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a b s t r a c t

This paper presents an approach to solving discretely constrained, mixed linear complementarity

problems (DC-MLCPs). Such formulations include a variety of interesting and realistic models of which

two are highlighted: a market-clearing auction typical in electric power markets but suitable in other

more general contexts, and a network equilibrium suitable to energy markets as well as other grid-

based industries. A mixed-integer, linear program is used to solve the DC-MLCP in which both

complementarity as well as integrality are allowed to be relaxed. Theoretical and numerical results are

provided to validate the approach.

& 2012 Elsevier Ltd. All rights reserved.
1. Introduction

In this paper, we present a new approach to solve discretely
constrained, mixed linear complementarity problems (DC-MLCPs)
in which some of the variables are constrained to be integer-
valued and some can take on continuous values. This is an
important extension of the general MLCP in which all variables
are assumed to be continuous and relates for example to Nash–
Cournot games in which some of the players’ variables are
discrete and some are continuous. A mixed-integer linear pro-
gram (MILP) is presented which solves DC-MLCPs with comple-
mentarity and integrality suitably relaxed. As an example in
Section 2 shows, enforcing exact complementarity and exact
integrality may not be feasible. From a compromise perspective,
the MILP that relaxes both of these conditions is somewhat
related to the notion of bounded rationality in equilibrium
systems as discussed in [22].

This focus on integer variables (and/or related techniques) and one
[8] or two-level equilibria, e.g., mathematical programs with equili-
brium constraints [21] has seen some research efforts over the years
in both modeling and methods (e.g., [5,20,1,23,24,15,13,3]) and joins
two important fields of operations research. This work also has
relevance to both energy market modeling [25] and network optimi-
zation [17].
ll rights reserved.
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Section 2 presents a general formulation for an MLCP with a
mixture of discrete and continuous variables and introduces two
relaxations: s-complementarity and e-integrality. Depending on
the particular application one or both of these relaxations may be
useful. Theorem 1 provides justification for one of the disjunctive
constants (M2) used in this MILP. Theorem 2 shows under
reasonable conditions, when there exists a solution to this MILP.
Section 2 also discusses some practical aspects of solving the
aforementioned DC-MLCP including a heuristic for how to esti-
mate the key complementarity relaxation constant M1 in a
general context. Note that these constants are problem specific
and change with the type of application. In Theorem 4 we show
how to calculate M1 for an illustrative network example.

In Section 3, the general DC-MLCP is specialized to a market-
clearing problem. Such a problem is an auction mechanism to
determine which production offers and consumption bids are
accepted by the market operator, which has the target of max-
imizing social welfare. Social welfare is computed based on
producer-declared offer prices and consumers’ declared bid
prices, and therefore it is called ‘‘declared’’ social welfare. The
clearing algorithm that is considered is intended for electricity
markets and specifically represents the transmission (transporta-
tion) network and its capacity. The algorithm is also multi-period
as it considers simultaneously the clearing of the market at
several time periods (e.g., the hours of the day). Market-clearing
algorithms of this type are commonly used by electricity market
operators across the East Coast of the United States (http://www.
pjm.com, http://www.iso-ne.com). The algorithm that we pro-
pose provides clearing prices that support market outcomes in
the sense the producers that are actually producing have no
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incentive to leave the market. Note that this is so even though the
proposed market-clearing formulation is non-convex and repre-
sents a new approach for this previously studied uplift problem.
In other words, we propose a consistent price mechanism within
a non-convex market clearing formulation.

The distinguishing features of the proposed pricing technique
with respect to other procedures reported in the technical
literature (e.g., [16,18,4]) are two-fold. First, the initial market-
clearing problem is not manipulated to achieve prices that
support market outcomes. Instead, optimality conditions of the
original problem with integrality conditions relaxed are formu-
lated and incorporated into a relaxation problem that allows
realizing the tradeoff of integrality vs. complementarity, and
obtaining via uplifts, prices that support market outcomes.
Second, instead of using a two-step procedure (first solving the
original MILP and then formulating and solving a modified LP), as
indicated above, the proposed technique is single-step, and does
not require altering the original problem by fixing integer vari-
ables to their optimal values to formulate a continuous problem
from which prices (that support market outcomes) can be
derived.

