
Spaces for agreement: a theory of
Time-Stochastic Dominance and an application

to climate change
Simon Dietz∗ and Nicoleta Anca Matei†

December 22, 2014

Abstract
Many investments involve both a long time-horizon and risky returns.

Making investment decisions thus requires assumptions about time and
risk preferences. Such assumptions are frequently contested, particularly
in the public sector, and there is no immediate prospect of universal agree-
ment. Motivated by these observations, we develop a theory and method
of finding ‘spaces for agreement’. These are combinations of classes of dis-
count and utility function, for which one investment dominates another
(or ‘almost’ does so), so that all decision-makers whose preferences can be
represented by such combinations would agree on the option to be cho-
sen. The theory is built on combining the insights of stochastic dominance
on the one hand, and time dominance on the other, thus offering a non-
parametric approach to inter-temporal, risky choice. We go on to apply
the theory to the controversy over climate policy evaluation and show with
the help of a popular simulation model that, in fact, even tough carbon
emissions targets would be chosen by almost everyone, barring those with
arguably ‘extreme’ preferences.
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1 Introduction
When making investment decisions one is frequently confronted with long time-
horizons and risky returns. Therefore assumptions about time and risk pref-
erences are important. Making such assumptions is always tricky. In the area
of public project appraisal they are especially contested, because, on top of the
usual challenges of estimating individual preferences, there are positions to be
taken on how to aggregate individual preferences into social preferences.

A particularly good example of a long-run, risky public investment is climate-
change mitigation. It comes as no surprise then that great controversy surrounds
policy proposals to abate greenhouse gas emissions, and that this controversy
has turned in large measure on positions taken on time and risk preferences.
By now the debate will be familiar to readers, so a very short summary might
suffice here.

In the context of a model where social welfare is the discounted sum of
individual utilities, the pioneering studies of Cline (1992) and Nordhaus (1991;
1994) staked out debating positions on pure time preference that still hold today
– Cline set the utility discount rate to 0% based on so-called ‘prescriptive’
ethical reasoning, while Nordhaus set it to 3% based on a more conventional
‘descriptive’ analysis of market rates of investment returns.1 More recently, the
Stern Review (Stern, 2007) set the utility discount rate to 0.1% and advocated
aggressive emissions abatement, with the former assumption seemingly causing
the latter result.2 However, the Stern Review also prompted debate about
the appropriate utility function, which in the standard model simultaneously
represents risk preferences and preferences to smooth consumption over time.
Questions have included the appropriate degree of risk/inequality aversion in
an iso-elastic function (e.g. Dasgupta, 2007; Gollier, 2006; Stern, 2008), and the
appropriate function itself (Ikefuji et al., 2012; Pindyck, 2011).

Rather than attempting to settle the debate, in this paper we embrace it.
Our starting point is the supposition that debate about time and risk preferences
legitimately exists and will endure. Given the ingredients of the debate and the

1See Arrow et al. (1996) for a classic comparison of these two points of view, from where
the labels descriptive and prescriptive hail.

2See Nordhaus (2007; 2008) for critiques of the Stern Review.
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current state of knowledge, “reasonable minds may differ” (Hepburn and Beck-
erman, 2007). Why is the debate difficult to resolve? It contains normative
and positive elements. There is a clear sense in which normative differences
may never be completely eliminated. Positive ‘uncertainties’ could in princi-
ple be eliminated by collecting more empirical data from, for instance, market
behaviour, questionnaire surveys or laboratory experiments, but in reality it is
likely that they will also persist (as with longstanding puzzles in the economics
of risk, such as the equity premium and risk-free rate).

Consequently we are in the search for partial rather than complete orderings
of choices. We want to establish a theory and method of identifying whether
there exist ‘spaces for agreement’, that is combinations of classes of discount
and utility function, for which one investment dominates another (or ‘almost’
does so), so that all decision-makers whose preferences can be represented by
such combinations would agree on the option to be chosen.

Why might this be useful? Given disagreement about appropriate time
and risk preferences, our approach does not require decision-makers to make a
priori choices of functional form or parameter values. While this non-parametric
approach could be used to inform investment choice in the private sector, its
main use is more likely to be to bring renewed clarity to hotly contested choices
in public policy, such as mitigation of climate change. In these areas, the debate
about time and risk preferences might have become a distraction, preventing us
from asking whether in fact there are some meaningful courses of action that
both sides could agree to take.

The intellectual antecedents of this paper lie in the theory of Stochastic Dom-
inance (Fishburn, 1964; Hanoch and Levy, 1969; Hadar and Russell, 1969; Roth-
schild and Stiglitz, 1970) and its offshoots, in particular Almost Stochastic Dom-
inance (Leshno and Levy, 2002), Time Dominance (Bøhren and Hansen, 1980;
Ekern, 1981) and extensions of dominance analysis to multivariate problems
(Levy and Paroush, 1974b; Atkinson and Bourguignon, 1982; Karcher et al.,
1995).

Stochastic Dominance (SD) is a fundament of the theory of decision-making
under uncertainty. It is undoubtedly useful for the sort of problems we have just
set out, precisely because it offers a non-parametric approach to risky choice,
whereby one tests for SD relations for whole preference classes. However, the
basic theory of SD is a-temporal. In effect, decisions are made and pay-offs
obtained in the same time period. While extensions have been made to the
multiperiod case (Levy, 1973; Levy and Paroush, 1974a), the decision-maker is
not permitted to prefer flows of utility in some periods of time more than in
others.3 This is a serious drawback, as it is clear that most decision-makers
are impatient, preferring utility now to utility later on. Time preference is, by
contrast, the core focus of the theory of Time Dominance (Bøhren and Hansen,
1980; Ekern, 1981), which takes the SD machinery and applies it to cashflows,
i.e. instead of working with cumulative distributions over the consequence space

3One exception we are aware of is Scarsini (1986), who looked at a special case of utility
discounting. We will clarify the relationship between his paper and ours later.
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of a decision, one works with cumulative distributions over time. Like SD,
one tests for a Time Dominance (TD) relation for whole preference classes,
rather than having to pre-specify and parameterise a discount function. The
drawback of TD, however, is the obverse of SD, namely that the basic theory
has been developed for certain, rather than uncertain, cashflows, and can only
be extended to the latter under restrictive assumptions (see Annex 1).

Another drawback of the basic theory of SD is nicely illustrated by a stylised
example from Levy (2009) – try to use SD criteria to rank two prospects, one of
which pays out $0.5 with a probability of 0.01 and $1 million with a probability
of 0.99, and the other of which pays out $1 for sure. While it would seem
that virtually any investor would prefer the former, SD cannot be established.4
Arguably this paradox betrays the disadvantage of SD’s generality – within
the classes of utility function considered, there are some ‘extreme’ (Leshno and
Levy, 2002) or even ‘pathological’ (Levy, 2009) utility functions, according to
which the latter prospect is preferred.5 For this reason Leshno and Levy (2002)
derived Almost Stochastic Dominance (Almost SD), according to which one
compares the area between the cumulative distributions in which SD is violated
with the total area between the distributions. Crucially, the ratio of the former
to the latter can be given an interpretation in terms of restrictions on the class
of utility functions, and if the restriction is very small, an Almost SD relation
can be argued to exist.

This sets the conceptual task for the present paper, which is to unify the
theories of SD and TD so that we have at our disposal a general framework for
choosing between risky, inter-temporal prospects, which admits the possibility
of pure-time discounting and makes weak assumptions about the risk charac-
teristics of the prospects: Time-Stochastic Dominance (TSD). In addition, we
extend the notion of Almost SD to our bi-dimensional time-risk setup, defining
Almost TSD. This provides a way to exclude extreme combinations of time and
risk preferences and promises to greatly increase the practical usefulness of the
framework.

We then make an empirical application of the theory to climate change, by
analysing a set of trajectories for global greenhouse gas emissions – a set of
‘policies’ – using a stochastic version of the benchmark DICE integrated assess-
ment model devised by Nordhaus.6 Our results show the climate-change debate
in a new light. Although the profile of net benefits from climate mitigation
is such that ’exact’ TSD cannot be established, the less restrictive concept of
Almost TSD allows us to show that the space for agreement on climate change

4Where Fn(x) and Gn(x) are respectively the nth-order cumulative distributions of the
former and latter prospects over realisations x, this is because the first nonzero values of
Gn(x) − Fn(x) are negative as x increases from its lower bound. However, nth-order SD
requires that Gn(x)−Fn(x) ≥ 0, ∀x, EF (x) ≥ EG(x) and there is at least one strict inequality.
See Annex 1 for further explanation.

5In the example used, one would be u(x) =
{

x for x ≤ 1
1 for x > 1

.

6The first version appeared in Nordhaus (1993b; 1993a). We build on the version in
Nordhaus (2008).
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is indeed large. Since Almost TSD is based on the notion of excluding extreme
combinations of time and risk preferences, this result in particular lends itself to
the following rather stark interpretation: only those with ‘extreme’ preferences
over time and risk would prefer not to cut carbon emissions by a large amount.

The remainder of the paper is set out as follows. In the next short section
we deal with some analytical preliminaries, in particular we set out the classes
of utility and discount function that will be of primary focus. In Section 3
we establish the theory of (exact) TSD, while in Section 4 we do the same for
Almost TSD. Section 5 describes how we set up the DICE model, while Section
6 presents our results and Section 7 concludes.

2 Spaces for agreement
Readers interested in quickly getting up to speed with the existing literatures
on SD and TD theory are referred to the short primer in Annex 1. Building
on this, let us take the task at hand as being to rank two prospects X and Y ,
both of which yield random cashflows over time. The underlying purpose is
to compare the expected discounted utilities of the prospects at t = 0, i.e. for
prospect X we compute

NPVv,u(X) ≡
ˆ T

0
v(t)EFu [x(t)] dt =

ˆ T

0
v(t)

[ˆ b

a

u(x)f(x, t)dx
]
dt (1)

where x is a realisation of the cashflow of prospect X, v is a discount func-
tion and u is a utility function. Both functions v and u are assumed to be
continuous and continuously differentiable at least once. We make the assump-
tions, characteristic in the dominance literature, that the random cashflows of
X and Y are both supported on the finite interval [a, b], and that each prospect
pays out over a finite, continuous time-horizon [0, T ]. Therefore we can charac-
terise a probability density function for prospect X at time t ∈ [0, T ], f(x, t),
and a counterpart cumulative distribution function with respect to realisation
x ∈ [a, b] at time t ∈ [0, T ] , F 1(x, t) =

´ x
a
f(s, t)ds. Note that because utility

is additively separable across time in (1), no particular assumption is required
about the serial correlation of the probability distribution.

Before characterising Time-Stochastic Dominance (TSD), we need to define
classes of utility and discount functions. Our broadest class of utility function
u : [a, b]→ R is U1 = {u : u′(x) ≥ 0} , i.e. the class of utility functions, whereby
utility is non-decreasing as a function of consumption, representing nothing
more than (weak) non-satiation. It is hard to imagine relevant circumstances in
which the appropriate utility function would not be in U1. More generally, any
subset m of utility functions is defined recursively as

Um = {u : u ∈ Um−1 and (−1)mum(x) ≤ 0} .

where, among other things, m represents the number of times that u(x) is differ-
entiated. As well as U1, in this paper we focus on U2 = {u : u ∈ U1 and u′′(x) ≤ 0},
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which is the class of non-decreasing, weakly concave utility functions, ruling out
risk-seeking. Whether the appropriate utility function is in U2 is a little less
clear, but it is almost certainly a good description of most individual behaviour,
and there are few if any arguments for public policy evaluation to be based on
risk-seeking. Eventually we establish a theorem for TSD of an arbitrarily high
order with respect to both time and risk.

