 

index accounts for the existence of “different fixed effects for different routes, commodities and 

ship sizes.”  It is deflated with the U.S. consumer price index (CPI), and linearly detrended to 

remove the impact of the “secular decrease in the cost of shipping dry cargo over the last forty 

years.”  This indicator is available monthly from 1968 to 2011; in our regression analyses, we 

derive weekly estimates (which we denote SHIP) by cubic spline.   

U.S. macroeconomic conditions also affect energy prices and U.S. equity prices.  Since 

the strength of energy-equity linkages could therefore fluctuate over U.S. business cycles, we use 

an U.S. economic activity index developed by Aruoba, Diebold and Scotti (2009).  This index, 

denoted ADS, is unique in that it is designed to “track real business conditions at high frequency” 

and is available weekly in 1991-2011.  Table 3.A gives summary statistics for SHIP and ADS.   
 
2. Physical-Market Fundamentals 

Conditions in physical energy markets may affect equity-energy correlations in two ways.  

On the one hand, when changes in nearby energy futures prices mostly reflect physical inventory 

conditions, they are unlikely to be met by contemporaneous changes in equity valuations. Hence, 

we refrain from including inventory measures in the econometric analysis.  On the other hand, 

when energy demand increases amid strong economic growth, it can eventually exhaust the 

crude oil “spare” production capacity that OPEC has historically tried to maintain – leading to a 

sharp increase in oil prices; conversely, lower energy prices amid greater “surplus” production 
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capacity likely reflect a poor macroeconomic environment.  These facts suggest a positive 

relationship between spare oil output capacity and energy-equity return correlations.   

We use data from the U.S. Department of Energy’s Energy Information Administration 

(EIA, 2010) to calculate the total spare crude oil production capacity outside of Saudi Arabia.  

Figure 3 plot the spot price of WTI crude oil vs. the non-Saudi spare crude production capacity 

from 1995 to 2010.  We focus on non-Saudi figures because the clearest evidence of a major 

change in energy market fundamentals is evident in this variable (as opposed to world oil 

consumption, Saudi surplus oil production capacity, OECD stocks of crude oil, etc.).  Figure 3 

highlights a major change in the physical crude oil market.  From January 1995 to February 

2004, when spare capacity was relatively plentiful, prices fluctuated around $29.  Likewise, from 

January 2009 through September 2010, spare capacity was non-trivial and again prices fluctuated 

around $75.  From March 2004 to August 2008, in contrast, non-Saudi spare capacity was close 

to zero and spot oil prices ranged between $27 and $142.    
 
3. Financial Stress and Lehman Crisis 

Following a slump in a major asset market, levered and similarly-constrained position 

holders may face pressures to liquidate other asset holdings.  A number of theoretical papers 

show that those selling pressures may bring about cross-asset contagion even if the fundamental 

factors driving the returns on different assets are independent (see Gromb and Vayanos (2010) 

for an excellent literature review).  Danielsson et al (2011a, 2011b) show that, depending on the 

make-up of market activity (i.e., who trades) and investor risk appetite, the resulting cross-asset 

correlations can remain elevated long after the initial shock.12   

Those results suggest that, ceteris paribus, energy-equity correlations should be higher 

during periods of elevated levels of market stress and in the period after a major market crash.  

We use two variables to test this hypothesis.   

First, we include the TED spread in our regressions as a proxy of financial-market stress.  

Table 3.A provides statistical information on the TED variable.  It fluctuates greatly during our 

sample period, with a minimum of 0.027% and a maximum of 4.33%.   

                                                
12 Hartmann, Straetmans and de Vries (2004) identify cross-asset extreme linkages in the case of bond and equity 
returns from the G-5 countries.  Longin and Solnik (2001) document that international equity market correlations 
increase in bear markets.  Büyükşahin, Haigh and Robe (2010) show that equity and commodity markets behave like 
a “market of one” on days of extreme market downward movements.   
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Second, the TED spread, while especially high right after the onset of the Lehman crisis 

in September 2008, had already started rising in the previous 13 months (starting in August 2007 

when a French banking group froze two funds exposed to the sub-prime market).  In contrast, 

Figure 1 shows that equity-energy correlations did not visibly increase until after the demise of 

Lehman Brothers, and remain exceptionally high as of mid-2011.  These facts together suggest 

that the post-Lehman sub-period is exceptional.  We use a time dummy (DUM) to account for 

the specificities of that sub-period that the TED spread might not capture.   

B. Methodology  

Before testing the explanatory power of different variables on the equity-energy returns 

DCC, we check the order of integration of all variables using Augmented Dickey Fuller (ADF) 

tests.  Unit root tests for the variables in our estimation equation are summarized at the bottoms 

of Tables 3.A and 3.B.  They show that many of the variables are I(1) while some are I(0).   

By construction, correlations are bounded above (+1) and below (-1) so the DCC variable 

should intuitively be stationary.  Yet, the ADF tests do not reject the non-stationarity of the DCC 

estimates in our sample period.  This result holds at the 1% level of significance for the entire 

sample period (2000-2010, see Table 3.A) and at the 10% level of significance for a sub-sample  

ending prior to the demise of Lehman Brothers (2000 to September 2008).13 

In order to find the long run effects of different variables on commodity-equity return 

correlations, we use an autoregressive distributed lag (ARDL) model estimated by ordinary least 

squares.  In this model, the dynamic conditional correlation is explained by lags of itself and 

current and lagged values of a number of regressors (fundamentals as well as traders’ positions).  

The lagged values of the dependent variable are included to account for slow adjustments of the 

correlation between commodities and equities.  This approach also allows us to calculate the 

long-run effect of the regressors on the correlation.   

Regardless of the time series properties of our DCC variable, the ARDL model, estimated 

by OLS, should yield consistent parameter estimates.  More precisely, Pesaran and Shin (1999) 

show that the ARDL model can be used to test the existence of a long-run relationship between 

underlying variables and to provide consistent, unbiased estimators of long-run parameters in the 
                                                
13 Because it is well known that ADF tests have low power with short time spans of data, we also employ another 
test developed by Kwiatkowski et al (KPSS, 1992) to further analyze the DCC variable.  Unlike the ADF test, the 
KPSS test has stationarity as the null hypothesis. With the KPSS test, we find that the null of stationarity cannot be 
rejected at the 5% level of significance but is rejected at the 1% significance level.   
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presence of I(0) and I(1) regressors.  The ARDL estimation procedure reduces the bias in the 

long run parameter in finite samples, and ensures that it has a normal distribution irrespective of 

whether the underlying regressors are I(0) or I(1).  By choosing appropriate orders of the 

ARDL(p,q) model, Pesaran and Shin (1999) show that the ARDL model simultaneously corrects 

for residual correlation and for the problem of endogenous regressors.   

We start with the problem of estimation and hypothesis testing in the context of the 

following ARDL(p,q) model:  
  

                                                                                                                  !! = !"! + !!!!!!

!

!!!

+ !!!!!!

!

!!!

+ !!                                                                      (1) 

 

where y is a t x 1 vector of the dependent variable, x is a t x k vector of regressors, and ω  stands 

for a t x s vector of deterministic variables such as an intercept, seasonal dummies, time trends, 

or exogenous variables with fixed lags.14  In vector notation, Equation (1) is:  
 

!(!)!! = !"! +   !(!)!! + !!  
 

where !(!) is the polynomial lag operator 1− !!! − !!!! −… !!!!; !(!) is the polynomial lag 

operator !! + !!! + !!!! +…+ !!!!; and L represents the usual lag operator (!!!! = !!!!).  

The estimate of the long run parameters can then be obtained by first estimating the parameters 

of the ARDL model by OLS and then solving the estimated version of (1) for the cointegrating 

relationship !! = !"! +   !"! +   !! by:  
 

! =
!! + !! +…+ !!

1− !! − !! −⋯− !!
 

 

! =
!

1− !! − !! −⋯− !!
 

 

where ! gives us the long-run response of y to a unit change in x and, similarly, ! represents the 

long run response of y to a unit change in the deterministic exogenous variable.   

                                                
14 The error term is assumed to be serially uncorrelated. 
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 When estimating the long-run relationship, one of the most important issues is the choice 

of the order of the distributed lag function on !! and the explanatory variables !!.  We carry out 

a two-step ARDL estimation approach proposed by Pesaran and Shin (1999).  First, the lag 

orders of p and q must be selected using some information criterion.  Based on Monte Carlo 

experiments, Pesaran and Shin (1999) argue that the Schwarz criterion performs better than other 

criteria.  This criterion suggests optimal lag lengths p=1 and q=1 in our case.  Second, we 

estimate the long run coefficients and their standard errors using the ARDL(1,1) specification.   

C. Regression Results 

Tables 3.A to C provide summary statistics for all the variables.  Tables 5 to 8 summarize 

our regression results.  Table 5 establishes the explanatory power of economic fundamentals 

(SHIP, SPARE and, to a lesser extent, ADS) and financial market stress (TED).15  Table 6 

establishes the additional explanatory power of speculation and hedge fund activities.  Tables 7 

and 8 present some of our robustness checks.   
 

1. Real sector and financial stress variables (Table 5) 

Estimates for Model 1 in Panels A and B of Table 5 show that, for our sample period 

(2000-2010) as well as for an extended period (1991-2000, starting when the GSCI first became 

investable but before the start of our detailed position dataset), the energy-equity DCC measure 

is statistically significantly negatively related to SHIP.  Insofar as we use the SHIP variable to 

capture the world demand for commodities, this finding confirms the intuition that cross-market 

correlations increase in globally bad economic times.   

Model 3 shows that, in contrast, the U.S. macroeconomic indicator (ADS) has less 

explanatory power.  The coefficient for ADS is consistently positive but is not always significant.   

We argued intuitively that, insofar as SPARE measures tightness in the physical crude oil 

market and as this tightness extends to other energy markets, then DCC and SPARE should be 

positively related.  Model 2 (using spare production capacity) supports this prediction – see 

Column 5 of Panel A and, especially, Columns 3 and 4 of Panel B.   

                                                
15 For completeness, all of our models also include a variable capturing momentum in equity markets (denoted 
UMD).  This variable always has a positive coefficient (consistent with the notion that equity momentum could spill 
over into other risky assets such as commodities) but we seldom find UMD to be a statistically significant explainer 
of commodity-equity correlations and, when it is at all statistically significant, the significance level is only 10%.  
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The difference between Panels A and B is that the specifications in Panel B include a 

dummy for the post-Lehman period (DUM).  That time dummy is always strongly statistically 

significant and positive.  Its inclusion clearly improves the likelihood ratio – supporting the 

graphical evidence in Section II that this sub-period is exceptional.   

Our ARDL estimations show that energy-equity return correlations also have a positive 

long-term relationship to the TED variable (our proxy for stress in financial markets).  In 2000-

2010, a 1% increase in the TED spread brought about a 0.19% to 0.30% increase in the dynamic 

equity-energy correlation (after controlling for the specifics of the post-Lehman period); this 

increase is statistically significant at the 5% confidence level (at the 1% level in 2000-2008; see 

Table 7).   