In Section 4, a stylized network equilibrium problem with
multiple players is presented from [14] based on the earlier works
[11,12]. This application is suitable to energy and other grid-
based industries involving multiple players and a system opera-
tor. For this problem, two theoretical results are presented. In
Theorem 3, under a very mild condition on the demand function,
it is shown that there exists a valid bound M1 that does not cut off
any solutions. Then, in Theorem 4, given linear demand functions,
a specific valid disjunctive constraints value for M1 is presented.
Both these sorts of results are application-specific but presented
in a rather general network context to show how they might be
done for other related problems as well as give guidance for this
specific one.

After these motivating examples, in Section 5, we provide
numerical experiments that validate the proposed approaches
followed by conclusions and extensions in Section 6.
2. Discretely constrained mixed linear complementarity
problems

2.1. Problem formulation

We consider a general, discretely constrained mixed linear
complementarity problem. The formulation is as follows: given
the vector q¼ ðqT

1 qT
2Þ

T and matrix A¼ ðA11
A21

A12
A22
Þ, find z¼ ðzT

1,zT
2Þ

T A
Rn1 � Rn2 such that

0rq1þðA11 A12Þ
z1

z2

 !
? z1Z0 ð1aÞ

0¼ q2þðA21 A22Þ
z1

z2

 !
z2 free ð1bÞ

ðz1Þc ARþ , cA IC
1 , ðz1ÞdAD1DZþ , dA ID

1 ð1cÞ

ðz2Þc AR, cA IC
2 , ðz2ÞdAD2DZ, dA ID

2 ð1dÞ

where D1, D2 are given discrete sets of values. Also, IC
1 [ ID

1 is a
partition of the indices f1, . . . ,n1g for z1 and IC

2 [ ID
2 a partition of

the indices f1, . . . ,n2g for z2, i.e., zk ¼ ððzkÞ
T
IC
k
ðzkÞ

T
ID
k
Þ
T ,k¼ 1,2 with the

continuous variables shown first, without loss of generality. As an
example, suppose that the nonnegative vector z1 has five compo-
nents, i.e., z1 ¼ ðz11,z12,z13,z14,z15Þ

T with the first and third con-
strained to be discrete and the second, fourth, and fifth continuous.
In that case ID
1 ¼ f1,3g,IC

1 ¼ f2,4,5g, and if D1 ¼ Zþ ,z11,z13A
f0,1,2, . . .g, z12,z14,z15ARþ : Also note that the notation 0rw ?

vZ0 is standard shorthand in complementarity modeling to indi-
cate that the vectors w and v are both nonnegative and their inner
product is zero, i.e., wT v¼ 0.

From here on for specificity, unless otherwise indicated, the
discrete sets, D1 ¼ f0,1, . . . ,Ng and D2 ¼ f�N1, . . . ,�1,0,1, . . . ,N2g

will be assumed with N,N1,N2 nonnegative integers. Note that all
the problem formulations in this paper assume that the problems
are bounded. This is not a restrictive assumption for most real-
world engineering problems where quantities are bounded by
physical limits and shadow prices are often bounded by demand
curves or other economic mechanisms (see Theorems 3 and 4 for
a demonstration of these concepts).

First, the complementarity relationship and nonnegativity for
z1 (1a) can be recast as the following disjunctive constraints [9]:

0rq1þðA11 A12Þ
z1

z2

 !
rM1ðuÞ ð2aÞ

0rz1rM1ð1�uÞ, ujAf0,1g, 8j ð2bÞ

where M1 is a suitably large, positive constant and u is a vector of
binary variables. The other constraints (1b) can be used as is and
taking (1b) with (2) would represent a reformulation of (1) with
just continuous variables z1,z2 allowed. If we assume that there
were a solution to this version of the original problem, the
existence of a solution would not necessarily be guaranteed if
we imposed the discrete restrictions from (1c) and (1d). To be
specific, consider the following counter-example with A¼ ð 1

�1
0
0Þ,

q¼ ð�0:2
0:2 Þ. For z with real components, this LCP is feasible. For

example, z¼ ð0:2, 2ÞT is a solution. However, if the first compo-
nent of z must be integer, i.e., z¼ ðz1,z2Þ

T A Zþ �Rþ , then this
LCP is infeasible. For the LCP to be feasible, there must be an
integer-valued z1 such that ð�0:2

0:2 Þþð
1
�1

0
0Þð

z1
z2
Þ ¼ ð�0:2þ z1

0:2�z1
ÞZ0 which

can only be true if 0:2rz1r0:2. Hence, there are no integer
values of z1 for which this LCP is feasible.