Let us define a corresponding set of discount functions on the time domain,
v : [0, T ] → R. The broadest class of discount functions requires simply that
at any point in time more is preferred to less, V0 = {v : v(t) > 0}. However,
V0 is of little interest, since some positive degree of time preference is always
required, however small. More generally, any subset n of discount functions is
defined recursively as

Vn = {v : v ∈ Vn−1 and (−1)nvn(t) > 0} .

Our attentions will be focused on V1 = {v : v ∈ V0, and v′(t) < 0}, the class of
strictly decreasing discount functions, exhibiting positive time preference. We
could proceed to V2 = {v : v ∈ V1, and v′′(t) > 0}, the class of strictly decreas-
ing, convex discount functions, but since both V1 and V2 admit the most popular
exponential and hyperbolic discount functions as special cases, there is little to
gain from doing so.

Combinations of these classes of utility and discount functions constitute
possible spaces for agreement. V1×U1 is the largest possible space for agreement
that we consider, encapsulating any decision-maker whose preferences can be
represented by, respectively, a strictly decreasing discount function and a non-
decreasing utility function, in other words any impatient decision-maker with
any attitude to risk. Presumably virtually all decision-makers belong to this
combination of classes. By contrast V1 × U2, for instance, encapsulates any
impatient decision-maker who is not risk-seeking. Whether there is an actual
space for agreement depends of course on whether any dominance relations can
be established between projects, for the combination in question. Note that in
Section 4 we narrow these spaces for agreement further by placing additional
restrictions on V and U with a view to excluding ‘extreme’ combinations of time
and risk preferences.

3 Time-Stochastic Dominance
A further piece of notational apparatus will enable us to work in a compact,
bi-dimensional form. Denote the integral over time of the pdf by F1(x, t) =´ t

0 f(x,w)dw, while the integral over time of the cdf is

F 1
1 (x, t) =

ˆ x

a

F1(s, t)ds =
ˆ t

0
F 1(x,w)dw =

ˆ t

0

ˆ x

a

f(s, w)dsdw

Defining d(z, t) = g(y, t)− f(x, t), we set

Dj
i (z, t) = Gji (y, t)− F

j
i (x, t)
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for all x, y, z ∈ [a, b] and all t ∈ [0, T ]. Given information on the first n and
m derivatives of the discount and utility functions respectively, we recursively
define:

Dn(z, t) =
´ t

0 Dn−1(z, w)dw
Dm(z, t) =

´ z
a
Dm−1(s, t)ds

Dm
n (z, t) =

´ t
0 D

m
n−1(z, w)dw =

´ z
a
Dm−1
n (s, t)ds =

´ t
0
´ z
a
Dm−1
n−1 (s, w)dsdw,

where i ∈ {1, 2, . . . , n} is the order of TD (i.e. the number of integrations with
respect to time) and j ∈ {1, 2, . . . ,m} is the order of SD (i.e. the number
of integrations with respect to the probability distribution). Note that our
concept of TD relates to pure time discounting, whereas standard TD relates
to discounting of consumption.

With all of our notation now set out, let us characterise TSD for various
combinations of classes of Uj and Vi.

Definition 1. [Time-Stochastic Dominance of order i, j] For any two
risky, inter-temporal prospects X and Y

X >iT jS Y if and only if ∆ ≡ NPVv,u(X)−NPVv,u(Y ) ≥ 0,

for all (v, u) ∈ Vi × Uj .

In this definition, the ordering >iT jS denotes pure TD of the ith order,
combined with SD of the jth order. For example, >1T1S , which we can shorten
to >1TS , denotes pure-time and stochastic dominance of the first order.

Proposition 1. [First-order Time-Stochastic Dominance] X >1TS Y if
and only if

D1
1(z, t) ≥ 0, ∀z ∈ [a, b] and ∀t ∈ [0, T ],

and there is a strict inequality for some (z, t).

Proof. See Annex 2.

Proposition 1 tells us that any impatient planner with monotonic non-
decreasing preferences will prefer prospect X to prospect Y , provided the in-
tegral over time of the cdf of Y is at least as large as the integral over time
of the cdf of X, for all wealth levels and all time-periods, and is strictly larger
somewhere. It maps out a space for agreement, as we can say that all decision-
makers with preferences that can be represented by V1 ×U1 will rank X higher
than Y , no matter what precisely is their discount function or utility function
within these classes.7

Consider the following stylised example, comprising discrete cashflow distri-
butions in discrete time. The use of discrete data makes the exposition easy,
moreover it is also the form of data that would typically be encountered in prac-
tical applications; for instance the output of the DICE climate-change model is

7Proposition 1 is similar to Theorem 3 in Scarsini (1986). However Scarsini did not consider
any other cases, i.e. any other combinations of time and risk preference.
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in just this form. However, it means that we have to relate Proposition 1, stated
in terms of cumulative distribution functions, to a parallel theorem stated in
terms of quantile distribution functions.

Example 1. Consider prospects X and Y , each of which comprises a cash-
flow over five periods of time and in four states of nature with equal probability
(i.e. uniform discrete distributed):

Time period
Prospect Probability 0 1 2 3 4

1/4 -2 -3 2 2 1
X 1/4 -1 -2 -2 3 1

1/4 0 -2 -2 5 6
1/4 0 0 -2 4 2
1/4 -5 -3 2 3 7

Y 1/4 -4 -3 2 3 1
1/4 -4 -1 -1 0 1
1/4 -4 0 1 1 6

Instead of integration with respect to time, we simply use summation. For
each additional restriction placed on the curvature of the discount function, a
new round of summation of the cashflows is performed,Xn(t) =

∑t
w=0 Xn−1(w).

Matters on the stochastic dimension are a little more involved: we extend the
quantile approach of Levy and Hanoch (1970) and Levy and Kroll (1979). Take
X to be an integrable random variable with, for each t ∈ [0, T ], a cdf F 1(x, t)
and an r-quantile function F−1,r(p, t), the latter of which is recursively defined
as

F−1,1(p, t) : = inf{x : F 1(x, t) ≥ p(t)},∀t ∈ [0, T ] (2)

F−1,r(p, t) : =
ˆ p

0
F−1,1(y, t)dy, ∀p ∈ [0, 1] , ∀t and r ≥ 2.

Proposition 2. (1TSD for quantile distributions). X >1TS Y if and only
if

H−1,1
1 (p, t) = F−1,1

1 (p, t)−G−1,1
1 (p, t) ≥ 0, ∀p ∈ [0, 1] and t ∈ [0, T ]

and there is a strict inequality for some (p, t).
Proof. See Annex 2.

Proposition 2 characterises First-order Time-Stochastic Dominance for quan-
tile distributions and it can further easily be shown to apply to discrete data.8

8Choose an arbitrary quantile p∗(t) ∈ [0, 1] for any t and denote G−1
1 (p∗, t) = z2(t) and

F−1
1 (p∗, t) = z1(t). We need to show that z1(t) ≥ z2(t) for each t. Assume that z1(t) < z2(t).

By definition, x2(t) represents the smallest value for which equation 2 holds and for this
reason z1(t) and z2(t) cannot be located on the same step of the G1

1(z, t) for any t. Therefore
G1

1(z1, t) < G1
1(z2, t). We have that G1

1(z1, t) < G1
1(z2, t) = p∗(t) = F 1

1 (z1, t) < F 1
1 (z2, t).

Thus G1
1(z1, t) < F 1

1 (z1, t), which contradicts the initial assumption. This proves sufficiency,
and necessity can be demonstrated in a very similar way.

8



F−1,1
1 (p, t) and G−1,1

1 (p, t) are obtained by first cumulating the cashflows across
time, and then reordering from lowest to highest in each time period. Taking
the difference between them gives us H−1,1

1 (p, t). Notice that since the quantile
distribution function is just the inverse of the cumulative distribution function,
1TSD requires F−1,1

1 (p, t) − G−1,1
1 (p, t) ≥ 0, i.e. the inverse of the requirement

for 1TSD in terms of cumulative distributions.
In the case of Example 1, computing the quantile distributions gives us:

Time period
p 0 1 2 3 4

0.25 3 3 1 4 4
0.5 3 4 2 2 1
0.75 4 3 2 3 0
1 4 4 1 4 3

Therefore, by Propositions 1 and 2, X >1TS Y .
Having established First-order TSD, we can proceed from here by placing an

additional restriction on the discount function and/or on the utility function.
A particularly compelling case is the assumption of impatience combined with
risk aversion/neutrality – (v, u) ∈ V1 × U2 – since few would be uncomfortable
with the notion of excluding risk-seeking behaviour a priori, especially in the
public sector.
Proposition 3. [First-order Time and Second-order Stochastic Dom-
inance] X >1T2S Y if and only if

D2
1(z, t) ≥ 0, ∀z ∈ [a, b] and ∀t ∈ [0, T ],

and there is a strict inequality for some (z, t).
Proof. See Annex 2.

It is evident from Proposition 3 and its proof that, in line with the classical
approach to SD, restricting the utility function by one degree corresponds to
integrating the bi-dimensional probability distribution D1

1(z, t) once more with
respect to the consequence space.

Example 2. Now consider two different prospects X and Y :

Time period
Prospect Probability 0 1 2 3 4

1/4 -4 -1 2 3 9
X 1/4 -1 -3 2 2 7

1/4 -1 -1 2 0 4
1/4 0 0 2 2 2
1/4 -5 -1 2 2 2

Y 1/4 -2 -3 -1 3 6
1/4 -2 0 0 2 5
1/4 0 0 2 1 8
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In this example H−1,1
1 (p, t) is:

Time period
p 0 1 2 3 4

0.25 1 1 3 3 4
0.5 1 1 2 2 3
0.75 1 0 2 0 2
1 0 0 0 1 -2

While in the first four time periods H−1,1
1 (p, t) ≥ 0, the opposite is true when

p = 1 in the terminal period. Therefore first-order TSD cannot be established
between these two prospects. However, cumulating once more with respect to
the consequence space gives H−1,2

1 (p, t), which here is:

Time period
p 0 1 2 3 4

0.25 1 1 3 3 4
0.5 2 2 5 5 7
0.75 3 2 7 5 9
1 3 2 7 6 7

Thus from Proposition 3 and by extension of Proposition 2 we can say that
X >1T2S Y . What this example illustrates is that, when the violation of first-
order TSD is restricted to the upper quantiles of F−1,1

1 and G−1,1
1 , the additional

restriction that u ∈ U2 , which excludes risk-seeking behaviour, makes it disap-
pear, because relatively greater weight is placed on outcomes with low wealth.

The previous cases provide us with the machinery we require to offer a
theorem for TSD that is generalised to the nth order with respect to time and
the mth order with respect to risk.

Proposition 4. [nth-order Time and mth-order Stochastic Dominance]
X nth-order time and mth-order stochastic dominates Y if

i)Dj+1
i+1 (b, T ) ≥ 0,

ii)Dj+1
n (b, t) ≥ 0, ∀t ∈ [0, T ],

iii)Dm
i+1(z, T ) ≥ 0,∀z ∈ [a, b],

iv)Dm
n (z, t) ≥ 0, ∀z ∈ [a, b] and ∀t ∈ [0, T ],

with (iv) holding as a strong inequality over some sub interval and where i =
{0, . . . , n− 1} and j = {0, . . . ,m− 1}.