Interestingly, Panel A suggests that TED was not a significant factor in 1991-2000.  The 

differential importance of the TED spread in those two successive decades raises the question of 

whether changes in trading activity might help explain this evolution.  We now turn to this issue.   
 
2. Speculative activity and hedge fund market share (Table 6) 

Table 6 is key to our contribution.  It shows that financial activity in energy futures helps 

explain long-term variations in energy-equity linkages.   

Intuitively, there is no reason to expect that traditional commercial traders (oil refiners, 

producers, etc.) should drive correlations between commodity and stock index returns.  All three 

panels of Table 6 support this intuition, in that they seldom show any explanatory power for the 

WMSS_TCOM variable.   

Likewise, insofar as commodity swap dealing overwhelmingly reflects swap dealers’ 

over-the-counter relationships with traditional commercials or with unlevered, long-only, passive 

commodity-index traders (CITs), we would not expect swap dealers’ positions to affect cross-

market correlations.  This is because CITs do not engage in value-arbitraging and may not alter 

their positions under financial-market stress.  Table 6 buttresses this intuition: swap dealers’ 

share of commodity open interest (WMSS_AS) is never statistically significantly positive.  These 

findings present an interesting counterpoint to the conclusions of Stoll and Whaley (2010) and 

Tang and Xiong (2011), regarding the impact of commodity index trading on intra-commodity 

market linkages.   
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The main finding in Tables 6.A and 6.B is that, after controlling for macroeconomic and 

physical fundamentals, several variables measuring speculative activity in energy markets help 

explain fluctuations in the energy-equity DCC estimates over time.  Those variables are 

statistically significantly, and their inclusion measurably improves likelihood ratios.   

Ceteris paribus, an increase of 1% in the overall commodity-futures market share of 

hedge funds (WMSS_MMT) is associated with dynamic conditional equity-commodity 

correlations that are approximately 4% to 7% higher (given a mean hedge fund market share of 

about 20%).  Crucially, Working’s “T” index of excess speculation in commodity futures 

markets, which aggregates the activities of all non-hedgers across all maturities, has less 

explanatory power than hedge fund activity in short-dated contracts.  Precisely, the WSIA 

variable is often significant but a comparison of likelihood suggests that it is the positions of 

hedge funds specifically, rather than the activities of non-commercial traders in general, that help 

explain the correlation patterns.   
 
3. Cross-market trading  

Table 6.C uses specifications similar to Tables 6.A and 6.B but focuses on cross-market 

traders.  Two interesting results emerge.  First, as intuition would suggest, the market share of 

hedge funds that trade in both equity and energy paper markets helps explain long-term linkages 

between equity and energy returns.  Second, the market share of commodity swap dealers that 

are also active in equity markets is sometimes statistically significant – but always with a 

negative sign.  These results suggests that it is value arbitrageurs’ willingness to take positions in 

both equity and commodity markets, rather than the trading activities of commodity index traders 

and of more traditional commodity market participants, that help tie satellite and central markets.   
 
4. Interaction between hedge funds and financial stress  

Table 6 shows that greater hedge fund participation enhances cross-market linkages.  Yet 

if the same arbitrageurs or convergence traders, who bring markets together during normal times, 

face borrowing constraints or other pressures to liquidate risky positions during periods of 

financial market stress, then their exit from “satellite markets” after a major shock in a “central” 

market could lead to a decoupling of the markets that they had helped link in the first place.   

To test this hypothesis, some specifications in Table 6 include an interaction term that 

captures the behavior of hedge funds in financial stress episodes.  This interaction term is always 
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significant and, as expected, negative.  That is, ceteris paribus, the ability of hedge fund activity 

to explain energy-equity comovements is lower during periods of elevated market stress.   

D. Robustness 

Our results are qualitatively robust to using additional proxies for energy investment; 

introducing dummies to control for unusual circumstances in financial markets; and employing 

alternative measures of financial activity in commodity paper markets.   
 
1. Commodity indexing activity 

In the past decade, investors have sought an ever greater exposure to commodity prices.  

Part of this exposure has been acquired through passive commodity index investing.  Some of 

this investment has, in turn, found its way into futures markets through commodity swap dealers.  

In our regressions, however, we never find the WMSS_AS variable (which measures commodity 

swap dealers’ market share in short-dated contracts) to be statistically significant and positive.   

One possible reason is that, although a part of commodity swap dealers’ positions in 

short-dated energy futures reflects their over-the-counter interactions with index traders, the rest 

of their futures positions reflect over-the-counter deals with more traditional commercial 

commodity traders.  In other words, the WMSS_AS variable is only an imperfect proxy of 

commodity index trading activity in commodity futures markets.   

We therefore also used another proxy for investor interest in commodities: the post-2004 

daily trading volume in the SPDR Gold Shares exchange-traded fund (ETF).  Although this 

volume grew massively between 2004 and 2010, the GOLD_VOLUME variable does not help 

explain changes in commodity-equity correlations.   

Taken together with the lack of significance of the WMSS_AS variable, our interpretation 

is that the activities of passive commodity investors do not affect equity-commodity linkages.  

This result presents an interesting counterpoint to the findings of Büyükşahin et al (2009), who 

show that increased commodity index trading activity in the WTI crude oil futures market 

provided additional liquidity that helped integrate crude oil prices across contract maturities.   
 
2. The Lehman crash 

In the last 30 months of the sample period, the TED spread was very or extremely high 

compared to spreads in most of the previous decade.  The TED spread first jumped in August 
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2007, following the suspension of investor withdrawals from some funds managed by a French 

bank.  It reached stratospheric levels in September 2008, following the Lehman debacle.   

A natural question is whether our results are affected by unusual TED spread patterns 

during the latter part of our sample period.  The answer is negative: our results are qualitatively 

robust to the introduction of either one of two dummies (one for the August 2007 - August 2009 

period or one for the September 2008-March 2010 period), and to the concomitant introduction 

of interaction terms between the relevant dummy and the TED variable.   

Table 7 provides additional evidence of robustness.  It repeats the analysis of Table 6.A, 

with a sample that ends prior to November 2008 – the month when DCC estimates soared 

upward of 0.4 for the first time since the inception of the investable GSCI commodity index.  

The results in Table 7 are qualitatively similar to those in Table 6.A.  The main difference is that 

the statistical significance of the hedge fund variables is stronger pre-crisis.  Combined with the 

strong statistical significance of the post-Lehman dummy (DUM) in every single specification in 

Table 6, as well as with the negative sign of the INT_TED_MMT interaction term, this finding 

suggests that hedge fund activity per se is not responsible for the exceptionally high correlation 

levels observed since the end of 2008.   
 

3. Hedge fund activities in near-dated commodity futures vs. across the maturity curve 

Table 8 repeats the analysis of Table 6.A except that we measure speculative activity and 

different traders’ market shares using position information across all maturities (rather than just 

the three nearest-maturity contracts with non-trivial open interest).  The statistical significance of 

all the position variables drops dramatically, except for the variable capturing hedge fund activity 

(WMSA_MMT is sometimes significant at the 10% level).  Again, Table 8 shows little statistical 

evidence that swap dealers or traditional commercial traders affect the dynamic cross-market 

correlations.   

Taken together, Tables 6 and 8 imply that it is the positions of hedge funds in shorter-

dated commodity futures (rather than their activities in commodity markets further along the 

futures maturity curve) that help explain equity-commodity linkages.  This result is intuitive, in 

that the GSCI index is constructed using short-dated futures contracts and, hence, one expects 

that it is short-dated positions that may matter for commodity-equity correlations.   
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V. Conclusion and Further Work 

The sign and the strength of the correlation between the returns on passive 

investments in equity and energy markets have fluctuated substantially in the past two 

decades.  The same time period witnessed growing activity in energy paper markets by 

hedge funds, commodity index funds, and other financial institutions.   

In this paper, we analyze empirically whether changes in the make-up of trading 

activity help explain the joint movements of energy and equity returns.  To do so, we 

construct a daily dataset of all large trader positions in U.S. equity and three U.S. energy 

futures markets from 2000 to 2010.  Our dataset draws on non-public, trader-level 

information from the U.S. Commodity Futures Trading Commission (CFTC).  We utilize 

these data to provide novel information on the financialization of energy futures markets 

and the first evidence on cross-trading activity in those markets.   

We find that, over and above the fundamental factors that drive asset returns, the 

overall amount of speculative activity in energy futures markets has explanatory power 

for the time variations in the correlation between the returns on investable energy-futures 

and equity indices.  We trace this power to the activities of hedge funds, especially those 

active in both equity and commodity futures markets.  In contrast, we find that the 

positions of other kinds of participants in commodity-futures market (swap dealers and 

index traders, floor brokers and traders, traditional commercial traders, etc.), whether or 

not they take positions in both types of markets, do not help explain cross-market 

correlation patterns.   

Our findings suggest two natural venues for further research.  First, we find that, 

over the long run, macroeconomic fundamentals, hedge fund activity, and financial-

market stress all help explain the changes in energy-equity correlations over time.  An 

interaction term between hedge fund activity and a proxy for financial-market stress is 

also significant.  Yet, in addition to those variables, we find that a time dummy for the 

post-Lehman period (September 2008 to March 2010) is always highly significant.  

Further research is therefore needed to explain that dummy.  One possibility is market 

sentiment, perhaps interacted with our proxies for overall speculative activity and index 

trading – the idea to be investigated being that collective decisions by passive investors to 

exit risky markets when uncertainty rises might lead to greater correlations between 



 

29 
 

individual equities and broad stock market indices, and similarly might increase equity-

commodity correlations. We tackle those questions in a companion paper.   