2.2. Relaxation of the complementarity conditions

To protect against infeasibility, relaxations on both comple-
mentarity as well as integrality are used. First, we assume that the
associated LCP is at least feasible, that is, there exists ðz1,z2Þ such
that

0rq1þðA11 A12Þ
z1

z2

 !
, z1Z0 ð3aÞ

0¼ q2þðA21 A22Þ
z1

z2

 !
, z2 free ð3bÞ

Then, to relax complementarity, we introduce a nonnegative
vector s of deviations combined with the disjunctive form of
the complementarity conditions to get

0rq1þðA11 A12Þ
z1

z2

 !
rM1ðuÞþM1s ð4aÞ

0rz1rM1 1�uð ÞþM1s ð4bÞ

with ujAf0,1g,8j. It is not hard to see that by adding the term
M1s, the above complementarity is relaxed and these set of
conditions are always feasible assuming that sZ0 is allowed to
vary. The constant M1 can vary by constraint. Clearly, s¼ 0 means
exact complementarity is enforced. In principle, one could also
add a relaxation to always ensure that the relaxed LCP is feasible
by including a term �M1s instead of zero as the lower bound on
the left-hand side of (4a) and (4b). In what follows, we do not
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consider this extra relaxation as it is assumed that the MLCP has
been formulated to be at least feasible. This is reasonable given
practical considerations.

2.3. Relaxation of the integrality conditions

The next step is to target one of the integers f0,1, . . . ,Ng and
f�N1, . . . ,�1,0,1, . . . ,N2g, that the elements of the discrete vectors
ðz1ÞID

1
and ðz2ÞID

2
, respectively, are assumed to be able to take and

get as close to those targeted values as possible. (Note: each
discrete variable can have a separate range of values and a
separate target. For ease of presentation and without loss of
generality though we have assumed the same range for each
variable but do allow for separate targeted values.) Here, close-
ness is measured in terms of the absolute deviation between a
solution and one of the integer values. Consider the following
‘‘targeting’’ constraints for the discrete z1 variables:

�M2ð1�w1riÞr ðz1Þr�i�e1rirM2ð1�w1riÞ, i¼ 0,1, . . . ,N, 8rA ID
1 ,

XN

i ¼ 0

w1ri ¼ 1, w1riAf0,1g, i¼ 0,1, . . . ,N, 8rA ID
1 :

Here M2 is a suitably large, positive constant and the index i

represents the targeted integer variable. We see that if the binary
variable w1ri ¼ 1, we have ðz1Þr�i¼ e1ri for rA ID

1 with e1ri measur-
ing the deviation (positive or negative) of ðz1Þr from the targeted
integer value i: If w1ri ¼ 0, then �M2rðz1Þr�i�e1rirM2 which if
M2 was chosen large enough, represents no realistic restriction on
ðz1Þr�i�e1ri: (See Theorem 1 for how to calculate valid values for
M2.) Of course, for the case when w1ri ¼ 0, we would like to ‘‘turn
off’’ those variables e1ri since only one integer i is to be targeted.
The constraint

PN
i ¼ 0 w1ri ¼ 1 makes sure that only one of the w1ri

can equal 1 but we need another device to force the correspond-
ing e1ri values to zero. This is accomplished if we define
e1ri ¼ ðe1riÞ

þ
�ðe1riÞ

�, i.e., the difference of two nonnegative devia-
tions and we minimize

X
rA ID

1

XN

i ¼ 0

9e1ri9¼
X
rA ID

1

XN

i ¼ 0

ðe1riÞ
þ
þðe1riÞ

�

We can of course add the same type of variables and constraints
for the discrete z2 variables but with the adjustment that the free
variables z2 can take any values in f�N1, . . . ,�1,0,1, . . .N2g where
N1,N2 are nonnegative integers.