The proof is constructed as a simple extension of the previous analysis.
Integrating by parts repeatedly, we obtain:
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NPVEF ,v −NPVEG,v =
n−1∑
i=1

(−1)j+1uj(b)

m−1∑
j=0

(−1)jvj(T )Dj+1
i+1 (b, T )


+
n−1∑
i=1

(−1)j+1(−1)nuj(b)
ˆ T

0
vn(t)Dj+1

n (b, t)dt+

+
m−1∑
j=0

(−1)i(−1)m−1vi(T )
ˆ b

a

um(z)Dm
i+1(z, T )dz +

+(−1)m+n+1
ˆ b

a

ˆ T

0
vn(t)um(z)Dm

n (z, t)dtdz.

From which the statement of the Proposition follows immediately.

4 Almost Time-Stochastic Dominance
In practice, the usefulness of what we might call ‘exact’ dominance analysis can
be limited, since even a very small violation of the conditions for dominance is
sufficient to render the rules unable to order investments. As the example in the
Introduction showed, if a violation exists in particular at the lower bound of the
domain of the cumulative distribution functions, then no amount of restrictions
will make it vanish. Put another way, the downside of a flexible, non-parametric
approach is that the broad classes of preference on which the dominance criteria
are based include a small subset of ‘extreme’ or ‘pathological’ functions, whose
implications for choice would be regarded by many as perverse.9 Leshno and
Levy (2002) recognised this problem in the context of SD and developed a theory
of Almost Stochastic Dominance (Almost SD), according to which restrictions
are placed on the derivatives of the utility function, so that extreme preferences
are excluded (see Annex 1).10 Dominance relations between risky prospects are
then characterised for ‘almost’ all decision-makers.

It is obvious that exact TSD faces the same practical constraints as exact
SD. In this section we therefore extend our theory to ‘Almost TSD’, excluding
extreme combinations of time and risk preferences so that prospects can still be
ranked. In particular, by extending the theory to our bi-dimensional time-risk

9What is ‘extreme’ is clearly subjective, an obvious difficulty faced by the Almost SD
approach. However, Levy et al. (2010) offer an illustration of how to define it using laboratory
data on participant choices when faced with binary lotteries. Extreme risk preferences are
marked out by establishing gambles that all participants are prepared to take. By making
the conservative assumption that no participant has extreme risk preferences, the most risk-
seeking and risk-averse participants mark out the limits, and preferences outside these limits
can be considered extreme.

10Tzeng et al. (2012) showed that Leshno and Levy’s theorem for Almost Second-order
Stochastic Dominance is incorrect and re-defined the concept. They also extended the results
to higher orders.
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set-up, we define and characterise Almost First-order TSD and Almost First-
order Time and Second-order Stochastic Dominance. In doing so, the attention
of the analysis shifts subtly to asking; how many preference combinations must
be excluded in order to obtain a ranking? Put another way, how much smaller is
the space for agreement? In general, the less that need be excluded, the better.

Let us start with Almost First-order TSD. Our basic approach is analogous
to Leshno and Levy (2002) in that we measure the violation of 1TSD relative to
the non-violation of 1TSD, and give the resulting, relative measure of violation
meaning by linking it with a restriction on time and risk preferences. To see
this, begin by defining the set of realisations z ∈ [a, b] where there is a violation
of First-order TSD as S1

1 :

S1
1(D1

1) =
{
z ∈ [a, b], t ∈ [0, T ] : D1

1(z, t) < 0
}
.

We also explicitly define S1,T as the subset of S1
1 when t = T , i.e. the difference

between the single-dimensional cumulative distributions over the consequence
space at time T :

S1,T (D1
1) =

{
z ∈ [a, b], t = T : D1

1(z) < 0
}
.

Definition 2. [Almost First-order Time-Stochastic Dominance] X dom-
inates Y by Almost First-order Time-Stochastic Dominance, denoted X >A1TS
Y, if and only if

i)
´ ´

S1
1
−D1

1(z, t)dzdt ≤ γ1
´ T

0
´ b
a

∣∣D1
1(z, t)

∣∣ dzdt and
ii)
´
S1,T −D1

1(z, T )dz ≤ ε1T
´ b
a

∣∣D1
1(z, T )

∣∣ dz.
Proposition 5. [A1TSD] X >A1TS Y if and only if, for all (v, u) ∈ (V1 ×
U1)(γ1) and u ∈ U1(ε1T ),

NPVv,u(X) ≥ NPVv,u(Y ).

Proof. See Annex 2.

The definition of Almost First-order TSD contains two measures of the vi-
olation of exact First-order TSD. γ1 measures the cumulative violation of the
non-negativity condition on D1

1 over all t, relative to the total volume enclosed
between the distributions over all t, while ε1T measures the violation of the
same condition at time T only, relative to the total area enclosed between the
distributions at that time. For the sake of an easy exposition, let us explain the
latter violation measure first, ε1T . This has, in fact, the same interpretation
in terms of utility as the corresponding violation measure in Leshno and Levy
(2002). The difference is that in our bi-dimensional framework it is for t = T .
Adapting their theorem to our context, for every 0 < ε1T < 0.5, define the
following subset of U1:

U1(ε1T ) =
{
u ∈ U1 : u′(z)

inf[u′(z)] ≤
[

1
ε1T
− 1
]
, ∀z ∈ [a, b], t = T

}
.
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U1(ε1T ) is the set of non-decreasing utility functions with the added restriction
that the ratio between maximum and minimum marginal utility is bounded by

1
ε1T
− 1, i.e. extreme concavity/convexity is ruled out. It is easiest to see what

this restriction entails in the case of u ∈ U1(ε1T ), where u′′(z) is monotonic.
Then we are restricting how much (little) marginal utility members of the class
of functions associate with low wealth levels at the same time as restricting how
little (much) marginal utility they associate with high wealth levels. Further
narrowing the scope to the very common case of utility functions with con-
stant elasticity of marginal utility, the restriction is on the absolute value of the
elasticity – |u

′′(z)z
u′(z) | – such that it cannot be large negative or large positive,

and the larger is ε1T the smaller |u
′′(z)z
u′(z) | must be. Of course this is merely

an illustration – the set of utility functions U1(ε1T ) is much larger than the
constant-relative-risk aversion functions alone. In the limit as ε1T approaches
0.5, the only function in U1(ε1T ) is linear utility, where u′′(z) = 0. Conversely
as ε1T approaches zero, U1(ε1T ) coincides with U1.

γ1 is defined in terms of the product of the marginals of the discount and
utility functions as follows:

(V1 × U1)(γ1) = {v ∈ V1, u ∈ U1 : −v′(t)u′(z)
inf[−v′(t)u′(z)] ≤

[
1
γ1
− 1
]
,

∀z ∈ [a, b], ∀t ∈ [0, T ]}

(V1 × U1)(γ1) is the set of all combinations of decreasing pure time discount
function and non-decreasing utility function, with the added restriction that the
ratio between the maximum and minimum products of−v′(t)u′(z) is bounded by
1
γ1
−1. The supremum (infimum) of −v′(t)u′(z) is attained when v′(t) < 0 is the

infimum (supremum) of its set and u′(z) ≥ 0 is the supremum (infimum) of its.
Therefore the combinations of preferences that we are excluding here will tend
to comprise extreme concavity or convexity of the utility and discount functions
somewhere on their respective domains. All decision makers exhibiting the
non-extreme combination of preferences expressed by the discount and utility
functions (v, u) ∈ (V1 ×U1)(γ1) and u ∈ U1(ε1T ) will prefer X to Y if and only
if the condition in Proposition 5 is satisfied.

Moving now to Almost First-order Time and Second-order Stochastic Dom-
inance, parcel out the subset of realisations S2

1 where D2
1 < 0, i.e. where the

condition for exact First-order Time and Second-Order Stochastic Dominance
is violated:

S2
1(D2

1) =
{
z ∈ [a, b], t ∈ [0, T ] : D2

1(z, t) < 0
}
.

Further explicitly define S2,T as the subset of S2
1 when t = T :

S2,T (D2
1) =

{
z ∈ [a, b], t = T : D2

1(z) < 0
}
.

And in this case we also need to define a subset of realisations whereD2
1(b, t) < 0,

for any t where z = b:

S1,b(D2
1) =

{
z = b, t ∈ [0, T ] : D2

1(t) < 0
}
.

13



Definition 3. [Almost First-order Time and Second-order Stochastic
Dominance] X Almost First-order Time and Second-order Stochastic Domi-
nates Y, denoted X >A1T2S Y if and only if

i)
´ ´

S2
1
−D2

1(z, t)dzdt ≤ γ1,2
´ T

0
´ b
a

∣∣D2
1(z, t)

∣∣ dzdt,
ii)
´
S2,T −D2

1(z, T )dz ≤ ε2T
´ b
a

∣∣D2
1(z, T )

∣∣ dz,
iii)
´
S1,b

D2
1(b, t)dt ≤ λ1b

´ T
0
∣∣D2

1(b, t)
∣∣ dt, : and

iv)D2
1(b, T ) ≥ 0

Proposition 6. [A1T2SD] X >A1T2S Y if and only if, for all (v, u) ∈ (V1 ×
U2)(γ1,2), u ∈ U2(ε2T ) and v ∈ V1(λ1b),

NPVv,u(X) ≥ NPVv,u(Y ).

Proof. See Annex 2.

Notice that the definition of Almost First-order Time and Second-order
Stochastic Dominance has a similar structure to Proposition 4. It contains
three measures of the violation of strict dominance, as well as the requirement
that D2

1(b, T ) ≥ 0, i.e. that the difference between the undiscounted mean values
of projects X and Y respectively is at least zero. First, γ1,2 measures the rela-
tive violation of the non-negativity condition on D2

1 over all t. It is equivalent
to the following restriction on combined time and risk preferences:

(V1 × U2)(γ1,2) = {v ∈ V1, u ∈ U2 : v′(t)u′′(z)
inf[v′(t)u′′(z)] ≤

[
1
γ1,2
− 1
]

∀z ∈ [a, b], ∀t ∈ [0, T ]}
.

The set (V1 × U2)(γ1,2) represents all combinations of decreasing pure time
discount functions and non-decreasing, weakly concave utility functions, with
the added restriction that the ratio between the maximum and minimum of
v′(t)u′′(z) is bounded by 1

γ1,2
− 1. The supremum (infimum) of v′(t)u′′(z) is at-

tained when v′(t) < 0 and u′′(z) ≤ 0 are the suprema (infima) of their respective
sets, and these sets are defined with respect to all realisations and time-periods.

Second, ε2T measures the relative violation of the non-negativity condition
on D2

1 at time T only. As per Leshno and Levy (2002), for every 0 < ε2T < 0.5,

U2(ε2T ) =
{
u ∈ U2 : −u′′(z)

inf[−u′′(z)] ≤
[

1
ε2T
− 1
]
, ∀z ∈ [a, b], t = T

}
.