Second, even though a number of theoretical models show the importance of 

macroeconomic and commodity-specific fundamentals for equilibrium price levels and 

volatility (Pirrong, 2011) and commodity risk premia (e.g., Hirshleifer, 1988), and though 

other theoretical models analyze the impact of different types of traders on cross-market 

linkages in good or in bad times (e.g., Danielsson et al (2011a, 2011b)), there is no 

unifying theory regarding the ideal level of comovements between commodities or 

between commodities and other assets.  Additional theoretical work is thus needed, if one 

is to ascertain whether the impact of financialization on cross-correlations represents a 

welcome improvement in market efficiency or, instead, is a worrisome development.   
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Figure 1:  

Weekly Return Correlations (DCC) between Passive Energy and Equity Investments, 1991-2010 

 

Notes: Figure 1 plots the time-varying correlation (DCC) between the weekly unlevered rates of return (precisely, 
changes in log prices) on the S&P GSCI-Energy total return index (“GSENTR”) and: (i) the S&P 500 equity index 
(“SP”, blue line) or (ii) the MSCI World equity index (“MXWO”, red line).  We estimate dynamic conditional 
correlations by log-likehood for mean-reverting model (DCC_MR, Engle, 2002) from January 3, 1991 to May 10, 
2011.   
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Figure 2: Financialization of Energy Futures Markets, 2000-2010 
 

Panel A: Excess Speculation and Commodity Swap Activity (incl. Index Trading) 
 

 
 

Panel B: Hedge Fund Share of the Energy Futures Open Interest (incl. Cross-Market Traders) 
 

 
 

Notes: Figure 2A plots the weighted-average speculative pressure index (“Working’s T”) in three U.S. energy paper 
markets linked to the GSCI-Energy index across all maturities (red, WSIA) or in near-dated futures (orange, WSIS) 
from January 2000 till March 2010.  Indices are rescaled so that a value of 0 means speculative positions exactly 
offset the net hedging demand from market participants holding underlying exposures to energy price risk.  A value 
greater than 0 is the fraction of speculative activity in excess of this net hedging demand.  The dark green line 
shows the aggregate share of the short-term open interest held by commodity (including index traders) in the same 
energy markets (WMSS_AS).  The lighter green line shows the share of the overall energy futures open interest held 
by commodity swap dealers (WMSA_AS).  Figure 2B plots the proportion of the short-term (SS) or overall (SA) 
open interest made up by hedge funds (MMT), including those active in both energy and equity markets (WCMSA).    
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Figure 3:Physical Energy Market Fundamentals   

 

Notes: Figure 3 plots the spot price for West Texas Intermediate crude oil (U.S. dollars per barrel) vs. the crude oil 
spare production capacity outside of Saudi Arabia (million barrels per day).  Monthly data from January 1995 to 
August 2010 are from the Energy Information Administration (U.S. Department of Energy).   
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Table 1: Commodity weights 
	
  
 

Year	
   Heating	
  Oil	
   WTI	
  Crude	
  Oil	
   Natural	
  Gas	
  
2000	
   0.11741	
  	
   0.73356	
  	
   0.14904	
  	
  
2001	
   0.10588	
  	
   0.73701	
  	
   0.15711	
  	
  
2002	
   0.11262	
  	
   0.75322	
  	
   0.13416	
  	
  
2003	
   0.10370	
  	
   0.72191	
  	
   0.17439	
  	
  
2004	
   0.10973	
  	
   0.73693	
  	
   0.15333	
  	
  
2005	
   0.11380	
  	
   0.73572	
  	
   0.15048	
  	
  
2006	
   0.11313	
  	
   0.77616	
  	
   0.11071	
  	
  
2007	
   0.08360	
  	
   0.81143	
  	
   0.10497	
  	
  
2008	
   0.07065	
  	
   0.83580	
  	
   0.09356	
  	
  
2009	
   0.06496	
  	
   0.85071	
  	
   0.08433	
  	
  
2010	
   0.06496	
  	
   0.85071	
  	
   0.08433	
  	
  

 
Note: Table 1 provides the weights used to compute the weighted average measures of trader 
importance (WMSS_xxx and WMSA_xxx, where xxx = AS, AD, AM, AP, MMT, NRP, etc.) as 
well as the weighted average indices of excess energy speculation (WSIS and WSIA).   
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Table 3A: Macroeconomic and Market Fundamentals, July 2000 to March 2010  

	
  
	
  
	
  
	
  
	
  
	
  

Dynamic	
  Conditional	
  
Correlations	
  (DCC_MR)	
   Macroeconomic	
  Fundamentals	
   Financial	
  Market	
  Conditions	
   Excess	
  Commodity	
  

Speculation	
  (Working’s	
  “T”)	
  

S&P500	
  -­‐
GSENTR	
  

MSCI	
  World-­‐
GSENTR	
   SHIP	
  Index	
   ADS	
  Index	
   SPARE	
  

(mb/day)	
   LIBOR	
  (%)	
   TED	
  (%)	
   VIX	
   UMD	
  
All	
  contract	
  
Maturities	
  
(WSIA)	
  

Short-­‐term	
  
contracts	
  
(WSIS)	
  

Mean	
   	
  0.048628	
   	
  0.102904	
   0.128101	
   -­‐0.475016	
   	
  0.911582	
   3.058959	
   0.487749	
   21.99812	
   0.003010	
   	
  1.237615	
   	
  1.261085	
  

Median	
   	
  0.042930	
   	
  0.101840	
   0.156134	
   -­‐0.246892	
   	
  0.435730	
   2.715900	
   0.296456	
   20.41000	
   0.090000	
   	
  1.258071	
   	
  1.254774	
  

Maximum	
   	
  0.502230	
   	
  0.589450	
   0.553002	
   0.992458	
   	
  4.990000	
   6.802500	
   4.330619	
   67.64000	
   4.550000	
   	
  1.463901	
   	
  1.576830	
  

Minimum	
   -­‐0.362670	
   -­‐0.330420	
   -­‐0.524973	
   -­‐3.747359	
   -­‐0.260839	
   0.248800	
   0.027512	
   9.900000	
   -­‐6.560000	
   	
  1.054720	
   	
  1.045349	
  

Std.	
  Dev.	
   	
  0.219156	
   	
  0.226524	
   0.263191	
   0.787462	
   	
  1.153071	
   1.874571	
   0.517985	
   9.744099	
   1.127080	
   	
  0.115355	
   	
  0.138361	
  

Skewness	
   	
  0.191897	
   	
  0.213649	
   -­‐0.463355	
   -­‐1.789994	
   	
  1.697494	
   0.328567	
   2.951072	
   1.653419	
   -­‐0.700811	
   	
  0.065602	
   	
  0.127205	
  

Kurtosis	
   	
  2.038428	
   	
  2.397085	
   2.329421	
   6.952640	
   	
  5.136673	
   1.842329	
   14.63722	
   6.761389	
   8.153885	
   	
  1.686974	
   	
  1.749409	
  
	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
  
Jarque-­‐Bera	
   	
  22.55495***	
   	
  11.49062***	
   27.53235***	
   598.4182***	
   	
  338.5880***	
   37.28642***	
   3582.557***	
   527.7928***	
   600.2571***	
   	
  36.63883***	
   	
  34.27062***	
  
	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
  
Sum	
   	
  24.55707	
   	
  51.96660	
   64.69118	
   -­‐239.8829	
   	
  460.3491	
   1544.774	
   246.3134	
   11109.05	
   1.520000	
   	
  624.9958	
   	
  636.8481	
  

Sum	
  Sq.	
  Dev.	
   	
  24.20690	
   	
  25.86184	
   34.91194	
   312.5287	
   	
  670.1042	
   1771.064	
   135.2274	
   47853.53	
   640.2358	
   	
  6.706668	
   	
  9.648420	
  
	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
  
Observations	
   	
  505	
   	
  505	
   505	
   505	
   505	
   505	
   505	
   505	
   505	
   	
  505	
   	
  505	
  
	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
  
ADF	
  (Level)	
   -­‐1.922987	
   -­‐1.708451	
   -­‐1.928436	
   -­‐3.137666**	
   -­‐1.959157	
   -­‐1.414196	
   -­‐2.880949**	
   -­‐2.995549**	
   -­‐24.261***	
   -­‐1.410025	
   -­‐1.580680	
  

ADF	
  (1st	
  Diff)	
   -­‐23.02921***	
   -­‐23.09147***	
   -­‐6.6142***	
   -­‐12.2230***	
   -­‐5.7425***	
   -­‐10.9312***	
   -­‐12.8887***	
   -­‐12.3767***	
   -­‐12.6374***	
   -­‐24.69425***	
   -­‐16.82226***	
  
	
  
Note: Dynamic conditional correlation (DCC) are between the Tuesday-to-Tuesday unlevered rates of return (precisely, changes in log prices) on the S&P GSCI 
total return Energy index (GSENTR) and either the S&P 500 equity index (SP) or the MSCI World equity index (MXWO).  DCC estimated by log-likehood for 
mean-reverting model (Engle, 2002). SHIP is a measure of worldwide economic activity (Kilian, 2009).  ADS is a measure of U.S. economic activity (Aruoba, 
Diebold and Scotti, 2009).  SPARE measures the daily crude oil spare production capacity outside of Saudi Arabia (source: International Energy Agency).  
LIBOR and TED are the 90-day annualized LIBOR rate and Ted spread (source: Bloomberg).  UMD is the Fama-French momentum factor for U.S. equities.  
Excess commodity speculation for the three nearest-term futures (WSIS) and all contract maturities (WSIA) is the weigthed-average excess speculation index 
(Working’s “T”) for the three U.S. energy futures markets in the GSCI-Energy index (source: CFTC, S&P and authors’ calculations); annual weights equal the 
average of the daily GSCI weights that year (source: Standard & Poor).  For the augmented Dickey-Fuller (ADF) tests, stars (*, **, ***) indicate the rejection of 
non-stationarity at standard levels of statistical significance (10%, 5% and 1%, respectively); critical values are from McKinnon (1991).  Most series are I(1); the 
optimal lag length K is based on the Akaike Information Criterion (AIC).  Sample period for all statistics: June 26, 2000 to February 26, 2010.    
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Table 3B: Shares of the Near-Term Energy Futures Open Interest by Trader Type, July 2000 to March 2010 

	
  

	
   Weighted-­‐average	
  Market	
  Shares	
  in	
  Short-­‐term	
  Energy	
  Futures	
  (WMSS)	
  

	
  

	
  
Hedge	
  Funds	
  
(WMSS_MMT)	
  

All	
  Non-­‐
Commercials	
  
(WMSS_NON)	
  

Swap	
  Dealers	
  
(WMSS_AS)	
  

Non-­‐
Commercials	
  +	
  
Swap	
  Dealers	
  
(WMSS_ANC)	
  

Traditional	
  
Commercials	
  

(WMSS_TCOM)	
  

Mean	
   	
  0.204235	
   	
  0.316131	
   	
  0.208559	
   	
  0.524690	
   	
  0.366909	
  
Median	
   	
  0.224358	
   	
  0.331227	
   	
  0.210753	
   	
  0.541441	
   	
  0.343538	
  
Maximum	
   	
  0.363110	
   	
  0.496264	
   	
  0.300792	
   	
  0.762634	
   	
  0.627804	
  
Minimum	
   	
  0.046028	
   	
  0.122514	
   	
  0.118168	
   	
  0.248365	
   	
  0.168771	
  

Std.	
  Dev.	
   	
  0.081043	
   	
  0.103196	
   	
  0.034956	
   	
  0.130087	
   	
  0.114400	
  
Skewness	
   -­‐0.324538	
   -­‐0.230910	
   -­‐0.085032	
   -­‐0.269752	
   	
  0.479703	
  
Kurtosis	
   	
  1.846900	
   	
  1.735042	
   	
  2.689814	
   	
  1.882217	
   	
  2.150438	
  
	
   	
   	
   	
   	
   	
  
Jarque-­‐Bera	
   	
  36.84269	
   	
  38.15685	
   	
  2.633101	
   	
  32.41476	
   	
  34.55491	
  
	
   	
   	
   	
   	
   	
  
Sum	
   	
  103.1388	
   	
  159.6460	
   	
  105.3225	
   	
  264.9684	
   	
  185.2889	
  
Sum	
  Sq.	
  Dev.	
   	