2.4. The resulting relaxed problem

Thus, putting all these reformulations together gives a mixed
integer linear program shown below in which both complemen-
tarity and integrality are relaxed for the problem (1). The
objective of the relaxed (5) (shown just below) is to minimize
the deviations from complementarity and integrality with each
relaxation weighted by a positive constant oi,i¼ 1,2: It is impor-
tant to note that this problem is always feasible (assuming the
LCP was feasible) and has an optimal solution as long as a certain
feasibility assumption on the relaxed complementarity problem is
in force (see the assumption and related theorem below). As these
positive weights o1,o2, are varied, elements of a Pareto curve [6]
can be determined allowing for tradeoffs between inexact com-
plementarity or inexact integrality. The particular application
would dictate which relaxation was preferred and how much
deviation from exact complementarity or integrality is allowed.
Of course, if the objective function to (5) were equal to zero,
corresponding to finding a solution to the original problem (1),
this solution would dominate any that contained inexact com-
plementarity and/or integrality. Note that 1¼ ð1, . . . ,1ÞT and
s¼ ðs1, . . . ,sn1
Þ
T and that in all the examples, different s

were used.
Before presenting a result showing existence of a solution to

(5), we indicate a valid value for the constant M2 in the next
theorem.

Theorem 1. Let M2ZmaxfN,N1þN2g: Then, this value will be valid

for the constraints (5f) and (5g).

min o1

X
rA ID

1

XN

i ¼ 0

ðe1riÞ
þ
þðe1riÞ

�
þ
X
rA ID

2

XN

i ¼ 0

ðe2riÞ
þ
þðe2riÞ

�

2
4

3
5þo2½1

Ts�

ð5aÞ

0rq1þðA11 A12Þ
z1

z2

 !
rM1ðuÞþM1s ð5bÞ

0rz1rM1ð1�uÞþM1s ð5cÞ

0¼ q2þðA21 A22Þ
z1

z2

 !
ð5dÞ

ujAf0,1g, 8j ð5eÞ

�M2ð1�w1riÞrðz1Þr�i�e1rirM2ð1�w1riÞ, i¼ 0,1, . . . ,N, 8rA ID
1

ð5fÞ

�M2ð1�w2riÞrðz2Þr�i�e2rirM2ð1�w2riÞ,

i¼�N1, . . . ,�1,0,1, . . . ,N2, 8rA ID
2 ð5gÞ

e1ri ¼ ðe1riÞ
þ
�ðe1riÞ

�, i¼ 0,1, . . . ,N, 8rA ID
1 ð5hÞ

e2ri ¼ ðe2riÞ
þ
�ðe2riÞ

�, i¼�N1, . . . ,0, . . . ,N2, 8rA ID
2 ð5iÞ

XN

i ¼ 0

w1ri ¼ 1,
XN

i ¼ 0

w2ri ¼ 1 ð5jÞ

w1riAf0,1g, i¼ 0,1, . . . ,N, 8rA ID
1 ð5kÞ

w2riAf0,1g, i¼ 0,1, . . . ,N, 8rA ID
2 ð5lÞ

sZ0 ð5mÞ

ðe1riÞ
þ ,ðe1riÞ

�
Z0, i¼ 0,1, . . . ,N, 8rA ID

1 ð5nÞ

ðe2riÞ
þ ,ðe2riÞ

�
Z0, i¼�N1, . . . ,0, . . . ,N2, 8rA ID

2 ð5oÞ

Proof. In Appendix.

In order to prove the next result, we make an assumption on a
relaxation of the original problem (1) in which the discrete
restrictions are dropped.