U2(ε2T ) is the set of non-decreasing, weakly concave utility functions with
the added restriction that the ratio between maximum and minimum u′′(z)
is bounded by 1

ε2T
− 1. Therefore large changes in u′′′(z) with respect to z are

excluded, where only realisations at time T are considered.
Third, we need to measure a violation of the non-negativity condition on the

integral with respect to time of D2
1(b, t). We denote this λ1b and it is equivalent

to restricting time preferences as follows:

V1(λ1b) =
{
v ∈ V1 : −v′(t)

inf[−v′(t)] ≤ v
[

1
λ1b
− 1
]
, z = b, ∀t ∈ [0, T ]

}
.
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V1(λ1b) is the set of decreasing pure time discount functions with the added
restriction that the ratio between maximum and minimum v′(t) is bounded by

1
λ1b
− 1. Hence large changes in v′′(t) are excluded.

Example 4. Consider the following two prospects:

Time period
Prospect Probability 0 1 2 3 4

1/4 -5 -3 0 4 7
X 1/4 0 -3 1 2 10

1/4 0 -2 1 3 9
1/4 0 0 0 1 1
1/4 -5 -1 0 3 9

Y 1/4 -4 -2 -1 0 1
1/4 -2 -3 1 1 5
1/4 -2 -1 -1 2 1

In this example H−1,1
1 is:

Time period
p 0 1 2 3 4

0.25 0 -2 -1 3 8
0.5 4 3 4 3 4
0.75 2 3 3 4 8
1 2 3 4 4 5

First-order TSD cannot be established between these two prospects. More-
over it can easily be shown that the occurrence of the violation in the lowest
quantile of H−1,1

1 , in early time periods, means that the violation will persist de-
spite infinitely repeated cumulation with respect to time and/or the consequence
space. However, it is quite evident from the tables that X performs better than
Y most of the time, so let us inspect this example within the framework of
Almost TSD. Doing the necessary calculations:

A1TSD A1T2SD
γ1 ε1T γ2 ε2T γ1b
0.04 0 0.02 0 0

The small violations reflect what is intuitively obvious from H−1,1
1 (p, t),

namely that only a small restriction on the combination of classes of discount
and utility functions is required in order for dominance to be established, since
F < G most of the time in most quantiles.
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5 Modelling climate mitigation policies
We now turn to our application of the theory of TSD and Almost TSD to
climate-change mitigation. The question we ask is; can we make choices on
emissions abatement, without having to agree on how precisely to structure and
parameterise time and risk preferences in economic models of climate mitiga-
tion? Are there combinations of whole classes of discount and utility functions,
for which it is possible to say that some abatement policies are preferred to
others?

To offer answers to these questions, we generate quantile data on the con-
sumption benefits of emissions reduction policies using the DICE model. DICE
essentially couples a Ramsey-Cass-Koopmans growth model to a simple climate
model by generating carbon dioxide emissions as a side-effect of production, and
by connecting climate change back to output and welfare via a so-called damage
function. The model is described fully in Nordhaus (2008) and so we confine
our discussion here to changes that we have made.

A stochastic version of DICE
Standard versions of DICE are deterministic, with fixed parameters. This is a
poor fit to the problem of evaluating climate policy, however, because risk is
a central element. Therefore we use a stochastic version of DICE, developed
by Dietz and Asheim (2012). This version randomises eight parameters in the
model so that Monte Carlo simulation can be undertaken. Table 1 lists the
eight parameters, and the form and parameterisation of the probability density
functions assigned to them.

The eight random parameters were originally selected by Nordhaus (2008),
based on his broader assessment of which of all the model’s parameters had the
largest impact on the value of policies. The first four parameters in Table 1 play
a role in determining CO2 emissions. In one-sector growth models like DICE,
CO2 emissions are directly proportional to output, which is in turn determined
in significant measure by productivity (i) and the stock of labour (ii). However,
while CO2 emissions are proportional to output, the proportion is usually as-
sumed to decrease over time due to autonomous structural and technical change
(iii). A further check on industrial CO2 emissions is provided in the long run
by the finite total remaining stock of fossil fuels (iv).

The fifth uncertain parameter is the price of a CO2-abatement backstop
technology. In DICE, the coefficient of the abatement cost function depends on
the backstop price, hence we obtain abatement cost uncertainty as a result of
backstop price uncertainty.

The sixth and seventh parameters in Table 1 capture important uncertainties
in climate science. Parameter (vi) captures uncertainty about the carbon cycle,
via the proportion of CO2 in the atmosphere in a particular time-period, which
dissolves into the upper ocean in the next period. Uncertainty about the rela-
tionship between a given stock of atmospheric CO2 and temperature is captured
by specifying a random climate-sensitivity parameter (vii). The climate sensi-
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Table 1: Uncertain parameters for simulation of DICE.

Parameter Units Functional Mean Standard
form deviation

(i) Initial growth Per Normal 0.0092 0.004
rate of TFP year
(ii) Asymptotic Millions Normal 8600 1892
global population
(iii) Rate of Per Normal -0.007 0.002
decarbonisation year
(iv) Total resources Billion tons Normal 6000 1200
of fossil fuels of carbon
(v) Price of back- US$ per ton of Normal 1170 468
stop technology carbon replaced
(vi) Transfer coefficient Per Normal 0.189 0.017
in carbon cycle decade
(vii) Climate ◦C per doubling of Log- 1.099* 0.3912*
sensitivity atmospheric CO2 normal
(viii) Damage function Fraction of Normal 0.082 0.028
coefficient α3 global output
*In natural logarithm space.

tivity is the increase in global mean temperature, in equilibrium, that results
from a doubling of the atmospheric stock of CO2. In simple climate models like
DICE’s, it is critical in determining how fast and how far the planet is forecast
to warm in response to emissions. There is by now much evidence, derived from
a variety of approaches (see Meehl et al., 2007, and Roe and Baker, 2007), that
the probability density function for the climate sensitivity has a positive skew.

The eighth and final uncertain parameter is one element of the damage
function linking temperature and utility-equivalent losses in output. In Dietz
and Asheim’s (2012) version of DICE, the damage function has the following
form:

Ω(t) = 1
1 + α1Υ(t) + α2Υ(t)2 + [α̃3Υ(t)] 7 , (3)

where Ω is the proportion of output lost, Υ is the increase in global mean
temperature over the pre-industrial level, and αi, i ∈ {1, 2, 3} are coefficients.
α̃3 is a normally distributed random coefficient (viii), so the higher-order term
[α̃3Υ(t)] 7 captures the uncertain prospect that significant warming of the planet
could be accompanied by a very steep increase in damages. That such a pos-
sibility exists has been the subject of recent controversy, with the approaches
of Nordhaus (2008) and Weitzman (2012) marking out opposing stances. The
controversy exists, because there is essentially no empirical evidence to sup-
port calibration of the damage function at high temperatures (Dietz, 2011; Tol,
2012); instead there are simply beliefs. In standard DICE, α3 = 0, thus there
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is no higher-order effect and 5◦C warming, as a benchmark for a large temper-
ature increase, results in a loss of 6% of output. By contrast Weitzman (2012)
suggests a functional form which can be approximated by α3 = 0.166. Here
α̃3 is calibrated such that the Nordhaus and Weitzman positions represent mi-
nus/plus three standard deviations respectively, and at the mean 5◦C warming
results in a loss of utility equivalent to around 7% of output.

Random parameters (i)-(viii), alongside the model’s remaining non-random
parameters and initial conditions (as per Nordhaus, 2008), are inputs to a Monte
Carlo simulation. In particular, a Latin Hypercube sample of 1000 runs of the
model is taken. Each run solves the model for a particular policy, which as
described below is a schedule of values for the rate of control of CO2 emissions.
From this is produced a schedule of distributions of consumption per capita
(where consumption per capita is equivalent to a cashflow in our theory), which
is the focus of the Time-Stochastic Dominance analysis.

Policies to be evaluated
We evaluate a set of five exogenous policies governing the rate of control of CO2
emissions, plus a sixth path representing a forecast of emissions in the absence
of policy-driven controls, i.e. ‘business as usual’ or BAU. Our aims in generating
this set are to achieve consistency with the modelling framework described just
now, as well as a degree of representativeness of the broader policy literature
on emissions reduction trajectories (e.g. Clarke et al., 2014).

Each of the five policies limits the atmospheric stock of CO2 to a pre-specified
level. This approach is very similar to many real policy discussions, which aim
for a ‘stabilisation’ level of atmospheric CO2 in the very long run. In order
to render the policies consistent with the assumptions we make, we use the
stochastic version of DICE itself to generate the five policy paths. BAU is the
baseline scenario from Nordhaus (2008).

The control variable is the percentage reduction in industrial CO2 emissions
relative to uncontrolled emissions (i.e. not relative to BAU). Each policy path is
generated by solving a stochastic optimisation problem, whereby the schedule of
emissions cuts is chosen to minimise abatement costs11 subject to the constraint
that the mean atmospheric stock of CO2, MAT (t) ≤ MAT , where MAT ∈
{450, 500, 550, 600, 650} and where the units are parts per million volume. This
is done under intial uncertainty about parameters (i)-(vi), since these affect the
cost of abatement and its impact on atmospheric CO2. As with most of the
literature, we assume that the cost-effective path at t = 0 is adhered to, despite
the resolution of all uncertainty just after t = 0, which should be contrasted
with more complex approaches that model learning and consequent revisions to
the controls (e.g. Kelly and Kolstad, 1999; Lemoine and Traeger, 2014).

11Of course, what is cost-effective depends on the social objective, so for this part of the
analysis we cannot avoid pre-specifying and parameterising the social welfare and utility func-
tions. For this purpose, we make representative choices, namely that δ(t) = 1.5%, ∀t, and the
coefficient of relative risk aversion is two.
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In an integrated assessment model such as DICE, and especially in running
Monte Carlo simulation, solving this cost-minimisation problem is a non-trivial
computational challenge. We solve it using a genetic algorithm (Riskoptimizer)
and with two modifications to the basic optimisation problem.12 In addition,
we limit the Latin Hypercube Sample to 250 draws just for this task.13

Figure 1: Abatement policies in terms of the emissions control rate.
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12First, we only solve for the emissions control rate from 2015 to 2245 inclusive, rather than
all the way out to 2395. This considerably reduces the scope of the optimisation problem, in
return for making little difference to the results, since, in the standard version of DICE, the
optimal emissions control rate is 100% when t > 2245, as the backstop abatement technology
becomes the lowest cost energy technology. Our first period of emissions control is 2015,
since 2005, the first period of the model, is in the past. Second, we guide the optimisation
by imposing the soft constraint that the emissions control rate is non-decreasing everywhere
(via an exponential penalty function when the control rate decreases between any two time-
periods). We were able to verify that the algorithm’s best solution satisfied the property
of non-decreasingness in the emissions control rate, and that no solution was found which
returned lower costs, where the control rate was decreasing at any point.

13In order to ensure comparability with the results of the Time-Stochastic Dominance anal-
ysis, the smaller sample is calibrated on the sample statistics of the larger sample.
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6 Results
Time-Stochastic Dominance analysis
We carry out the TSD analysis in two parts. In the first part we examine
whether any of the abatement policies Time-Stochastic Dominates BAU. That
is to ask, can we use the analysis to establish that there is a space for agreement
on acting to reduce greenhouse gas emissions by some non-trivial amount? This
would already be of considerable help in understanding the scope of the debate
about climate mitigation. In the second part we use the framework to compare
the emissions reduction policies themselves – can we further use the framework
to discriminate between the set of policies, so that we end up with a relatively
clear idea of the policy that would be preferred?