  3.310232	
   	
  5.367349	
   	
  0.615845	
   	
  8.529033	
   	
  6.596028	
  
	
   	
   	
   	
   	
   	
  
Observations	
   	
  505	
   	
  505	
   	
  505	
   	
  505	
   	
  505	
  
	
   	
   	
   	
   	
   	
  
ADF	
  (Level)	
   -­‐1.721169	
   -­‐1.589767	
   -­‐2.713347*	
   -­‐1.319877	
   -­‐1.417037	
  
ADF	
  (1st	
  Diff)	
   -­‐16.57380***	
   -­‐16.69709***	
   -­‐11.51933***	
   -­‐20.81283***	
   -­‐18.64831***	
  

 
Note: WMSS_MMT, WMSS_NON, WMSS_AS, WMSS_ANC and WMSS_TCOM stand, respectively, for the weighted-average shares of the short-term 
open interest in the three nearest-dated futures with non-trivial open interest (for the three U.S. energy futures markets in the GSCI-Energy index) of: hedge 
funds (MMT, “managed money traders”), non-commercial traders (NON, including MMT), commodity swap dealers (AS, including CIT – commodity index 
traders), non-commercial plus swap dealers (ANC), and traditional commercial traders (TCOM) (source: CFTC and authors’ computations).  The averaging 
weights are set each year equal to average of the GSCI weights for those three commodities that year and rescaled to account for GSCI-Energy markets for which 
no large trader position data are available (Source: S&P).  For the augmented Dickey-Fuller (ADF) tests, stars (*, **, ***) indicate the rejection of non-
stationarity at standard levels of statistical significance (10%, 5% and 1%, respectively); critical values are from McKinnon (1991).  The optimal lag length is 
based on the Akaike Information Criterion (AIC).  Sample period for all statistics: June 26, 2000 to February 26, 2010.   
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Table 3C: Shares of the Total Energy Futures Open Interest and Cross-Market Activity by Trader Type, July 2000 to March 2010 
 

	
  
	
  
	
  

Weighted-­‐average	
  Market	
  Shares	
  in	
  All	
  Energy	
  Futures	
  Contracts	
  (WMSA)	
   Weighted-­‐average	
  Market	
  Share	
  of	
  Cross-­‐Market	
  Traders	
  
across	
  All	
  Maturities	
  (WCMSA)	
  

	
   Hedge	
  Funds	
  
(WMSA_MMT)	
  

All	
  Non-­‐
Commercials	
  
(WMSA_NON)	
  

Swap	
  Dealers	
  
(WMSA_AS)	
  

Non-­‐
Commercials	
  +	
  
Swap	
  Dealers	
  
(WMSA_ANC)	
  

Traditional	
  
Commercials	
  

(WMSA_TCOM)	
  

All	
  traders	
  
(WCMSA_ALL)	
  

Hedge	
  Funds	
  
(WCMSA_MMT)	
  

All	
  Non	
  
Commercials	
  

(WCMSA_NON)	
  

Swap	
  Dealers	
  
(WCMSA_AS)	
  

Mean	
   	
  0.173578	
   	
  0.293981	
   	
  0.285505	
   	
  0.579486	
   	
  0.341241	
   	
  0.400092	
   	
  0.101453	
   	
  0.139761	
   	
  0.222761	
  

Median	
   	
  0.202450	
   	
  0.316496	
   	
  0.292806	
   	
  0.610701	
   	
  0.316082	
   	
  0.434336	
   	
  0.107234	
   	
  0.162134	
   	
  0.223914	
  

Maximum	
   	
  0.327426	
   	
  0.444671	
   	
  0.371463	
   	
  0.788862	
   	
  0.613303	
   	
  0.505472	
   	
  0.202706	
   	
  0.250336	
   	
  0.293365	
  

Minimum	
   	
  0.030903	
   	
  0.097950	
   	
  0.182555	
   	
  0.298708	
   	
  0.157066	
   	
  0.230213	
   	
  0.012921	
   	
  0.030224	
   	
  0.154758	
  

Std.	
  Dev.	
   	
  0.089989	
   	
  0.098899	
   	
  0.039300	
   	
  0.130139	
   	
  0.117216	
   	
  0.074367	
   	
  0.053045	
   	
  0.067002	
   	
  0.023727	
  

Skewness	
   -­‐0.088256	
   -­‐0.197356	
   -­‐0.428193	
   -­‐0.339882	
   	
  0.474538	
   -­‐0.664140	
   -­‐0.095215	
   -­‐0.247110	
   -­‐0.334840	
  

Kurtosis	
   	
  1.614198	
   	
  1.759610	
   	
  2.693191	
   	
  2.068953	
   	
  2.267934	
   	
  2.153634	
   	
  1.697554	
   	
  1.538885	
   	
  3.332162	
  
	
   	
   	
   	
   	
   	
   	
   	
   	
   	
  
Jarque-­‐Bera	
   	
  41.06497	
   	
  35.65226	
   	
  17.41257	
   	
  27.96283	
   	
  30.22985	
   	
  52.19728	
   	
  36.45738	
   	
  50.06047	
   	
  11.75815	
  
	
   	
   	
   	
   	
   	
   	
   	
   	
   	
  
Sum	
   	
  87.65707	
   	
  148.4602	
   	
  144.1800	
   	
  292.6402	
   	
  172.3266	
   	
  202.0466	
   	
  51.23389	
   	
  70.57925	
   	
  112.4941	
  

Sum	
  Sq.	
  Dev.	
   	
  4.081399	
   	
  4.929670	
   	
  0.778439	
   	
  8.535780	
   	
  6.924773	
   	
  2.787348	
   	
  1.418142	
   	
  2.262561	
   	
  0.283726	
  
	
   	
   	
   	
   	
   	
   	
   	
   	
   	
  
Observations	
   	
  505	
   	
  505	
   	
  505	
   	
  505	
   	
  505	
   	
  505	
   	
  505	
   	
  505	
   	
  505	
  
	
   	
   	
   	
   	
   	
   	
   	
   	
   	
  
ADF	
  (Level)	
   -­‐1.324479	
   -­‐1.383007	
   -­‐1.495602	
   -­‐0.855454	
   -­‐0.974017	
   -­‐0.895255	
   -­‐1.465850	
   -­‐1.025759	
   -­‐1.495602	
  

ADF	
  (1st	
  Diff)	
   -­‐22.24594***	
   -­‐24.01600***	
   -­‐10.57921***	
   -­‐17.08184***	
   -­‐21.97107***	
   -­‐12.52812***	
   -­‐20.92032***	
   -­‐17.52282***	
   -­‐10.57921***	
  

 
Note: WMSA_MMT, WMSA_NON, WMSA_AS, WMSA_ANC and WMSA_TCOM stand, respectively, for the weighted-average shares of the overall 
futures open interest across all futures contract maturities (for the three U.S. energy futures markets in the GSCI-Energy index) of: hedge funds (MMT), non-
commercial traders (NON, including MMT), commodity swap dealers (AS, including CIT), non-commercial + swap dealers (ANC), and traditional commercial 
traders (TCOM) (source: CFTC and authors’ computations).  Weights are set each year equal to the average of the GSCI weights for those three commodities 
that year and rescaled to account for GSCI-Energy markets for which no large trader position data are available (Source: S&P).  For three trader groupings 
(MMT, AS, and NON) as well as all large traders (ALL), the WCMSA variables measure the proportion of commodity traders who also hold positions in the 
S&P 500 e-Mini equity futures (“cross-market traders).  In the Augmented Dickey-Fuller (ADF) tests, stars (*, **, ***) indicate the rejection of non-stationarity 
at standard levels of statistical significance (10%, 5% and 1%, respectively).  Critical values are from McKinnon (1991).  The optimal lag length is based on the 
Akaike Information Criterion (AIC).  Sample period for all statistics: June 26, 2000 through February 26, 2010.    
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Table 4: Cross-Market Trading Activity, 2000-2010  

	
  	
   	
  	
   Classifications	
  in	
  Commodity	
  Markets	
   	
  	
   Equity	
  Futures	
  Classification	
  

Commodity	
  
	
  

All	
  Cross-­‐Market	
  Traders	
  
	
  

Commodity	
  Swap	
  Dealers	
  
	
  

Hedge	
  Funds	
  
	
  

Hedge	
  Funds	
  

	
  	
  
	
  

Count	
   %	
  of	
  all	
  traders	
  
	
  

Count	
   %	
  of	
  all	
  cross-­‐traders	
  
	
  

Count	
   %	
  of	
  all	
  cross-­‐traders	
  
	
  

Count	
   %	
  of	
  all	
  cross-­‐traders	
  

Crude	
  Oil	
  
	
  

1108	
   28.0%	
  
	
  

63	
   5.7%	
  
	
  

363	
   32.8%	
  
	
  

274	
   24.7%	
  

Heating	
  Oil	
   	
  	
   335	
   8.5%	
   	
  	
   26	
   7.8%	
   	
  	
   170	
   50.8%	
   	
  	
   138	
   41.2%	
  

Natural	
  Gas	
   	
  	
   743	
   18.8%	
   	
  	
   49	
   6.6%	
   	
  	
   300	
   40.4%	
   	
  	
   235	
   31.6%	
  

	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
  
	
  

Notes: For the three main energy futures markets for which trader-level position data are available for the entire 2000-2010 period, Table 4 provides 
information on the number and relative importance of the subset of large commodity futures traders who also held, at some point in the sample period (July 1, 
2000 through February 26, 2010), positions in the S&P500 e-Mini equity futures contract.   
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Table 5: Market Fundamentals as Long-run Determinants of the GSCI-Energy vs. S&P500 Dynamic Conditional Return Correlations 

Panel	
  A:	
  Treating	
  the	
  Post-­‐Lehman	
  Period	
  as	
  any	
  other	
  Period	
  

	
  	
   Model	
  1	
   Model	
  2	
   Model	
  3	
  
	
  	
   1991-­‐2000	
  

	
  
2000-­‐2010	
  

	
  
1991-­‐2010	
  

	
  
1995-­‐2000	
  

	
  
2000-­‐2010	
  

	
  
1995-­‐2010	
  

	
  
1991-­‐2000	
  

	
  
2000-­‐2010	
  

	
  
1991-­‐2010	
   	
  	
  

Constant	
   0.199022	
   **	
   -­‐0.0727729	
   	
  	
   -­‐0.0640187	
   	
  	
   0.181332	
   ***	
   -­‐0.291257	
   **	
   -­‐0.180740	
   	
  	
   0.201441	
   **	
   -­‐0.0495553	
   	
  	
   -­‐0.0290865	
   	
  	
  
	
  	
   (0.07939)	
   	
  	
   (0.1121)	
   	
  	
   (0.07809)	
   	
  	
   (0.06578)	
   	
  	
   (0.1398)	
   	
  	
   (0.1106)	
   	
  	
   (0.08028)	
   	
  	
   (0.1111)	
   	
  	
   (0.07028)	
   	
  	
  
ADS	
   	
  	
  

	
   	
   	
   	
  
	
  	
   	
  	
  

	
   	
   	
   	
  
	
  	
   -­‐0.0891680	
  

	
  
0.120929	
  

	
  
-­‐0.0940820	
   	
  	
  

	
  	
   	
  	
  
	
   	
   	
   	
  

	
  	
   	
  	
  
	
   	
   	
   	
  

	
  	
   (0.08694)	
  
	
  

(0.1477)	
  
	
  

(0.06288)	
   	
  	
  