Assumption 1. Define the set

S¼

ðz1,z2Þ90rq1þðA11 A12Þ
z1

z2

 !
,

0¼ q2þ A21 A22
� � z1

z2

 !
,z1Z0

8>>>>><
>>>>>:

9>>>>>=
>>>>>;

Then, assume that S is nonempty and there exists a constant
Mn such that

Mn
Zmaxf:z1:1,:z2:1g¼

z1

z2

 !�����
�����
1

for all ðz1,z2ÞAS
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The first assumption is quite reasonable since if this relaxed
version of the problem is not even feasible, there is no hope to
have a solution for the integer-constrained version with the
complementarity restriction as was mentioned previously. More-
over, for certain classes of matrices this first assumption is
automatically guaranteed. For example if A22 is invertible, then
we can solve for z2 and get the reduced conditions:

S¼ fðz1Þ90r ðq1�A12A�1
22 q2ÞþðA11�A12A�1

22 A21Þz1,z1Z0g

Then, this first assumption states that the LCP ððA11�A12A�1
22 A21Þ,

ðq1�A12A�1
22 q2ÞÞ needs to be feasible. A sufficient (and stronger

condition) is that ðA11�A12A�1
22 A21Þ be an S-matrix [7]. The

second assumption is also reasonable for this setting as we
are assuming that the discretely constrained variables ðz1ÞdA
Zþ ,dA ID

1 ,ðz2ÞdAZ,dA ID
2 can only take on a finite set of integer

values f0,1, . . . ,Ng and therefore it is not unreasonable that the
continuous components ðz1Þc ARþ , cA IC

1 ,ðz2Þc AR, cA IC
2 also be

bounded.
Note that relative to (5b) and (5c) it is sufficient to just require

that the variables are bounded as stated in the second part of
the assumption above. The reason is that if there is an Mn

Zmaxf

:z1:1,:z2:1g, then we can let A11 ¼
A1

11
^

A
p
11

" #
,A12 ¼

A1
12
^

A
p
12

" #
where

Ai
11,Aj

12 are, respectively, the ith and jth rows of A11 and A12,

q1þðA11 A12Þ
z1

z2

 !
rq1þ

:A1
11:1:z1:1

^

:Ap
11:1:z1:1

0
BB@

1
CCAþ

:A1
12:1:z2:1

^

:Ap
12:1:z2:1

0
BB@

1
CCA

r
1

^

1

0
B@

1
CAM1

where

M1Zmax Mn,max
i
fðq1Þigþmax

j
f:Aj

11:1þ:Aj
12:1gM

n

� �
ð6Þ

and use the fact that for all x,yARn,9xT y9r:x:1:y:
1

which is a

special case of Hölder’s inequality [19]. Additionally, if a specific

value for Mn is known, then computing M1 as shown in (6) is
straightforward as it only involves input data in the problem,
namely, q1,A11, and A12.

With this first assumption stated, we have the following
theorem.

Theorem 2. If Assumption 1 holds, and M2ZmaxfN,N1þN2g then

problem (5) always has a solution.

Proof. In Appendix.

In (5), there was a disjunctive constant M1 to be determined.
This value is generally problem-specific but in this section we
provide some guidance on how to compute it as well as an
algorithm to solve the DC-MLCP.

First note that M1 is needed to convert complementarity condi-
tions to disjunctive constraints. As such, too low a value of M1 could
cut off solutions to the complementarity conditions. Too high a value
may result in computational problems from ill-conditioning. An
important but somewhat obvious observation is that the discretely
constrained MLCP will not have a solution if the continuous version
does not. Thus, a first logical step is to solve the continuous, relaxed
version of the problem (1) where all the discrete variables indexed
by ID

1 and ID
2 are taken to be continuous. Assuming that this MLCP has

a solution denoted as zn ¼ ðzn1
T zn2

T
Þ
T a reasonable choice would be to

take Mn
Z:zn:

1
. If there were other solutions to the continuous

MLCP and it was desired to not potentially exclude them with the
choice of Mn just stated, using different starting points or MLCP
algorithms, the relaxed form of (1) could be solved resulting in a
finite subset of the solution set given as fðznÞi9i¼ 1, . . . ,Kg: An
improved choice for Mn would then be

Mn
Z max

i ¼ 1,...,K
f:ðznÞi:

1
g ð7Þ

Next consider an algorithm to solve DC-MLCP.
Step 1:
 Solve the relaxed version of (1) with the variables
ðz1Þr ,rA ID