Recall from Propositions 1 and 2 that First-order TSD requiresH−1,1
1 (p, t) ≥

0, ∀z, t, with at least one strict inequality. Figure 2 plots H−1,1
1 (p, t) when

MAT ∈ {450, 500, 550, 600, 650} is compared with BAU. With the red shaded
areas indicating a violation of the non-negativity condition on H−1,1

1 (p, t), vi-
sual inspection is sufficient to establish that no abatement policy First-order
Time-Stochastic Dominates BAU, not even the most accommodating 650ppm
concentration limit.

Although First-order TSD cannot be established between abatement and
BAU, it could still be that one or more of the policies is preferred to BAU
according to First-order Time and Second-order Stochastic Dominance. Propo-
sition 3 and its quantile equivalent show that this requires H−1,2

1 (p, t) ≥ 0, ∀z, t,
with at least one strict inequality. Figure 3 plots H−1,2

1 when each abatement
policy is compared with BAU. Again, it is straightforward to see that the condi-
tion for exact First-order Time and Second-order Stochastic Dominance is not
satisfied for any of the policies. This is because, for all policies, there exists a
time-period in which the lowest level of consumption per capita is realised under
the mitigation policy rather than BAU.

Unable to establish exact TSD of abatement over BAU, we now turn to
analysing Almost TSD. In particular, we look at both Almost First-order TSD
as set out in Definition 2 and Proposition 5, and Almost First-order Time and
Second-order Stochastic Dominance as set out in Definition 3 and Proposition
6. Recall that γk denotes the overall volume of violation of exact TSD relative
to the total volume enclosed between Gji and F ji . εkT is the violation of exact
TSD in the final time-period only, while λ1b is the violation of exact First-order
Time and Second-order Stochastic Dominance with respect to realisation b. As
γk, εkT , λ1b → 0.5, the volume/area of violation accounts for half of the entire
volume/area between the cumulative distributions being compared, while as
γk, εkT , λ1b → 0 there is no violation.

What is striking about the results of analysing Almost TSD in Table 2 is how
small the violations are. For all of the policies, in particular it is the violation
of exact First-order TSD that is tiny relative to the total volume/area between
the distributions. Therefore we have a formal result showing that everyone
would prefer any of the abatement policies to BAU, as long as their time and
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Figure 2: H−1,1
1 (p, t) for MAT ∈ {450, 500, 550, 600, 650}.
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Figure 3: H−1,2
1 (p, t) for MAT ∈ {450, 500, 550, 600, 650}.
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Table 2: Violations of exact First-order TSD and exact First-order Time and
Second-order Stochastic Dominance.

CO2 limit (ppm) γ1 ε1T γ1,2 ε2T λ1b

650 0.00009 0.00003 0.00002 8E-07 0
600 0.00045 0.00003 0.00045 2E-06 6.01E-08
550 0.00092 0.00003 0.00231 2E-06 0.00014
500 0.00188 0.00004 0.00605 3E-06 0.00086
450 0.00388 0.00004 0.01363 4E-06 0.00245

Table 3: First-order TSD analysis of abatement policies against each other.

CO2 limit (ppm) 650 600 550 500
γ1 ε1T γ1 ε1T γ1 ε1T γ1 ε1T

600 0.00255 0.00012
550 0.00351 0.00011 0.01054 0.00034
500 0.00517 0.00011 0.01260 0.00032 0.01764 0.00050
450 0.00859 0.00013 0.01870 0.00036 0.02480 0.00052 0.03701 0.00107

risk preferences can be represented by functions in the sets (V1 × U1)(γ1) and
U1(ε1T ). Moreover we can say that those who do not prefer the abatement
policies have an extreme combination of time and risk preferences. Violation of
First-order Time and Second-order Stochastic Dominance is also on the whole
very small, and note that the condition onD2

1(b, T ) in Definition 3 – equivalently
H−1,2

1 (p, T ) ≥ 0 – is met by all policies. The overall violation increases with the
stringency of the policy.

Let us now use TSD analysis to compare the various abatement policies
with each other. We know from the analysis above that exact TSD will not
exist either to a first order or to a second order with respect to SD. Therefore
we can proceed directly to analysing violations. In doing so we confine our
attention to the least restrictive first-order TSD, given the wealth of pairwise
comparisons that could potentially be made. Table 3 presents the results, in
terms of violations of exact First-order TSD. The table should be read such that
F 1

1 is the CO2 limit in the first column and G1
1 is the limit in the top row. So, for

example, γ1 = 0.00859 is the violation of exact First-order TSD for MAT = 450
over MAT = 650.

Although we might have expected the violations to be relatively large, since
the abatement policy controls are much more similar to each other than they
are to BAU – and they do tend to be higher than in the comparison with BAU
– in fact they are all relatively small in absolute terms, such that for any pair of
policies the lower CO2 limit in the pair is almost dominant. Therefore we can
go further and say that there exists a broad space for agreement, represented
by everyone whose preferences are in the set (V1 ×U1)(γ1), for tough emissions
reduction targets, as tough as MAT = 450.
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How DICE yields these results
The topography of the panels in Figure 2 tells us much about the effect of emis-
sions abatement on consumption per capita in DICE, how this effect is related
to time, and the nature of the uncertainty about the effect. In this century we
can see it is often the case that H−1,1

1 < 0, but the surface appears flat as there
is little difference between the cumulative distributions. In the next century,
however, the surface rises to a peak at high quantiles, revealing that the miti-
gation policies can yield much higher consumption per capita than BAU, albeit
there is much uncertainty about whether this will eventuate and there is only
a low probability associated with it. Comparing the policies, we can see that
it is more likely that H−1,1

1 < 0, the more stringent is the limit on the atmo-
spheric stock of CO2. However, what Figure 2 does not show, due to truncating
the vertical axes in order to obtain a better resolution on the boundary between
H−1,1

1 < 0 and H−1,1
1 ≥ 0, is that conversely the peak difference in consumption

per capita is higher, the more stringent is the concentration limit.
What lies behind these patterns? In fact, Figure 2 can be seen as a new

expression of a well known story about the economics of climate mitigation.
There are two different sources of violation of First-order TSD. The first is that,
in early years, the climate is close to its initial, relatively benign state, yet
significant investment is required in emissions abatement. This makes it rather
likely that consumption per capita will initially be lower under a mitigation
policy than it is under BAU. The second source of violation is productivity
growth, a large source of uncertainty affecting BAU consumption per capita
and all that depends on it. In particular, when the realisation of the random
productivity-growth parameter is at its lowest, consumption per capita is also
at its lowest, moreover in these contingencies carbon emissions are very low. In
these circumstances even mild emissions reductions are net costly. This latter
effect is therefore isolated in Figure 2 where MAT = 650.

On the other hand, in later years the BAU atmospheric stock of CO2 is
high, so the possibility opens up that emissions abatement will deliver higher
consumption per capita. How much higher depends in the main on how much
damage is caused by high atmospheric CO2 and therefore how much damage
can be avoided by emissions abatement. In our version of DICE this is highly
uncertain – much more so than the cost of emissions abatement – and depends
principally on the climate sensitivity and the damage function coefficient α̃3 in
(3). It is here that the driving force can be found behind the tiny violations
of exact TSD in Table 2, namely the small possibility, in the second half of
the modelling horizon, that the mitigation policies will deliver much higher
consumption per capita than business as usual. This is consistent with the
observation in previous, related research that the tails of the distribution are
critical in determining the benefits of emissions abatement (e.g. Dietz, 2011;
Weitzman, 2009).
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7 Conclusions
In this paper we have proposed a theory of Time-Stochastic Dominance for
ordering risky, intertemporal prospects. Our theory is built by unifying the
insights of Stochastic Dominance (SD) and Time Dominance (TD). Like these
earlier theories, the approach is non-parametric and allows orderings to be con-
structed only on the basis of partial information about preferences. But our
approach generalises the application of simple SD to intertemporal prospects,
by permitting pure temporal preferences, just as it generalises the application of
simple TD to risky prospects, by avoiding the need to make strong assumptions
about the characteristics of the prospects (prospects may belong to different
risk classes and cashflows may be large/non-marginal).

Like other dominance criteria, a possible practical disadvantage of (exact)
TSD is that it may not exist in the data, despite one prospect paying out more
than another most of the time, in most states of nature. Various approaches
can be taken to dealing with this. Our choice has been to extend the notion of
Almost SD pioneered by Levy and others to our bi-dimensional time-risk setup,
giving rise to Almost TSD.

The theory can in principle be applied to any investment problem involv-
ing multiple time-periods and uncertainty about pay-offs, however, given the
involving nature of the analysis, it might prove most useful in highly con-
tentious public-investment decisions, where there is disagreement about appro-
priate rates of discount and risk aversion. A leading example might be the
mitigation of climate change, so we applied the theory to this policy contro-
versy using a stochastic version of the DICE model, in which eight key model
parameters were randomised and Monte Carlo simulation was undertaken.

We were unable to establish exact TSD in the data, even when moving to
Second-order Stochastic Dominance (with First-order Time Dominance). How-
ever, when we analyse the related theory of Almost TSD we find that the vol-
ume/area of violation of exact TSD is generally very small indeed, so that we can
say that almost all decision-makers would indeed favour any of our mitigation
policies over BAU, and moreover that they would favour tougher mitigation
policies over slacker alternatives. So the space for agreement is large in this
regard.

Clearly our empirical results depend on the structure of the DICE model
and how we have parameterised it; our approach is only non-parametric as far
as preferences are concerned. Of particular note are the key roles played by un-
certainty about climate sensitivity, the curvature of the damage function, and
productivity growth. Our parameterisation of the former two is key in pro-
ducing a small violation of exact TSD, because when a high climate sensitivity
combines with a high curvature on the damage function, the difference in the
relevant cumulative pay-off distributions becomes very large. Our parameter-
isation of initial TFP growth, specifically our assumption via an unbounded
normal distribution that it could be very low or even negative over long peri-
ods, is conversely key in producing a violation in the first place. It will be very
interesting to see what results are obtained with different integrated assessment
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models, or with different implementations of DICE.
Our interpretation of γk, εkT and λ1b in the application of Almost TSD is also

open to debate, given the nature of the concept. Research on almost dominance
relations is still at a relatively early stage, so we lack data on the basis of which
we can say with high confidence that some preferences are extreme, while others
are not. Nonetheless our violations are for the most part so small that we are
somewhat immune to this criticism.

References
Arrow, K. J., Cline, W., Maler, K., Munasinghe, M., Squitieri, R., Stiglitz, J.,
1996. Intertemporal equity, discounting, and economic efficiency. In: IPCC
(Ed.), Climate Change 1995: Economic and Social Dimensions of Climate
Change. Cambridge University Press, pp. 127–144.

Atkinson, A. B., Bourguignon, F., 1982. The comparison of multi-dimensioned
distributions of economic status. The Review of Economic Studies 49 (2),
183–201.

Bøhren, Ø., Hansen, T., 1980. Capital budgeting with unspecified discount rates.
The Scandinavian Journal of Economics, 45–58.