SHIP	
   -­‐0.0934936	
   	
  	
   -­‐0.597573	
   **	
   -­‐0.274154	
   	
  	
   	
  	
   	
  	
   	
  	
   	
  	
   	
  	
   	
  	
   -­‐0.113461	
   	
  	
   -­‐0.754496	
   **	
   -­‐0.277686	
   *	
  
	
  	
   (0.2653)	
   	
  	
   (0.2822)	
   	
  	
   (0.1855)	
   	
  	
   	
  	
   	
  	
   	
  	
   	
  	
   	
  	
   	
  	
   (0.2694)	
   	
  	
   (0.3682)	
   	
  	
   (0.1680)	
   	
  	
  
SPARE	
   	
  	
  

	
   	
   	
   	
  
	
  	
   -­‐0.0111549	
  

	
  
0.134130	
   **	
   0.0581962	
   	
  	
   	
  	
  

	
   	
   	
   	
  
	
  	
  

	
  	
   	
  	
  
	
   	
   	
   	
  

	
  	
   (0.02713)	
  
	
  

(0.06252)	
  
	
  

(0.04732)	
   	
  	
   	
  	
  
	
   	
   	
   	
  

	
  	
  
UMD	
   0.0469638	
   	
  	
   0.154878	
   	
  	
   0.102411	
   	
  	
   0.00106191	
   	
  	
   0.141386	
   	
  	
   0.0876287	
   	
  	
   0.0468735	
   	
  	
   0.141192	
   	
  	
   0.102172	
   	
  	
  
	
  	
   (0.06844)	
   	
  	
   (0.1092)	
   	
  	
   (0.07740)	
   	
  	
   (0.03897)	
   	
  	
   (0.1044)	
   	
  	
   (0.07926)	
   	
  	
   (0.06957)	
   	
  	
   (0.1082)	
   	
  	
   (0.06996)	
   	
  	
  
TED	
   -­‐0.309478	
   *	
   0.480288	
   **	
   0.297959	
   **	
   -­‐0.164767	
  

	
  
0.516236	
   **	
   0.362652	
   **	
   -­‐0.269397	
  

	
  
0.592622	
   **	
   0.193733	
   	
  	
  

	
  	
   (0.1735)	
  
	
  

(0.2066)	
  
	
  

(0.1382)	
  
	
  

(0.1122)	
  
	
  

(0.2046)	
  
	
  

(0.1530)	
  
	
  

(0.1754)	
  
	
  

(0.2955)	
  
	
  

(0.1274)	
  
	
  LogLklhd	
   808.803	
  

	
  
862.764	
  

	
  
1662.03	
  

	
  
504.142	
  

	
  
862.37	
  

	
  
1356.24	
  

	
   	
   	
   	
   	
   	
  
	
  	
  

	
  

Notes: The dependent variable is the time-varying conditional correlation (DCC) between the weekly unlevered rates of return (precisely, 
changes in log prices) on the S&P 500 (SP) equity index and the S&P GSCI-Energy total return (GSENTR) index.  Dynamic conditional 
correlations estimated by log-likehood for mean reverting model (Engle, 2002).  The explanatory variables are described in Table 3A.  Long-run 
estimates are from the two step ARDL(p,q) estimation approach of Pesaran and Shin (1999).  When estimating the long-run relationship, one of 
the most important issues is the choice of the order of the distributed lag function on yt and the explanatory variables xt.  The Schwarz information 
criterion suggests that the optimal lag lengths are p=1 and q=1 in our case.  The sample periods for the first and seventh columns are January 2, 
1991 to June 30, 2000; for the second, fifth and eight columns: July 1, 2000 to February 26, 2010; for the other columns: June 30, 2005 to 
Febuary 26, 2010.   
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Table 5: Market Fundamentals as Long-run Determinants of the GSCI-S&P500 Dynamic Conditional Correlation 

Panel	
  B:	
  Treating	
  the	
  Post-­‐Lehman	
  Period	
  unlike	
  previous	
  Years	
  

	
  	
   Model	
  1	
  +	
  DUM	
   Model	
  2	
  +	
  DUM	
   Model	
  3	
  +	
  DUM	
  
	
  	
   2000-­‐2010	
  

	
  
1991-­‐2010	
  

	
  
2000-­‐2010	
  

	
  
1995-­‐2010	
  

	
  
2000-­‐2010	
  

	
  
1991-­‐2010	
   	
  	
  

Constant	
   -­‐0.0385206	
   	
  	
   -­‐0.0133945	
   	
  	
   -­‐0.189684	
   ***	
   -­‐0.118617	
   **	
   -­‐0.0178242	
   	
  	
   -­‐0.00982412	
   	
  	
  
	
  	
   (0.05929)	
   	
  	
   (0.04506)	
   	
  	
   (0.06799)	
   	
  	
   (0.05827)	
   	
  	
   (0.05516)	
   	
  	
   (0.04566)	
   	
  	
  
ADS	
  

	
   	
   	
  
	
  	
  

	
   	
   	
  
	
  	
   0.144228	
   *	
   -­‐0.00556276	
   	
  	
  

	
  	
  
	
   	
   	
  

	
  	
  
	
   	
   	
  

	
  	
   (0.07731)	
  
	
  

(0.04499)	
   	
  	
  
SHIP	
   -­‐0.403081	
   ***	
   -­‐0.282846	
   **	
   	
  	
   	
  	
   	
  	
   	
  	
   -­‐0.581261	
   ***	
   -­‐0.279126	
   **	
  
	
  	
   (0.1544)	
   	
  	
   (0.1109)	
   	
  	
   	
  	
   	
  	
   	
  	
   	
  	
   (0.1795)	
   	
  	
   (0.1107)	
   	
  	
  
SPARE	
  

	
   	
   	
  
	
  	
   0.0973745	
   ***	
   0.0613461	
   **	
  

	
   	
   	
  
	
  	
  

	
  	
  
	
   	
   	
  

	
  	
   (0.03288)	
  
	
  

(0.02581)	
   	
  	
  
	
   	
   	
  

	
  	
  
UMD	
   0.0978540	
   *	
   0.0748004	
   *	
   0.0858745	
   *	
   0.0623155	
   	
  	
   0.0814175	
   	
  	
   0.0752574	
   *	
  
	
  	
   (0.05570)	
   	
  	
   (0.04496)	
   	
  	
   (0.05115)	
   	
  	
   (0.04212)	
   	
  	
   (0.05151)	
   	
  	
   (0.04498)	
   	
  	
  
TED	
   0.189270	
   *	
   0.0937619	
   	
  	
   0.208681	
   **	
   0.130900	
   *	
   0.313905	
   **	
   0.0871756	
   	
  	
  
	
  	
   (0.1002)	
  

	
  
(0.07906)	
   	
  	
   (0.09205)	
  

	
  
(0.07568)	
   	
  	
   (0.1287)	
  

	
  
(0.08180)	
   	
  	
  

DUM	
   0.426532	
   ***	
   0.475822	
   ***	
   0.422350	
   ***	
   0.452321	
   ***	
   0.481028	
   ***	
   0.459802	
   ***	
  
	
  	
   (0.1173)	
   	
  	
   (0.1079)	
   	
  	
   (0.1075)	
   	
  	
   (0.1003)	
   	
  	
   (0.1182)	
   	
  	
   (0.1173)	
   	
  	
  
Log	
  likelihood	
   867.215	
  

	
  
1669.27	
  

	
  
867.342	
  

	
  
1363.33	
  

	
   	
   	
   	
   	
  
	
  

Notes: The dependent variable is the time-varying conditional correlation (DCC) between the weekly unlevered rates of return (precisely, 
changes in log prices) on the S&P 500 (SP) equity index and the S&P GSCI-Energy total return (GSENTR) index.  Dynamic conditional 
correlations estimated by log-likehood for mean reverting model (Engle, 2002).  The explanatory variables are described in Table 3A, except for 
DUM – a time dummy variable that takes the value 0 prior to September 1, 2008 and 1 afterwards (“Lehman dummy”).  Long-run estimates are 
from the two step ARDL(p,q) estimation approach of Pesaran and Shin (1999).  When estimating the long-run relationship, one of the most 
important issues is the choice of the order of the distributed lag function on yt and the explanatory variables xt.  The Schwarz information 
criterion suggests that the optimal lag lengths are p=1 and q=1 in our case.  The sample periods in the first, third and fifth columns are July 1, 
2000 to February 26, 2010; the sample period for the second and sixth columns is January 2, 1991 to June 30, 2000; for the fourth column: June 
30, 2005 to Febuary 26, 2010.   
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Table 6 – Panel A: Speculative Activity as a Long-run Contributor to Energy-Equity Dynamic Conditional Correlation 

	
  
2000-­‐2010	
  

	
  
2000-­‐2010	
  

	
  
2000-­‐2010	
  

	
  
2000-­‐2010	
  

	
  
2000-­‐2010	
  

	
  
2000-­‐2010	
  

	
  
2000-­‐2010	
  

	
  
2000-­‐2010	
  

	
  Constant	
   -­‐1.33255	
   ***	
   -­‐3.35782	
   ***	
   -­‐2.43970	
  
	
  

-­‐3.69302	
  
	
  

-­‐0.883597	
   **	
   -­‐2.99169	
   ***	
   -­‐2.80875	
  
	
  

-­‐3.87777	
  
	
  

	
  
(0.3603)	
  

	
  
(1.001)	
  

	
  
(1.943)	
  

	
  
(2.274)	
  

	
  
(0.3499)	
  

	
  
(1.002)	
  

	
  
(2.313)	
  

	
  
(2.403)	
  

	
  ADS	
   	
  	
   	
  	
   	
  	
   	
  	
   	
  	
   	
  	
   	
  	
   	
  	
   0.0831803	
   	
  	
   0.0948211	
   	
  	
   0.0783511	
   	
  	
   0.0916956	
   	
  	
  
	
  	
   	
  	
   	
  	
   	
  	
   	
  	
   	
  	
   	
  	
   	
  	
   	
  	
   (0.1059)	
   	
  	
   (0.08943)	
   	
  	
   (0.1062)	
   	
  	
   (0.08828)	
   	
  	
  
SHIP	
  

	
   	
   	
   	
   	
   	
   	
   	
  
-­‐0.991052	
   ***	
   -­‐0.942787	
   ***	
   -­‐0.969616	
   ***	
   -­‐0.879629	
   ***	
  

	
   	
   	
   	
   	
   	
   	
   	
   	
  
(0.3290)	
  

	
  
(0.2555)	
  

	
  
(0.3324)	
  

	
  
(0.2763)	
  

	
  SPARE	
   0.225132	
   ***	
   0.192512	
   ***	
   0.222424	
   ***	
   0.188613	
   ***	
   	
  	
   	
  	
   	
  	
   	
  	
   	
  	
   	
  	
   	
  	
   	
  	
  
	
  	
   (0.05261)	
   	
  	
   (0.04506)	
   	
  	
   (0.05387)	
   	
  	
   (0.05087)	
   	
  	
   	
  	
   	
  	
   	
  	
   	
  	
   	
  	
   	
  	
   	
  	
   	
  	
  
UMD	
   0.0945118	
  

	
  