1 ,ðz2Þr ,rA ID
2 taken to be continuous. If there is

no solution to this problem, then STOP. DC-MLCP has
no solution. Otherwise, let ðznÞ1 ¼ ððz

n

1
Þ
1

ðzn
2
Þ
1Þ be a solution. If

desirable, solve the relaxed DC-MLCP using different
starting points/methods to generate additional solutions:

fðznÞi9i¼ 1, . . . ,Kg:
Step 2:
 Take Mn
Zmaxi ¼ 1,...,Kf:ðznÞ

i:
1
g, M1 according to (6),

M2ZmaxfN,N1þN2g and solve (5).
Note that from the above discussion, assuming that
Assumption 1 is in force, (5) solved in Step 2 will always yield a
solution which represents a tradeoff between complementarity
and integrality. The key idea is that in Step 1, it is necessary to
show that the relaxed form of the problem can always be solved.
3. Market-clearing problem expressed as a DC-MLCP

We consider below a multi-period, network-constrained,
market-clearing model. The formulation considered corresponds to
a multi-period auction in which producers submit production offers
consisting of energy blocks and their corresponding selling prices as
well as startup and shutdown costs. In addition, consumers submit
consumption bids consisting of energy blocks and their correspond-
ing buying prices. This model clears the market maximizing social
welfare which is computed using producer offers and consumer bids
(i.e., ‘‘declared’’ social welfare).

The corresponding problem is a mixed-integer, linear program.
If integrality is relaxed and the KKT conditions are written for the
resulting continuous, convex problem, an MLCP is obtained. If
integrality conditions are added back to this MLCP, an infeasible
DC-MLCP may be obtained. However, this infeasible DC-MLCP can
be analyzed through the relaxed optimization (5), which is
proposed in this paper.

In particular, we study the following two relevant issues. First, how
optimal values for primal variables (production and consumption) and
dual variables (prices) vary across formulations: MILP, MLCP and
relaxed-DC-MLCP. To compute prices for the MILP formulation, an LP
is solved with binary variables fixed to their optimal values. Second,
how to include an appropriate uplift on prices to ensure nonnegative
producers’ profits. The nonnegative profit constraints (assuming that
the production costs of the producers are known) include bilinear
terms (price times production quantities) but can be effectively
linearized through a binary expansion approach rendering a mixed-
integer linear programming problem solvable by conventional branch-
and-cut solvers. Observe that nonnegative profit constraints result in
clearing prices that support the market in the sense that neither
producers nor consumers have incentives to leave the market.

In this problem, the producers are indexed by i, the generation
blocks by b, the demand by j, the demand blocks by k and time by
t: Additionally, the nodes of the networks are given by n,m with
the set of nodes connected through lines to n shown by Yn and
the set of producers and demands at node n represented by Cn:

The parameters include: lG
tib, the marginal cost of block b of

unit i in period t; lD
tjk, the marginal utility of block k of demand j

in period t; PGmax
tib , the upper limit of block b of unit i in period
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t; PDmax
tdk , the upper limit of block k of demand j in period t; Bnm, the

susceptance of line n�m; Pmax
nm , the transmission capacity of line

n�m; Ki
U and Ki

D, respectively, the startup and shutdown costs of
unit i; PGmin

ti the minimum power output of unit i in period t and
DP̂

G

ti the parameter used to discretize the uplift constraints for
unit i in period t:

The variables include: PG
tib, the power produced by block b of

unit i in period t; Ptjk
D , the power consumed by block k of demand d

in period t; dtn, the voltage angle of node n in period t;vti, a binary
variable describing the on/off status of unit i in period t; Ptnm, the
power flow through line n�m in period t;CU

ti and CD
ti , respectively,

the nonnegative startup and shutdown cost of unit i in period t;

ltn, the locational marginal price (LMP) at node n in period t and
the dual variable of the power balance equation (8b); tup

ti , the
price uplift applied to producer i in period t. The resulting model
is shown below and referred to as the ‘‘MILP formulation’’.