Clarke, L., Jiang, K., Akimoto, K., M., B., Blanford, G., Fisher-Vanden, K.,
Hourcade, J.-C., Krey, V., Kriegler, E., Löschel, A., McCollum, D., Paltsev,
S., Rose, S., Shukla, P. R., Tavoni, M., van der Zwaan, B. C. C., van Vu-
uren, D., 2014. Asessing transformation pathways. In: Edenhofer, O., Pichs-
Madruga, R., Sokona, Y., Farahani, E., Kadner, S., Seyboth, K., Adler, A.,
Baum, I., Brunner, S., Eickemeier, P., Kriemann, B., Savolainen, J., Schlömer,
S., von Stechow, C., Zwickel, T., Minx, J. (Eds.), Climate Change 2014: Mit-
igation of Climate Change. Contribution of Working Group III to the Fifth
Assessment Report of the Intergovernmental Panel on Climate Change. Cam-
bridge University Press, Cambridge, UK and New York, NY, USA.

Cline, W. R., 1992. The Economics of Global Warming. Peterson Institute.

Dasgupta, P., 2007. The stern review’s economics of climate change. National
Institute Economic Review 199 (1), 4–7.

Dietz, S., 2011. High impact, low probability? an empirical analysis of risk in
the economics of climate change. Climatic Change 103 (3), 519–541.

Dietz, S., Asheim, G., 2012. Climate policy under sustainable discounted util-
itarianism. Journal of Environmental Economics and Management 63, 321–
335.

Dietz, S., Hepburn, C. J., Forthcoming. Benefit-cost analysis of non-marginal
climate and energy projects. Energy Economics.

26



Ekern, S., 1981. Time dominance efficiency analysis. The Journal of Finance
36 (5), 1023–1033.

Fishburn, P. C., 1964. Decision and Value Theory. Wiley.

Fishburn, P. C., Vickson, R. G., 1978. Theoretical foundations of stochastic
dominance. In: Whitmore, G. A., Findlay, M. C. (Eds.), Stochastic Domi-
nance: an Approach to Decision-Making under Risk. Lexington Books, pp.
39–113.

Gollier, C., 2006. An evaluation of stern’s report on the economics of climate
change.

Hadar, J., Russell, W. R., 1969. Rules for ordering uncertain prospects. Ameri-
can Economic Review 59 (1), 25–34.

Hanoch, G., Levy, H., 1969. The efficiency analysis of choices involving risk.
Review of Economic Studies 36 (3), 335–346.

Hepburn, C. J., Beckerman, W., 2007. Ethics of the discount rate in the stern
review on the economics of climate change. World Economics 8 (1).

Ikefuji, M., Laeven, R. J., Magnus, J. R., Muris, C., 2012. Pareto utility. Theory
and Decision, 1–15.

Karcher, T., Moyes, P., Trannoy, A., 1995. The stochastic dominance ordering of
income distributions over time: The discounted sum of the expected utilities
of incomes. In: Barnett, W. A., Moulin, H., Salles, M., Schofield, N. J. (Eds.),
Social Choice, Welfare, and Ethics: Proceedings of the Eighth International
Symposium in Economic Theory and Econometrics. Cambirgde University
Press.

Kelly, D. L., Kolstad, C. D., 1999. Bayesian learning, growth, and pollution.
Journal of economic dynamics and control 23 (4), 491–518.

Kimball, M. S., 1990. Precautionary saving in the small and in the large. Econo-
metrica, 53–73.

Lemoine, D., Traeger, C., 2014. Watch your step: optimal policy in a tipping
climate. American Economic Journal: Economic Policy 6 (1), 137–166.

Leshno, M., Levy, H., 2002. Preferred by all and preferred by most decision
makers: Almost stochastic dominance. Management Science 48 (8), 1074–
1085.

Levy, H., 1973. Stochastic dominance, efficiency criteria, and efficient portfolios:
The multi-period case. The American Economic Review 63 (5), 986–994.

Levy, H., Hanoch, G., 1970. Relative effectiveness of efficiency criteria for port-
folio selection. Journal of Financial and Quantitative Analysis, 63–76.

27



Levy, H., Kroll, Y., 1979. Efficiency analysis with borrowing and lending: cri-
teria and their effectiveness. The Review of Economics and Statistics 61 (1),
125–130.

Levy, H., Leshno, M., Leibovitch, B., 2010. Economically relevant preferences
for all observed epsilon. Annals of Operations Research 176 (1), 153–178.

Levy, H., Paroush, J., 1974a. Multi-period stochastic dominance. Management
Science 21 (4), 428–435.

Levy, H., Paroush, J., 1974b. Toward multivariate efficiency criteria. Journal of
Economic Theory 7 (2), 129–142.

Levy, M., 2009. Almost stochastic dominance and stocks for the long run. Eu-
ropean Journal of Operational Research 194 (1), 250–257.

Meehl, G., Stocker, T., Collins, W., Friedlingstein, A., Gaye, A., Gregory, J.,
Kitoh, A., Knutti, R., Murphy, J., Noda, A., Raper, S., Watterson, I., Weaver,
A., Zhao, Z.-C., 2007. Global climate projections. In: Solomon, S., Qin, D.,
Manning, M., Chen, Z., Marquis, M., Averyt, K., Tignor, M., Miller, H.
(Eds.), Climate Change 2007: The Physical Science Basis. Contribution of
Working Group I to the Fourth Assessment Report of the Intergovernmental
Panel on Climate Change. Cambridge University Press, Cambridge, UK.

Nordhaus, W. D., 1991. To slow or not to slow: the economics of the greenhouse
effect. The Economic Journal 101 (407), 920–937.

Nordhaus, W. D., 1993a. Optimal greenhouse-gas reductions and tax policy in
the "dice" model. The American Economic Review 83 (2), 313–317.

Nordhaus, W. D., 1993b. Rolling the "dice": an optimal transition path for
controlling greenhouse gases. Resource and Energy Economics 15 (1), 27–50.

Nordhaus, W. D., 1994. Managing the Global Commons: the Economics of
Climate Change. MIT Press, Cambridge, MA.

Nordhaus, W. D., 2007. A review of the "stern review on the economics of
climate change". Journal of Economic Literature, 686–702.

Nordhaus, W. D., 2008. A Question of Balance: Weighing the Options on Global
Warming Policies. Yale University Press.

Pindyck, R. S., 2011. Fat tails, thin tails, and climate change policy. Review of
Environmental Economics and Policy 5 (2), 258–274.

Roe, G., Baker, M., 2007. Why is climate sensitivity so unpredictable? Science
318 (5850), 629–632.

Rothschild, M., Stiglitz, J. E., 1970. Increasing risk: I. a definition. Journal of
Economic Theory 2 (3), 225–243.

28



Scarsini, M., 1986. Comparison of random cash flows. IMA Journal of Manage-
ment Mathematics 1 (1), 25–32.

Stern, N., 2007. The Economics of Climate Change: the Stern Review. Cam-
bridge University Press.

Stern, N., 2008. The economics of climate change. The American Economic
Review: Papers and Proceedings 98 (2), 1–37.

Tol, R. S. J., 2012. On the uncertainty about the total economic impact of
climate change. Environmental and Resource Economics 53 (1), 97–116.

Tzeng, L. Y., Huang, R. J., Shih, P.-T., 2012. Revisiting almost second-degree
stochastic dominance. Management Science.

Weitzman, M., 2007. A review of the Stern Review on the economics of climate
change. Journal of Economic Literature 45 (3), 703–724.

Weitzman, M., 2009. On modeling and interpreting the economics of catas-
trophic climate change. The Review of Economics and Statistics 91 (1), 1–19.

Weitzman, M., 2012. Ghg targets as insurance against catastrophic climate dam-
ages. Journal of Public Economic Theory 14 (2), 221–244.

29



Annex 1
A primer on Stochastic Dominance and ‘Almost’ Stochastic
Dominance
Stochastic Dominance (SD) determines the order of preference of an expected-
utility maximiser between risky prospects, while requiring minimal knowledge of
her utility function. Take any two risky prospects with probability distributions
F and G respectively and denote their cumulative distributions F 1 and G1

respectively. Assuming the cumulative distributions have finite support on [a, b],
F is said to first-order stochastic dominate G if and only if F 1(x) ≤ G1(x), ∀x ∈
[a, b] and there is a strict inequality for at least one x, where x is a realisation
from the distribution of pay-offs possible from a prospect. Moreover it can be
shown that any expected-utility maximiser with a utility function belonging to
the set of non-decreasing utility functions U1 = {u : u′(x) ≥ 0} would prefer F .

First-order SD does not exist if the cumulative distributions cross, which
means that, while it is a powerful result in the theory of choice under uncertainty,
the practical usefulness of the theorem is limited. By contrast, where F 2(x) =´ x
a
F 1(s)ds and G2(x) =

´ x
a
G1(s)ds, F second-order stochastic dominates G if

and only if F 2(x) ≤ G2(x), ∀x ∈ [a, b] and there is a strict inequality for at
least one x. It can be shown that any expected-utility maximiser with a utility
function belonging to the set of all non-decreasing and (weakly) concave utility
functions U2 = {u : u ∈ U1 and u′′(x) ≤ 0} would prefer F , i.e. any such
(weakly) risk-averse decision-maker. Hence second-order SD can rank inter alia
prospects with the same mean but different variances.

Nonetheless the practical usefulness of second-order SD is still limited, as
the example in the Introduction illustrated. One could proceed by placing
an additional restriction on the decision-maker’s preferences, defining the set
U3 = {u : u ∈ U2 and u′′′(x) ≥ 0} and looking for third-order SD. Decision-
makers exhibiting decreasing absolute risk aversion have preferences represented
by utility functions in U3 and such decision-makers will also exhibit ‘prudence’ in
inter-temporal savings decisions (Kimball, 1990). Where F 3(x) =

´ x
a
F 2(s)ds

and G3(x) =
´ x
a
G2(s)ds, F third-order stochastic dominates G if and only

if F 3(x) ≤ G3(x), ∀x ∈ [a, b] and EF (x) ≥ EG(x), and there is at least
one strict inequality. However, it can easily be verified in the example that
G3(x) − F 3(x) < 0, x ∈ [0.5, 1), yet EF (x) >> EG(x), so third-order SD does
not exist. Moreover SD cannot be established to any order in this example,
because the first non-zero values of G1(x) − F 1(x) are negative as x increases
from its lower bound, yet EF (x) > EG(x). Successive rounds of integration will
not make this go away.

A more fruitful route is the theory of Almost SD set out by Leshno and
Levy (2002) and recently further developed by Tzeng et al. (2012). Almost SD
places restrictions on the derivatives of the utility function with the purpose of
excluding the extreme preferences that prevent exact SD from being established.
Dominance relations are then characterised for ‘almost’ all decision-makers.

For every 0 < εk < 0.5, where k = 1, 2 corresponds to first- and second-order
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SD respectively, define subsets of Uk:

U1(ε1) =
{
u ∈ U1 : u′(x)

inf[u′(x)] ≤
[

1
ε1
− 1
]
, ∀x

}
and

U2(ε2) =
{
u ∈ U2 : −u′′(x)

inf[−u′′(x)] ≤
[

1
ε2
− 1
]
, ∀x

}
.

U1(ε1) is the set of non-decreasing utility functions with the added restriction
that the ratio between maximum and minimum marginal utility is bounded by
1
ε1
− 1. In the limit as ε1 approaches 0.5, the only function in U1(ε1) is linear

utility. Conversely as ε1 approaches zero, U1(ε1) coincides with U1. U2(ε2) is
the set of non-decreasing, weakly concave utility functions with an analogous
restriction on the ratio between the maximum and minimum values of u′′(x). In
the limit as ε2 approaches 0.5, U2(ε2) contains only linear and quadratic utility
functions, while as ε2 approaches zero, it coincides with U2.