0.0943261	
  

	
  
0.0984478	
  

	
  
0.0955083	
  

	
  
0.108127	
  

	
  
0.0964163	
  

	
  
0.109796	
  

	
  
0.0949859	
  

	
  
	
  

(0.06361)	
  
	
  

(0.06159)	
  
	
  

(0.06539)	
  
	
  

(0.06205)	
  
	
  

(0.07765)	
  
	
  

(0.06442)	
  
	
  

(0.07869)	
  
	
  

(0.06418)	
  
	
  TED	
   2.79563	
   ***	
   6.70761	
   ***	
   2.76489	
   ***	
   6.52361	
   ***	
   2.24744	
   **	
   4.58889	
   **	
   2.17786	
   **	
   4.24447	
   *	
  

	
  	
   (0.8371)	
   	
  	
   (2.290)	
   	
  	
   (0.8476)	
   	
  	
   (2.489)	
   	
  	
   (0.9595)	
   	
  	
   (2.249)	
   	
  	
   (0.9529)	
   	
  	
   (2.308)	
   	
  	
  
WMSS_MMT	
   4.15750	
   ***	
  

	
   	
  
5.48540	
   *	
  

	
   	
  
4.00675	
   ***	
  

	
   	
  
6.35606	
   *	
  

	
   	
  
	
  

(1.290)	
  
	
   	
   	
  

(2.839)	
  
	
   	
   	
  

(1.522)	
  
	
   	
   	
  

(3.424)	
  
	
   	
   	
  WMSS_AS	
   	
  	
   	
  	
   	
  	
   	
  	
   1.63931	
   	
  	
   0.156530	
   	
  	
   	
  	
   	
  	
   	
  	
   	
  	
   2.73698	
   	
  	
   0.212229	
   	
  	
  

	
  	
   	
  	
   	
  	
   	
  	
   	
  	
   (3.037)	
   	
  	
   (2.274)	
   	
  	
   	
  	
   	
  	
   	
  	
   	
  	
   (3.637)	
   	
  	
   (2.391)	
   	
  	
  
WMSS_TCOM	
  

	
   	
   	
   	
  
1.36403	
  

	
  
0.259968	
  

	
   	
   	
   	
   	
  
2.39518	
  

	
  
0.689258	
  

	
  
	
   	
   	
   	
   	
  

(2.370)	
  
	
  

(1.631)	
  
	
   	
   	
   	
   	
  

(2.808)	
  
	
  

(1.674)	
  
	
  WSIA	
   	
  	
   	
  	
   2.36713	
   ***	
   	
  	
   	
  	
   2.54662	
   **	
   	
  	
   	
  	
   2.41098	
   ***	
   	
  	
   	
  	
   2.89488	
   **	
  

	
  	
   	
  	
   	
  	
   (0.7563)	
   	
  	
   	
  	
   	
  	
   (1.280)	
   	
  	
   	
  	
   	
  	
   (0.7987)	
   	
  	
   	
  	
   	
  	
   (1.360)	
   	
  	
  
INT_TED_MMT	
   -­‐8.49444	
   ***	
  

	
   	
  
-­‐8.39324	
   ***	
  

	
   	
  
-­‐6.59982	
   **	
  

	
   	
  
-­‐6.38725	
   **	
  

	
   	
  
	
  

(2.719)	
  
	
   	
   	
  

(2.755)	
  
	
   	
   	
  

(3.054)	
  
	
   	
   	
  

(3.037)	
  
	
   	
   	
  INT_TED_WSIA	
   	
  	
   	
  	
   -­‐4.63228	
   ***	
   	
  	
   	
  	
   -­‐4.50740	
   **	
   	
  	
   	
  	
   -­‐3.13160	
   *	
   	
  	
   	
  	
   -­‐2.89702	
   *	
  

	
  	
   	
  	
   	
  	
   (1.630)	
   	
  	
   	
  	
   	
  	
   (1.762)	
   	
  	
   	
  	
   	
  	
   (1.603)	
   	
  	
   	
  	
   	
  	
   (1.637)	
   	
  	
  
Log	
  likelihood	
   876.051	
   	
  	
   866.668	
   	
  	
   876.977	
   	
  	
   868.167	
   	
  	
   875.138	
   	
  	
   868.212	
   	
  	
   876.075	
   	
  	
   869.478	
   	
  	
  

Notes: Explanatory variables are described in Tables 3 and 5.  The dependent variable is the the time-varying conditional correlation (DCC) between the weekly 
unlevered rates of return (precisely, changes in log prices) on the S&P 500 (SP) equity index and the S&P GSCI-Energy total return (GSENTR) index.  DCC 
estimated by log-likehood for mean reverting model (Engle, 2002).  Long-run estimates are from the two step ARDL(p,q) estimation approach of Pesaran and 
Shin (1999).  The Schwarz information criterion suggests optimal lag lengths p=1 and q=1.  Sample period: July 1, 2000 to March 1, 2010.    
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Table 6 – Panel B: Speculation as a Long-run Contributor to the Energy-Equity Dynamic Conditional Correlation (Lehman control) 

	
  
2000-­‐2010	
  

	
  
2000-­‐2010	
  

	
  
2000-­‐2010	
  

	
  
2000-­‐2010	
  

	
  
2000-­‐2010	
  

	
  
2000-­‐2010	
  

	
  
2000-­‐2010	
  

	
  
2000-­‐2010	
  

	
  Constant	
   -­‐0.826467	
   ***	
   -­‐1.96763	
   ***	
   -­‐2.56901	
   **	
   -­‐3.17242	
   **	
   -­‐0.461911	
   **	
   -­‐1.52392	
   *	
   -­‐2.87995	
   **	
   -­‐3.34485	
   **	
  

	
  
(0.2323)	
  

	
  
(0.7290)	
  

	
  
(1.057)	
  

	
  
(1.273)	
  

	
  
(0.2244)	
  

	
  
(0.8044)	
  

	
  
(1.233)	
  

	
  
(1.425)	
  

	
  ADS	
   	
  	
   	
  	
   	
  	
   	
  	
   	
  	
   	
  	
   	
  	
   	
  	
   0.117027	
   	
  	
   0.126365	
   *	
   0.120451	
   **	
   0.117706	
   **	
  
	
  	
   	
  	
   	
  	
   	
  	
   	
  	
   	
  	
   	
  	
   	
  	
   	
  	
   (0.07312)	
   	
  	
   (0.06792)	
   	
  	
   (0.05874)	
   	
  	
   (0.05392)	
   	
  	
  
SHIP	
  

	
   	
   	
   	
   	
   	
   	
   	
  
-­‐0.683454	
   ***	
   -­‐0.685360	
   ***	
   -­‐0.485068	
   ***	
   -­‐0.465401	
   ***	
  

	
   	
   	
   	
   	
   	
   	
   	
   	
  
(0.2240)	
  

	
  
(0.1912)	
  

	
  
(0.1885)	
  

	
  
(0.1730)	
  

	
  SPARE	
   0.154870	
   ***	
   0.135986	
   ***	
   0.121034	
   ***	
   0.107117	
   ***	
   	
  	
   	
  	
   	
  	
   	
  	
   	
  	
   	
  	
   	
  	
   	
  	
  
	
  	
   (0.03576)	
   	
  	
   (0.03237)	
   	
  	
   (0.03185)	
   	
  	
   (0.03093)	
   	
  	
   	
  	
   	
  	
   	
  	
   	
  	
   	
  	
   	
  	
   	
  	
   	
  	
  
UMD	
   0.0710231	
   *	
   0.0727269	
   *	
   0.0579558	
   *	
   0.0586289	
   *	
   0.0791648	
  

	
  
0.0770952	
   *	
   0.0583944	
  

	
  
0.0578297	
  

	
  
	
  

(0.04025)	
  
	
  

(0.03981)	
  
	
  

(0.03378)	
  
	
  

(0.03274)	
  
	
  

(0.04991)	
  
	
  

(0.04569)	
  
	
  

(0.03943)	
  
	
  

(0.03611)	
  
	
  TED	
   1.77734	
   ***	
   4.60514	
   ***	
   1.38053	
   ***	
   3.39324	
   **	
   1.39977	
   **	
   3.12007	
   **	
   0.979815	
   **	
   1.91951	
   	
  	
  

	
  	
   (0.5081)	
   	
  	
   (1.485)	
   	
  	
   (0.4230)	
   	
  	
   (1.346)	
   	
  	
   (0.5754)	
   	
  	
   (1.577)	
   	
  	
   (0.4400)	
   	
  	
   (1.300)	
   	
  	
  
WMSS_MMT	
   2.37960	
   ***	
  

	
   	
  
5.22120	
   ***	
  

	
   	
  
1.95108	
   *	
  

	
   	
  
5.69068	
   ***	
  

	
   	
  
	
  

(0.8664)	
  
	
   	
   	
  

(1.523)	
  
	
   	
   	
  

(1.052)	
  
	
   	
   	
  

(1.783)	
  
	
   	
   	
  WMSS_AS	
   	
  	
   	
  	
   	
  	
   	
  	
   0.896538	
   	
  	
   -­‐0.949729	
   	
  	
   	
  	
   	
  	
   	
  	
   	
  	
   1.29104	
   	
  	
   -­‐1.08246	
   	
  	
  

	
  	
   	
  	
   	
  	
   	
  	
   	
  	
   (1.624)	
   	
  	
   (1.275)	
   	
  	
   	
  	
   	
  	
   	
  	
   	
  	
   (1.905)	
   	
  	
   (1.443)	
   	
  	
  
WMSS_TCOM	
  

	
   	
   	
   	
  
2.82919	
   **	
   1.07074	
  

	
  
	
  	
  

	
   	
   	
  
3.77961	
   **	
   1.57570	
  

	
  
	
   	
   	
   	
   	
  

(1.358)	
  
	
  

(0.9123)	
  
	
  

	
  	
  
	
   	
   	
  

(1.577)	
  
	
  

(0.9986)	
  
	
  WSIA	
   	
  	
   	
  	
   1.32955	
   **	
   	
  	
   	
  	
   2.21413	
   ***	
   	
  	
   	
  	
   1.19816	
   *	
   	
  	
   	
  	
   2.40606	
   ***	
  

	
  	
   	
  	
   	
  	
   (0.5596)	
   	
  	
   	
  	
   	
  	
   (0.7198)	
   	
  	
   	
  	
   	
  	
   (0.6568)	
   	
  	
   	
  	
   	
  	
   (0.8107)	
   	
  	
  
INT_TED_MMT	
   -­‐5.51366	
   ***	
  

	
   	
  
-­‐4.30584	
   ***	
  

	
   	
  
-­‐3.95743	
   **	
  

	
   	
  
-­‐2.67353	
   *	
  

	
   	
  
	
  

(1.676)	
  
	
   	
   	
  

(1.402)	
  
	
   	
   	
  

(1.876)	
  
	
   	
   	
  

(1.454)	
  
	
   	
   	
  INT_TED_WSIA	
   	
  	
   	
  	
   -­‐3.20403	
   ***	
   	
  	
   	
  	
   -­‐2.37744	
   **	
   	
  	
   	