Defining the set of realisations over which exact first-order SD is violated as

S1(F,G) =
{
x ∈ [a, b] : G1(x) < F 1(x)

}
,

F is said to first-order almost stochastic dominate G if and only if
ˆ
S1

[
F 1(x)−G1(x)

]
dx ≤ ε1 ·

ˆ b

a

∣∣[F 1(x)−G1(x)
]∣∣ dx.

Moreover, in a similar vein to exact SD, it can be shown that any expected-
utility maximiser with a utility function belonging to U1(ε1) would prefer F .

Defining the set of realisations over which exact second-order SD is violated
as

S2(F,G) =
{
x ∈ [a, b] : G2(s) < F 2(s)

}
,

F second-order almost stochastic dominates G if and only if
ˆ
S2

[
F 2(x)−G2(x)

]
dx ≤ ε2 ·

ˆ b

a

∣∣[F 2(x)−G2(x)
]∣∣ dx and

EF (x) ≥ EG(x).

Any expected-utility maximiser with a utility function belonging to U2(ε2)
would prefer F . From these definitions of first- and second-order Almost SD one
can see that εk intuitively represents the proportion of the total area between
F k and Gk in which the condition for exact SD of the kth order is violated. The
smaller is εk, the smaller is the relative violation.

A primer on Time Dominance
The theory of Time Dominance (TD) builds on the SD approach to choice
problems under uncertainty, and transfers it to problems of intertemporal choice
(Bøhren and Hansen, 1980; Ekern, 1981). Denoting the cumulative cashflows of
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any two investments X1 and Y1,14 X is said to first-order time dominate Y if
and only if X1(t) ≥ Y1(t), ∀t ∈ [0, T ] and there is a strict inequality for some
t, where T is the terminal period of the most long-lived project. Moreover it
can be shown that any decision-maker with a discount function belonging to
the set of all decreasing consumption discount functions V̂1 = {v̂ : v̂′(t) < 0}
would prefer X. Thus if the decision-maker prefers a dollar today to a dollar
tomorrow, she will prefer X if it first-order time dominates Y .

Just like SD, first-order TD has limited practical purchase, because the set
of undominated investments remains large, i.e. the criterion X1(t) ≥ Y1(t), ∀t
is restrictive.15 Therefore, proceeding again by analogy to SD, X second-order
time dominates Y if and only if

X1(T ) ≥ Y1(T ) and

X2(t) ≥ Y2(t), ∀t ∈ [0, T ],

where X2(t) =
´ t

0 X1(τ)dτ and Y2(t) =
´ t

0 Y1(τ)dτ , and there is at least one
strict inequality. Any decision-maker with a discount function belonging to the
set of all decreasing, convex consumption discount functions V̂2 = {v̂ : v̂ ∈
V̂1 and v̂′′(t) > 0} would prefer X. This set includes exponential discounting.
Noting how the conditions for second-order TD are obtained from their coun-
terparts for first-order TD by integration, TD can be defined to the nth order
(see Ekern, 1981).

Notice that TD applies to deterministic cashflows. It would be possible to
apply the method to uncertain cashflows, if X and Y were expected cashflows
and if a corresponding risk adjustment were made to {v̂}. However, since any
two cashflows X and Y would then be discounted using the same set of risk-
adjusted rates, it would be necessary to assume that the cashflows belong to
the same risk class (Bøhren and Hansen, 1980), for example under the capi-
tal asset pricing model they would have to share the same covariance with the
market portfolio. This significantly limits the reach of the method to uncertain
investments. It would also be necessary to assume that any investments being
compared are small (i.e. marginal), since the domain of {v̂} is cashflows and
therefore depends on a common assumed growth rate. Neither of these assump-
tions is likely to hold in the case of climate change (see Weitzman, 2007, for a
discussion of the covariance between climate mitigation and market returns, and
Dietz and Hepburn, Forthcoming, for a discussion of whether climate mitigation
is non-marginal).

14X1(t) =
´ t

0 x(τ)dτ and Y1(t) =
´ t

0 y(τ)dτ .
15Indeed, in the domain of deterministic cashflows over multiple time-periods, the require-

ment that X1(0) ≥ Y 1(0) means that one investment cannot dominate another by a first,
second or higher order, if the initial cost is higher, no matter what the later benefits are.
This makes it difficult to compare investments of different sizes. However, this can be worked
around by normalising the cashflows to the size of the investment (Bøhren and Hansen, 1980).
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Annex 2
Proof of Proposition 1
Sufficiency:

We want to prove that

D1
1(z, t) ≥ 0 =⇒ NPVv,u(X) ≥ NPVv,u(Y )

for all t and z for all u ∈ U1, v ∈ V1.

Assume that z is bounded from below and above, a ≤ z ≤ b. This implies that
for z < a, F 1(x, t) = G1(y, t) = D1(z, t) = 0 for all t ∈ [0, T ], while similarly
for z > b, D1(z, t) = G1(y, t)− F 1(x, t) = 1− 1 = 0 for all t ∈ [0, T ].

Denote by

∆ ≡ NPVv,u(X)−NPVv,u(Y ) =
ˆ T

0
v(t)EFu(x)dt−

ˆ T

0
v(t)EGu(y)dt

=
ˆ T

0
v(t)
ˆ b

a

f(x, t)u(x)dxdt−
ˆ T

0
v(t)
ˆ b

a

g(y, t)u(y)dydt

=
ˆ T

0
v(t)
ˆ b

a

−d(z, t)u(z)dzdt.

Integrating by parts with respect to z we obtain

∆ =
ˆ T

0
v(t)

[
u(z)(−)D1(z, t)|ba −

ˆ b

a

(−)D1(z, t)u′(z)dz
]
dt.

The first term in the square brackets is equal to zero (recall that for z = b, we
have D1(b, t) = 1− 1 = 0 for all t and for z = a we have D1(a, t) = 0 for all t).
Therefore, we are left with

∆ =
ˆ T

0
v(t)

[
−
ˆ b

a

(−)D1(z, t)u′(z)dz
]
dt

=
ˆ T

0

ˆ b

a

v(t)D1(z, t)u′(z)dzdt. (4)

Integrating by parts with respect to t we have

∆ =
ˆ b

a

[
D1

1(z, t)v(t)|T0 −
ˆ T

0
D1

1(z, t)v′(t)dt
]
u′(z)dz

=
ˆ b

a

[
D1

1(z, T )v(T )−
ˆ T

0
D1

1(z, t)v′(t)dt
]
u′(z)dz,

as D1
1(z, 0) = G1

1(y, 0)− F 1
1 (x, 0) = 0 for all z ∈ [a, b].

From our initial assumption about the bounding of z, we know thatD1
1(z, t) ≥

0 and v(T ) ≥ 0. Hence for all u ∈ U1 and v ∈ V1, NPVv,u(X) ≥ NPVv,u(Y ).
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Necessity:
We have to prove that

NPVv,u(X) ≥ NPVv,u(Y ) =⇒ D1
1(z, t) ≥ 0

for all u ∈ U1, v ∈ V1 for all t and z.

Starting from Eq. (4), let (z̃, t̃) be the smallest (in the lexicographic sense)
pair (z, t) such that D1

1(z̃, t̃) < 0. We will show that there is a utility function
ũ ∈ U1 and a discount function ṽ ∈ V1 for which our supposition implies that
NPVv,u(X) < NPVv,u(Y ), thus contradicting the original assumption.

Supposing that a violation D1
1(z̃, t̃) < 0 does exist, since D1

1 is continuous it
will also exist in the range z̃ ≤ z ≤ z̃ + ε. Define the following utility function:

ũ(z) =

 z̃ z < z̃
z z̃ ≤ z ≤ z̃ + ε

z̃ + ε z > z̃ + ε

noting that ũ(z) /∈ U1, strictly speaking, but that it can be approximated arbi-
trarily closely by a function that does belong to U1 (see Fishburn and Vickson
1978, p. 75).

Similarly define the following discount function:

ṽ(t) =
{

1 + pe−pt if 0 ≤ t ≤ t̃
0 + pe−pt t̃ < t ≤ T,

which again is discontinuous but can be approximated arbitrarily closely by
some ṽ ∈ V1.

Substituting these functions into (4) we obtain

∆ =
ˆ z̃+ε

z̃

[ˆ t̃

0
D1(x, t)dt+ p

ˆ T

0
e−ptD1(x, t)dt

]
dz

=
ˆ z̃+ε

z̃

[
D1

1(z, t)|̃t0 + p

ˆ T

0
e−ptD1(z, t)dt

]
dz

=
ˆ z̃+ε

z̃

[
D1

1(z, t̃) + p

ˆ T

0
e−ptD1(z, t)dt

]
dz.

In the limit as p→ 0, p
´ T

0 e−ptD1(z, t)dt = 0, therefore for a sufficiently small
p, D1

1(z̃, t̃) < 0 implies that NPVv,u(X) < NPVv,u(Y ), contradicting the initial
assumption and showing it is necessary that D1

1(z̃, t̃) ≥ 0 for all z ∈ [a, b] and
t ∈ [0, T ].

Proof of Proposition 2
We need to prove that the following holds:

H−1
1 (p, t) = F−1

1 (p, t)−G−1
1 (p, t) ≥ 0, ⇐⇒ D1

1(z, t) = G1
1(z, t)− F 1

1 (z, t) ≥ 0
∀p ∈ [0, 1] and t ∈ [0, T ] ∀z ∈ [a, b] and ∀t ∈ [0, T ]
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Given that F 1
1 (z, t) ≤ G1

1(z, t) is an optimal decision rule for all (v, u) ∈ V1×U1,
if the above expression holds, so will F−1

1 (p, t) ≥ G−1
1 (p, t).

Assume first that F 1
1 (z, t) ≤ G1

1(z, t) for all z ∈ [a, b] and all t ∈ [0, T ]. This
means that for an arbitrary x∗(t) we have F 1

1 (x∗, t) = p∗1(t) ≤ G1
1(x∗, t) = p∗2(t).

In this way, for given t x∗ will represent both the p∗th1 quantile of distribution
F and the p∗th2 quantile of distribution G.

Since, by assumption, F and G are monotonic increasing functions of z, the
quantile functions are monotonic increasing functions of p ∈ [0, 1]. Therefore,
knowing that p∗1(t) ≤ p∗2(t) and due to the monotonicity of the quantile function,
G−1

1 (p∗1, t) ≤ G−1
1 (p∗2, t). Remembering that x∗(t) = G−1

1 (p∗2, t) = F−1
1 (p∗1, t), it

follows that G−1
1 (p∗1, t) ≤ F−1

1 (p∗1, t).
We conclude that, for every t ∈ [0, T ] , the condition F 1

1 (z, t) ≤ G1
1(z, t), ∀z ∈

[a, b] implies F−1
1 (p, t) ≥ G−1

1 (p, t) ∀p.. The analogous logic can be applied to
show the reverse condition also holds, that is for a given t, F−1

1 (p, t) ≥ G−1
1 (p, t)

will imply F 1
1 (z, t) ≤ G1

1(z, t).

Proof of Proposition 3
Sufficiency:

Starting with the expression derived in the previous proof

∆ =
ˆ T

0
v(t)
ˆ b

a

u′(z)D1(z, t)dzdt,

we continue by integrating again with respect to z:

∆ =
ˆ T

0
v(t)

[
u′(z)D2(z, t)|ba −

ˆ b

a

u′′(z)D2(z, t)dz
]
dt

=
ˆ T

0
v(t)u′(b)D2(b, t)dt−

ˆ T

0
v(t)
ˆ b

a

u′′(z)D2(z, t)dzdt.

Now integrating by parts with respect to time t,

∆ = u′(b)v(t)D2
1(b, t)|T0 − u′(b)

ˆ T

0
v′(t)D2

1(b, t)dt−

−
ˆ b

a

u′′(z)v(t)D2
1(z, t)|T0 +

ˆ b

a

u′′(z)
ˆ T

0
v′(t)D2

1(z, t)dtdz.

∆ = u′(b)v(T )D2
1(b, T )− u′(b)

ˆ T

0
v′(t)D2

1(b, t)dt−

−
ˆ b

a

u′′(z)v(T )D2
1(z, T )dz +

ˆ b

a

u′′(z)
ˆ T

0
v′(t)D2

1(z, t)dtdz.
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From this last expression we can extract the conditions for dominance with
respect to V1 × U2 presented in Proposition 3. That is, D2

1(z, t) ≥ 0 for all
z ∈ [a, b] and all t ∈ [0, T ] is a sufficient condition for NPVv,u(X) ≥ NPVv,u(Y )
for all {v, u} ∈ V1 × U2.

Necessity:
Consider the increasing and concave utility function defined by

ũ(z) :=
{
z − z̃ for a ≤ z < z̃
0 for z̃ ≤ z ≤ b

and let Ũ ∈ U2 be a suitable approximation of ũ. The proofs of necessity are
similar to the proofs of necessity of the previous proposition and are therefore
omitted.

Proof of Proposition 5
Sufficiency:

We want to prove that

X >A1TS Y

⇒ NPVv,u(X) ≥ NPVv,u(Y )
∀v ∈ (V1 × U1)(γ1) and ∀u ∈ U1(ε1T )

Going back to

∆ =
ˆ b

a

D1
1(z, T )v(T )dz −

ˆ b

a

ˆ T

0
D1

1v
′(t)u′(z)dtdz

= v(T )
ˆ b

a

u′(z)D1
1(z, T )dz +

ˆ b

a

ˆ T

0
(−)D1

1v
′(t)u′(z)dtdz

= E + Γ.

Separate the range [a, b] at time T between the part S1,T , where D1
1(z, T ) < 0,

and the complementary part S1,T , where D1
1(z, T ) ≥ 0:

E = v(T )
ˆ b

a

u′(z)
[
D1

1(z, T )
]
dz

= v(T )
ˆ
S1,T

u′(z)D1
1(z, T )dz + v(T )

ˆ
S1,T

u′(z)D1
1(z, T )dz ≥ 0.

Note that the integral over the range S1,T is negative and the integral over
S1,T is positive. In order for E ≥ 0, the area where D1

1(z, T ) < 0 must be
ε1T smaller than the total area enclosed between the two distributions. This
restriction can be obtained from the proof of Almost First-order Stochastic
Dominance by Leshno and Levy (2002), simply by requiring that the utility
function belong to the subset U1(ε1T ), where the subscript indicates that the
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bounds on maximum and minimum marginal utility are established with respect
to period T specifically.

Turning to Γ, separate [a, b] for all t into S1
1 , defined over ranges where

D1
1(z, t) < 0, and S1

1 , the range over which D1
1(z, t) ≥ 0, so that we obtain

Γ =
ˆ ˆ

S1
1

[
D1

1(z, t)
]

(−v′(t)u′(z)) dzdt+
ˆ ˆ

S1
1

[
D1

1(z, t)
]

(−v′(t)u′(z)) dzdt ≥ 0.

The first element of Γ is negative and is minimised when the product of the
marginals of the discount and utility functions [−v′(t)u′(z)] is maximised, while
the second element is positive and minimised when [−v′(t)u′(z)] is minimised.
Hence denoting infz∈[a,b]∀t {−v′(t)u′(z)} = θ and supz∈[a,b]∀t {−v′(t)u′(z)} = θ,
the minimum value of Γ is

Γ∗ = θ

ˆ ˆ
S1

1

[
D1

1(z, t)
]
dzdt+ θ

ˆ ˆ
S1

1

[
D1

1(z, t)
]
dzdt ≥ 0.

It follows that, for a given combination of discount and utility functions, Γ ≥ 0
if Γ∗ ≥ 0, which can be rewritten as

sup[−v′(t)u′(z)] ≤ inf[−v′(t)u′(z))]

´ ´
S1

1
D1

1(z, t)dzdt´ ´
S1

1
D1

1(z, t)dzdt

Let (v, u) ∈ (V1 × U1)(γ1), then by definition of (V1 × U1)(γ1), we know that

[−v′(t)u′(z)] ≤ sup[−v′(t)u′(z)] ≤ inf[−v′(t)u′(z)]
[

1
γ1
− 1
]
,

which implies Γ∗ ≥ 0 and therefore NPVv,u(X) ≥ NPVv,u(Y ).
Necessity:
Begin by assuming the opposite of necessity, i.e. thatNPVv,u(X) < NPVv,u(Y ),

for all functions (v, u) ∈ (V1×U1)(γ1) and for all u ∈ U1(ε1T ), implies X >A1TS
Y . We will prove that this cannot be the case.

Suppose that

i)
´ ´

S1
1
[−D1

1(z, t)]dzdt > γ1
´ T

0
´ b
a

∣∣D1
1(z, t)

∣∣ dzdt and
ii)
´
S1,T [−D1

1(z, T )]dz > ε1T
´ b
a

∣∣D1
1(z, T )

∣∣ dz.
Let θ and θ be two positive real numbers such that γ1 = θ

θ+θ
. Consider the pair

of functions (v, u) ∈ (V1 × U1)(γ1) and where u ∈ U1(ε1T ), whose product has
the following properties:

v′(t)u(b) = 0,
v(T )u′(z) = 0,
v′(t)u′(z) = −θ on S1

1 and
v′(t)u′(z) = −θ on S1

1 .

37



In other words, the product of v and u is a function proportional to

v(t)u(z) = zt− bt− zT + bT.

It follows then that

NPVv,u(X)−NPVv,u(Y )

= θ

ˆ ˆ
S1

1

[
D1

1(z, t)
]
dzdt+ θ

ˆ ˆ
S1

1

[
D1

1(z, t)
]
dzdt

=
ˆ ˆ

S1
1

[
D1

1(z, t)
]
dzdt− θ

θ + θ

ˆ T

0

ˆ b

a

∣∣D1
1(z, t)

∣∣ dzdt
≥ 0,

which contradicts the initial assumption and proves that

NPVv,u(X) ≥ NPVv,u(Y ) ⇒ X >A1TS Y.
∀ (v, u) ∈ (V1 × U1)(γ1) and ∀u ∈ U1(ε1T )

Proof of Proposition 6
Sufficiency:

We want to prove that

X >A1T2S Y

⇒ NPVv,u(X) ≥ NPVv,u(Y )
∀ (v, u) (V1 × U2)(γ1,2), ∀u ∈ U2(ε2T ) and ∀v ∈ V1(λ1b)

Integrate the previous expression for ∆ once more with respect to z, obtaining

∆ = v(T )
[
u′(z)D2

1(z, T )|ba −
ˆ b

a

u′′(z)D2
1(z, T )dz

]
+

+
ˆ T

0
−v′(t)

[
u′(z)D2

1(z, t)
]
|badt−

ˆ T

0
−v′(t)

ˆ b

a

u′′(z)D2
1(z, t)dzdt ≥ 0

v(T )u′(b)D2
1(b, T ) + u′(b)

´ T
0 −v

′(t)D2
1(b, t)dt−

−v(T )
´ b
a
u′′(z)D2

1(z, T )dz +
´ T

0
´ b
a

(−v′(t)) (−u′′(z))D2
1(z, t)dzdt ≥ 0

(5)

v(T )u′(b)D2
1(b, T ) + Λ + E + Γ ≥ 0.

Hence in the case of Almost First-order Time and Second-order Stochastic Dom-
inance four elements must be non-negative. v(T )u′(b)D2

1(b, T ) must simply be
non-negative. The remaining three elements must be non-negative overall, but
can be partitioned into a region of violation and a region of non-violation, with
three respective restrictions on the relative violation.
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Define the set of realisations where D2
1(b, t) < 0, for any t where z = b as

S1,b and its complement as S1,b, so that

Λ = u′(b)
ˆ
S1,b

(−v′(t))D2
1(b, t)dt+ u′(b)

ˆ
S1,b

(−v′(t))D2
1(b, t)dt.

The integral over S1,b is negative while the integral over its complement S1,b is
positive. Therefore, in an analogous fashion to the proof of Proposition 5, in
order for Λ ≥ 0 the area where D2

1(b, t) < 0 must be λ1b smaller than the total
area enclosed between the two distributions, where the restriction is obtained
by requiring that any discount function v belong to V1(λ1b).

E is similar to E in the previous proof. By restricting the utility function to
belong to the subset U2(ε2T ), we obtain the requirement that in period T the
area where D2

1(z, T ) < 0 cannot be larger that ε2T multiplied by the total area
between the two distributions.

Moving to Γ, define an interval of violation and its complement in the usual
way:

Γ =
ˆ ˆ

S2
1

(−v′(t)) (−u′′(z))D2
1(z, t)dzdt+

ˆ ˆ
S2

1

(−v′(t)) (−u′′(z))D2
1(z, t)dzdt.

Again following the proof of Proposition 5 define infz∈[a,b]∀t {v′(t)u′′(z)} = ϑand
supz∈[a,b]∀t {v′(t)u′′(z)} = ϑ, so that the minimum Ω is

Γ∗ = ϑ

ˆ ˆ
S2

1

D2
1(z, t)dzdt+ ϑ

ˆ ˆ
S2

1

D2
1(z, t)dzdt.

Both elements of Γ are relatively larger than the corresponding elements of Γ∗ .
We are looking for a set of preferences (V1 × U2)(γ1,2) for which Γ∗ ≥ 0,

which are

sup[v′(t)u′′(z)] ≤ inf[v′(t)u′′(z)]

´ ´
S2

1

[
D2

1(z, t)
]
dzdt´ ´

S2
1

[F 2
1 (z, t)−G2

1(z, t)] dzdt

sup[v′(t)u′′(z)] ≤ inf[v′(t)u′′(z))]

´ ´
S2

2

[
G2

1(z, t)− F 2
1 (z, t)

]
dzdt´ ´

S2
2

[F 2
1 (z, t)−G2

1(z, t)] dzdt

By letting (v, u) ∈ (V1 × U2)(γ1,2), then, by definition of (V1 × U2)(γ1,2), we
know that

[v′(t)u′′(z)] ≤ sup[v′(t)u′′(z)] ≤ inf[v′(t)u′′(z)]
[

1
γ1,2
− 1
]
,

which implies that Ω∗ ≥ 0 holds and therefore, NPVv,u(X) ≥ NPVv,u(Y ).
Necessity:
Starting from Eq. (5) and using the increasing and concave utility function

defined in proving necessity in Proposition 3, the proof proceeds in just the
same fashion as for Proposition 5 and is therefore omitted.
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