  	
   -­‐2.08711	
   *	
   	
  	
   	
  	
   -­‐1.27853	
   	
  	
  

	
  	
   	
  	
   	
  	
   (1.064)	
   	
  	
   	
  	
   	
  	
   (0.9594)	
   	
  	
   	
  	
   	
  	
   (1.132)	
   	
  	
   	
  	
   	
  	
   (0.9324)	
   	
  	
  
DUM	
   0.347098	
   ***	
   0.350655	
   ***	
   0.445824	
   ***	
   0.380342	
   ***	
   0.407072	
   ***	
   0.387593	
   ***	
   0.553881	
   ***	
   0.450287	
   ***	
  

	
  
(0.09457)	
  

	
  
(0.09879)	
  

	
  
(0.09043)	
  

	
  
(0.08412)	
  

	
  
(0.1299)	
  

	
  
(0.1283)	
  

	
  
(0.1223)	
  

	
  
(0.1086)	
  

	
  Log	
  likelihood	
   881.086	
   	
  	
   871.939	
   	
  	
   884.97	
   	
  	
   875.182	
   	
  	
   879.213	
   	
  	
   872.486	
   	
  	
   883.634	
   	
  	
   876.139	
   	
  	
  
 

Notes: Explanatory variables are described in Tables 3 and 5, except for DUM (a “Lehman” time dummy that takes the value 0 prior to September 1, 2008 
and 1 afterwards) and INT_TED_xxx (interaction terms of the TED spread with position variables).  .  The dependent variable is the the time-varying 
conditional correlation (DCC) between the weekly unlevered rates of return on the S&P 500 (SP) equity index and the S&P GSCI-Energy total return 
(GSENTR) index – see Table 6A.  Long-run estimates are from the two step ARDL(p,q) estimation approach of Pesaran and Shin (1999).  The Schwarz 
information criterion suggests optimal lag lengths p=1 and q=1.  Sample period: July 1, 2000 to March 1, 2010.     
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Table 6, Panel C: Cross-Market Trading as a Long-run Contributor to the GSCI-S&P500 Dynamic Conditional Correlation 

	
  
2000-­‐2010	
  

	
  
2000-­‐2010	
  

	
  
2000-­‐2010	
  

	
  
2000-­‐2010	
  

	
  
2000-­‐2010	
  

	
  
2000-­‐2010	
  

	
  Constant	
   -­‐0.778333	
   ***	
   0.210448	
   	
  	
   -­‐0.971063	
   	
  	
   -­‐0.783793	
   ***	
   0.315275	
   	
  	
   -­‐0.675490	
   	
  	
  
	
  	
   (0.2196)	
   	
  	
   (0.4022)	
   	
  	
   (0.8296)	
   	
  	
   (0.2277)	
   	
  	
   (0.4216)	
   	
  	
   (0.8831)	
   	
  	
  
ADS	
  

	
   	
   	
   	
   	
   	
  
0.0381775	
  

	
  
0.0536956	
  

	
  
0.0631063	
  

	
  
	
   	
   	
   	
   	
   	
   	
  

(0.06174)	
  
	
  

(0.05042)	
  
	
  

(0.04728)	
  
	
  SPARE	
   0.178190	
   ***	
   0.129834	
   ***	
   0.104834	
   ***	
   0.179592	
   ***	
   0.126999	
   ***	
   0.102546	
   ***	
  

	
  	
   (0.04215)	
   	
  	
   (0.03684)	
   	
  	
   (0.03318)	
   	
  	
   (0.04372)	
   	
  	
   (0.03755)	
   	
  	
   (0.03384)	
   	
  	
  
UMD	
   0.0722604	
  

	
  
0.0565843	
  

	
  
0.0645123	
   *	
   0.0715149	
  

	
  
0.0540846	
  

	
  
0.0602626	
   *	
  

	
  
(0.04570)	
  

	
  
(0.03696)	
  

	
  
(0.03534)	
  

	
  
(0.04713)	
  

	
  
(0.03760)	
  

	
  
(0.03580)	
  

	
  TED	
   1.37460	
   ***	
   1.01301	
   ***	
   3.29099	
   **	
   1.46240	
   ***	
   1.07753	
   ***	
   3.14341	
   **	
  
	
  	
   (0.4684)	
   	
  	
   (0.3643)	
   	
  	
   (1.400)	
   	
  	
   (0.5075)	
   	
  	
   (0.3831)	
   	
  	
   (1.427)	
   	
  	
  
WCMSA_MMT	
   5.10806	
   ***	
   3.92980	
   ***	
  

	
   	
  
5.13408	
   ***	
   3.76414	
   ***	
  

	
   	
  
	
  

(1.717)	
  
	
  

(1.358)	
  
	
   	
   	
  

(1.783)	
  
	
  

(1.392)	
  
	
   	
   	
  WCMSA_AS	
   	
  	
   	
  	
   -­‐3.73983	
   **	
   -­‐2.86410	
   *	
   	
  	
   	
  	
   -­‐4.14034	
   **	
   -­‐3.40879	
   **	
  

	
  	
   	
  	
   	
  	
   (1.543)	
   	
  	
   (1.567)	
   	
  	
   	
  	
   	
  	
   (1.629)	
   	
  	
   (1.653)	
   	
  	
  
WSIA	
  

	
   	
   	
   	
  
1.08753	
   **	
   	
  	
  

	
   	
   	
  
0.946378	
   *	
  

	
   	
   	
   	
   	
  
(0.5081)	
  

	
  
	
  	
  

	
   	
   	
  
(0.5354)	
  

	
  INT_TED_CMMTA	
   -­‐9.82038	
   ***	
   -­‐6.96981	
   **	
   	
  	
   	
  	
   -­‐10.2754	
   ***	
   -­‐7.13595	
   **	
   	
  	
   	
  	
  
	
  	
   (3.644)	
   	
  	
   (2.862)	
   	
  	
   	
  	
   	
  	
   (3.853)	
   	
  	
   (2.950)	
   	
  	
   	
  	
   	
  	
  
INT_TED_WSIA	
  

	
   	
   	
   	
  
-­‐2.26677	
   **	
   	
  	
  

	
   	
   	
  
-­‐2.11807	
   **	
  

	
   	
   	
   	
   	
  
(1.005)	
  

	
  
	
  	
  

	
   	
   	
  
(1.028)	
  

	
  DUM	
   0.214922	
   *	
   0.370933	
   ***	
   0.431396	
   ***	
   0.230696	
   *	
   0.418018	
   ***	
   0.496860	
   ***	
  
	
  	
   (0.1120)	
   	
  	
   (0.1067)	
   	
  	
   (0.1017)	
   	
  	
   (0.1226)	
   	
  	
   (0.1196)	
   	
  	
   (0.1197)	
   	
  	
  
Log	
  likelihood	
   881.802	
   	
  	
   885.162	
   	
  	
   875.116	
   	
  	
   882.31	
   	
  	
   885.943	
   	
  	
   876.387	
   	
  	
  

 

Notes: Most variables are described in Tables 3C and 6B.  INT_TED_CMMTA is an interaction terms of the TED spread with the shares of 
open interest held weekly by cross-market trading hedge funds (MMT).  We report long-run estimates from the two step ARDL(p,q) 
estimation approach of Pesaran and Shin (1999).  The Schwarz information criterion suggests optimal lag lengths p=1 and q=1 in our case.  
The sample period is July 1, 2000 to February 26, 2010.    
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Table 7: Pre-Lehman Determinants of Equity-Energy Dynamic Conditional Correlations 

Variable   Model 2 
2000-2008 

Model 3 
2000-2008 

Model 4 
2000-2008 

Model 5 
2000-2008 

      Constant 
 

-1.6746 -2.4958** -3.9349** -4.4461*** 

  
(1.252) (1.205) (1.570) (1.491) 

      SHIP 
 

-0.6143*** -0.7603*** -0.5533*** -0.6764*** 

  
(0.1669) (0.1639) (0.1427) (0.1446) 

      UMD 
 

0.0322 0.0242 0.0257 0.0184 

  
(0.0395) (0.0363) (0.0333) (0.0313) 

      TED 
 

0.2903*** 1.3782*** 0.2002*** 1.0994*** 

  
(0.0755) (0.3954) (0.0714) (0.3476) 

      WMSS_AS 
 

0.2601 0.7225 0.9328 1.2839 

  
(1.949) (1.817) (1.681) (1.597) 

      WMSS_MMT 
 

4.0546** 6.7724*** 4.0345** 6.3014*** 

  
(1.885) (2.000) (1.582) (1.710) 

      WMSS_TCOM 
 

2.1266 2.5937* 3.4385** 3.7444*** 

  
(1.501) (1.408) (1.445) (1.375) 

      INT_TED_MMT 
  

-4.3087*** 
 

-3.5321*** 

   
(1.481) 

 
(1.279) 

      WSIA 
   

1.3509** 1.2395* 

    
(0.6650) (0.6362) 

      Observations   436 436 436 436 
Notes: Explanatory variables are described in Tables 3 and 6.  The dependent variable is the the time-

varying conditional correlation between the weekly unlevered rates of return (precisely, changes in log prices) 
on the S&P 500 (SP) equity index and the S&P GSCI-Energy total return (GSENTR) index.  Dynamic 
conditional correlations estimated by log-likehood for mean reverting model (Engle, 2002).  When estimating 
the long-run relationship, one of the most important issues is the choice of the order of the distributed lag 
function on  and the explanatory variables .  Long-run estimates are from the two step ARDL(p,q) 
estimation approach of Pesaran and Shin (1999).  The Schwarz information criterion suggests that the optimal 
lag lengths are p=1 and q=1 in our case.  The sample period is July 4, 2000 to November 11, 2008.    
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Table 8: Pre-Lehman Determinants of Energy-Equity Dynamic Conditional Correlations 

Variable 
  

Model 6 
2000-2008 

Model 7 
2000-2008 

Model 8 
2000-2008 

Model 9 
2000-2008 

      Constant 
 

0.4696 0.7722 0.6525 2.7811 

  
(1.211) (1.249) (0.6525) (2.716) 

      SHIP 
 

-0.5079*** -0.5934*** -0.4983*** -0.5889*** 

  
(0.1675) (0.1746) (0.1669) (0.1763) 

      UMD 
 

0.0283 0.0325 0.0205 0.0213 

  
(0.0368) (0.0380) (0.0372) (0.0386) 

      TED 
 

0.2307*** 1.1399*** 0.2296*** 1.2577*** 

  
(0.0766) (0.3968) (0.0826) (0.4404) 

      WMSA_AS 
 

-2.6751 -3.3830* -2.9115 -4.6060* 

  
(2.110) (2.178) (2.358) (2.571) 

      WMSA_MMT 
 

1.1362 1.8172 1.1569 2.6090 

  
(1.491) (1.519) (1.718) (1.836) 

      WMSA_TCOM 
 

0.0324 -0.7522 -0.0664 -1.7066 

  
(1.323) (1.412) (1.589) (1.832) 

      INT_TED_MMTA 
  

-3.4831** 
 

-3.8345** 

   
(1.419) 

 
(1.533) 

      WSIA 
   

-0.0713 -1.2107 

    
(1.349) (1.492) 

      Observations   436 436 436 436 
Notes: Explanatory variables are described in Tables 3 and 6.  The dependent variable is the the time-

varying conditional correlation between the weekly unlevered rates of return (precisely, changes in log prices) 
on the S&P 500 (SP) equity index and the S&P GSCI-Energy total return (GSENTR) index.  Dynamic 
conditional correlations estimated by log-likehood for mean reverting model (Engle, 2002).  When estimating 
the long-run relationship, one of the most important issues is the choice of the order of the distributed lag 
function on  and the explanatory variables .  Long-run estimates are from the two step ARDL(p,q) 
estimation approach of Pesaran and Shin (1999).  The Schwarz information criterion suggests that the optimal 
lag lengths are p=1 and q=1 in our case.  The sample period is January 2, 2000 to November 11, 2008.  
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Appendix 1: Large trader categories 
 
 Appendix 1 uses the New York Mercantile Exchange’s (NYMEX) West Texas 

Intermediate (WTI) crude oil futures market to illustrate the level of disaggregation within the 

CFTC’s “commercial” and “non-commercial” subcategories, highlighting (in bold) the trader 

types that are the most active.   

The four main commercial subcategories are (i) oil “Dealer and Merchant” (wholesalers, 

exporters and importers, marketers, etc.; (ii) “Manufacturers” (oil refiners, fabricators, etc.); (iii) 

“Producers”, a self-explanatory grouping; (iv) “Commodity Swap Dealers”, i.e., all reporting 

swap dealers and arbitrageurs/broker-dealers.16  These categories typically make up more than 

95% of the WTI commercial open interest in 2000-2010, and close to 99% in the last five years.   

Traders in the dealer/merchant, manufacturer and producer sub-categories are often 

referred to as “traditional” hedgers.  By contrast, the swap dealer sub-category (whose activity 

has grown significantly since 2000) also includes the positions of non-traditional hedgers, 

including “entities whose trading predominantly reflects hedging of over-the-counter 

transactions involving commodity indices—for example, swap dealers holding long futures 

positions to hedge short over-the-counter (OTC) commodity index exposure opposite 

institutional traders such as pension funds”.   

 The three most active non-commercial sub-categories are (i) “Floor Brokers and 

Traders”; (ii) “Hedge Funds”, which comprise all reporting commodity pool operators, 

commodity trading advisors, “associated persons” controlling customer accounts as well as other 

“managed money” traders;17 (iii) “Non-registered participants” (NRP).  The latter category, 

whose importance we shall see has increased substantially since 2000, mostly comprises 

financial traders whose positions are large enough to warrant reporting to the CFTC but who are 

not registered as managed money traders or floor brokers and traders under the Commodity 

Exchange Act.  NRPs also include some smaller non-commercial traders who do not have a 

reporting obligation but whose positions are nevertheless reported to the CFTC.  In 2000-2008, 

these three categories made up about 90% of the total non-commercial WTI open interest 

(including non-reporting traders).   

                                                
16 The CFTC merged the previously separate financial swap dealers and arbitrageurs/broker-dealer sub-categories 
with commodity swap dealers partway through our sample period.  In the period August 2003 – August 2004, there 
was only 1 arbitrageur/broker-dealer and 1 financial swap dealer.   
17 See Appendix 2 for a discussion of the term “hedge funds” in the context of commodity futures markets.   
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Panel A: Commercial Traders 

CFTC Code CFTC Name  
18 Co-Operative In Panel A, “Dealer/Merchant” (AD) includes 

wholesalers, exporter/importers, crude oil 
marketers, shippers, etc.  “Manufacturer” 

(AM) includes refiners, fabricators, etc.  
“Agricultural / Natural Resources – Other” 
(AO) may include, for example, end users.  

“Commodity Swaps/Derivatives Dealer” (AS) 
aggregates all reporting “Swaps/Derivatives 
Dealers” (FS) and “Arbitrageurs or Broker 

Dealers” (FA), two categories that were merged 
in the CFTC’s internal reporting system part-
way through our 2000-2008 sample period.  

“Hedge funds” involved in financial contracts 
that are shown to be hedging would be included 

in the “commercial” category FH.   

AD Dealer/Merchant 
AM Manufacturer 
AO Agricultural/Natural Resources – Other 
AP Producer 
AS Commodity Swaps/Derivatives Dealer 
FA Arbitrageur or Broker/Dealer 
FB Non U.S. Commercial Bank 
FC U.S. Commercial Bank 
FD Endowment or Trust 
FE Mutual Fund 
FF Pension Fund 
FG Insurance Company 
FH Hedge Fund 
FM Mortgage Originator 
FO Financial – Other 
FP Managed Account or Pool 
FS Financial Swaps/Derivatives Dealer 
FT Corporate Treasurer 
LF Livestock Feeder 
LO Livestock – Other 
LS Livestock Slaughterer 

 

Panel B: Non-commercial Traders 
CFTC Code CFTC Name  

HF Hedge Fund In Panel B, “Hedge Funds” (HF) aggregate all 
reporting Commodity Pool Operators (CPO), 

Commodity Trading Advisors (CTAs), 
“Associated Persons” (APs) controlling 

customer accounts, as well as other “Managed 
Money” (MM) traders.  “Floor Brokers / 

Traders” (FBT) aggregate all reporting floor 
brokers and floor traders.  “Non-registered 
participants” (NRP) are non-commercial 
traders who are not registered under the 
Commodity Exchange Act (CEA).  This 

category, which has grown significantly since 
2000, mostly comprises financial traders with 
positions large enough to warrant reporting to 
the CFTC; it also includes smaller traders who 
do not have a reporting obligation to the CFTC 
but whose positions are nevertheless reported. 

FBT Floor Broker /Trader 
FCM Futures Commission Merchant 

IB Introducing Broker 
NRP Non-Registered Participant 

 

Notes: Appendix 1 lists the trader sub-categories in the CFTC’s large-trader reporting system (LTRS).  Bolded 
entries are those on which most of our analysis focuses.  When the CFTC publishes its weekly Commitment of 
Traders Report, these various sub-categories are aggregated in two broad groups: “Commercials” (Panel A), who 
have declared an underlying hedging purpose, and “Non-commercials” (Panel B), who have not.   
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Appendix 2: Measuring Commodity Index Trading (CIT) Activity. 
 

The CFTC’s non-public (LTRS) dataset does not identify CIT activity in energy markets 

at the daily or weekly frequency.  This is because CIT activity percolates into energy futures 

partly through CIT interactions with commodity swap dealers – yet, even in the non-public 

CFTC data, CIT-related positions are not identified within the overall energy futures positions 

held by commodity swap dealers.18   

Certainly, information on CIT positions is publicly available for 12 agricultural (“ag”) 

markets at the weekly frequency after January 2006.  One could thus attempt to extrapolate, to 

other commodities, the overall market share of CITs in those ag markets – see, e.g., Gilbert 

(2009), Stoll and Whaley (2010) and Singleton (2011).  After 2006, though, the quality of an 

approximation based on the ag CIT data depends on whether weekly index investment flows are 

similar in magnitudes across all commodity futures markets and, within each market, across all 

contract maturities.  In fact, the precision of the approximation gets worse over time insofar as 

specialized ag funds have grown in importance since 2006 and insofar as the futures open 

interest has a very different maturity structure in ag vs. energy futures markets (Irwin and 

Sanders, 2011).19  Besides, the ag position information is not available before 2006 – restricting 

the scope of a possible study.   

One possible solution to those issues might be to reconstruct CIT position data in energy 

markets on the basis of the CFTC’s (non-public) list of CIT accounts, which CFTC staff first 

established in 2006 and have regularly updated ever since.20  Unfortunately, discussions with 

those CFTC staff indicate that the use of this list should not be extended to prior years because of 

structural differences in CIT activity before and after 2005.   

The present paper therefore draws instead on the granularity of the non-public CFTC data 

and on the fact that CIT activity has tended to concentrate in near-dated contracts.  Specifically, 

in the spirit of Büyükşahin et al (2009), we approximate the near-term (overall) CIT market 

                                                
18 Starting in September 2008, the CFTC started providing reports about off- and on-exchange commodity index 
activity in a number of U.S. commodity markets.  The frequency of those reports, however, is far too low for our 
purpose – quarterly till June 2010, then monthly after July 2010.   
19 Even in ag markets, “…some traders assigned to the Index Traders category are engaged in other futures activity 
that could not be disaggregated (...) Likewise, the Index Traders category will not include some traders who are 
engaged in index trading, but for whom it does not represent a substantial part of their overall trading activity” 
(CFTC 2008, quoted in Aulerich, Irwin and Sanders (2011)).   
20 See Brunetti and Reiffen (2011) and Aulerich, Irwin and Sanders (2011) for information on the methodology 
behind the CFTC’s CIT classification.   
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shares in our three energy futures markets each week by the shares of the near-dated (overall) 

open interest held by commodity swap dealer in each of these three markets.  While this 

approximation may not be perfect, it offers the key advantage of yielding a consistent measure 

for the entire sample period (2000-2010).   

 

Appendix 3: Defining Hedge Funds. 
 

“Hedge fund” activity in commodity derivatives markets has been the subject of intense 

scrutiny in recent years by academic researchers, market participants, policy makers, and the 

media.  Yet, there is no accepted definition of a “hedge fund” in futures markets, and there is 

nothing in the statutes governing futures trading that defines a hedge fund.  Furthermore, there is 

nothing that requires hedge funds to be categorized in the CFTC’s Large Traders Reporting 

System (LTRS).   

Still, many hedge fund complexes are either advised or operated by CFTC-registered 

commodity pool operators (CPOs) or Commodity Trading Advisors (CTAs) and associated 

persons (APs) who may also control customer accounts.  Through its LTRS, the CFTC therefore 

obtains positions of the operators and advisors to hedge funds, even though it is not a 

requirement that these entities provide the CFTC with the name of the hedge fund (or another 

trader) that they are representing.21   

It is clear that many of the large CTAs, CPOs, and APs are considered to be hedge funds 

and hedge fund operators.  Consequently, we conform to the academic literature and common 

financial parlance by referring to these three types of institutions collectively as “hedge funds.”  

In addition, for the purposes of this paper, market surveillance staff at the CFTC identified other 

participants not registered in any of these three categories but known to be managing money – 

these are also included in the hedge fund category (see the Table footnote to Appendix 1).   

                                                
21 A commodity pool is defined as an investment trust, syndicate or a similar form of enterprise engaged in trading 
pooled funds in futures and options on futures contracts.  A commodity pool is similar to a mutual fund company, 
except that it invests pooled money in the futures and options markets.  Like its securities counterparts, a commodity 
pool operator (CPO) might invest in financial markets or commodity markets.  Unlike mutual funds, however, 
commodity pools may be either long or short derivative contracts.  A CPO’s principal objective is to provide smaller 
investors the opportunity to invest in futures and options markets with greater diversification with professional trade 
management.  The CPO solicits funds from others for investing in futures and options on futures.  The commodity-
trading advisor (CTA) manages the accounts and is the equivalent of an advisor in the securities world.   
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