min
PG

tib ,PD
tjk ,dtn ,vti ,C

U
ti ,C

D
ti

X
tib

lG
tibPG

tibþ
X

ti

CU
tiþ
X

ti

CD
ti�
X
tjk

lD
tjkPD

tjk ð8aÞ

s:t:
X
ðiACnÞb

PG
tib�

X
ðjACnÞk

PD
tjk ¼

X
mAYn

Bnmðdtn�dtmÞ, ðltnÞ 8t,8n ð8bÞ

0rPG
tibrvtiP

Gmax
tib , ðmGmin

tib ,mGmax
tib Þ 8t,8i,8b ð8cÞ

0rPD
tjkrPDmax

tjk , ðmDmin
tjk ,mDmax

tjk Þ 8t,8j,8k ð8dÞ

vtiP
Gmin
ti r

X
b

PG
tib, ðmmin

ti Þ 8t,8i ð8eÞ

�Pmax
nm rBnmðdtn�dtmÞrPmax

nm , ðnmin
tnm ,nmax

tnm Þ 8t,8n,8mAYn ð8fÞ

�prdtnrp, ðxmin
tn ,xmax

tn Þ 8t,8n ð8gÞ

dtn ¼ 0, ðx1
t Þ 8t,n¼ 1 ð8hÞ

CU
ti Z ðvti�vðt�1ÞiÞK

U
i , ðZU

ti Þ 8t,8i ð8iÞ

CU
ti Z0, ðZU0

ti Þ 8t,8i ð8jÞ

CD
ti Z ðvðt�1Þi�vtiÞK

D
i , ðZD

ti Þ 8t,8i ð8kÞ

CD
ti Z0, ðZD0

ti Þ 8t,8i ð8lÞ

vtiAf0,1g,8t,8i ð8mÞ

Problem (8) is the mixed-integer linear formulation of the
multi-period market clearing with the target of maximizing the
social welfare, as expressed by (8a). A dc linear model of the
network is used to represent the power balance at each node as
well as the line capacity limits. Eq. (8b) enforces the power
balance at every node. Eqs. (8c) and (8d) are power bounds for
blocks of both generation and demand, respectively. Constraints
(8e) set the minimum power output for each unit. Constraints (8f)
enforce the transmission capacity limits of each line. Constraints
(8g) fix phase angle bounds for each node. By considering (8g), the
phase angle of any two nodes in the network will not differ by
more than 2p radians (3601). Constraints (8h) impose n¼1 to be
the reference node. For all mAYn identifies the nodes m con-
nected to node n in all periods. Eqs. (8i)–(8l) define the startup
and shutdown cost as a function of the on/off status of each
generating unit. Note that vti is a binary variable as stated in (8m).
In order to formulate the MLCP version of (8), Eq. (8m) is relaxed
as 0rvtir1 with its corresponding dual variables being bmin

ti and
bmax

ti , respectively. The rest of the dual variables resulting from
this relaxation are indicated in (8) in parentheses next to their
corresponding equations. The (8) is as follows:

0rPG
tib ? lG

tib�ltnþmGmax
tib �mmin

ti Z0, 8t,8iACn, 8b ð9aÞ

0rPD
tjk ? �l

D
tjkþltnþmDmax

tjk Z0, 8t,8jACn,8k ð9bÞ

0rmGmax
tib ? vtiP

Gmax
tib �PG

tibZ0, 8t, 8i, 8b ð9cÞ

0rmDmax
tjk ? PDmax

tjk �PD
tjkZ0, 8t, 8j, 8k ð9dÞ

0rmmin
ti ?

X
b

PG
tib�vtiP

Gmin
ti Z0, 8t, 8i ð9eÞ

0rnmin
tnm ? Bnmðdtn�dtmÞþPmax

nm Z0, 8t, 8n, 8mAYn ð9fÞ

0rnmax
tnm ? Pmax

nm �Bnmðdtn�dtmÞZ0, 8t, 8n, 8mAYn ð9gÞ

0rdtnþp ?
X

mAYn

Bnmðltn�ltmÞþ
X

mAYn

Bnmðnmax
tnm�n

max
tmn Þ

þ
X

mAYn

Bnmðnmin
tmn�n

min
tnmÞþx

max
tn þðx

1
tðn ¼ 1ÞÞZ0, 8t, 8n ð9hÞ

0rp�dtn ? xmax
tn Z0, 8t, 8n ð9iÞ

0rZU
ti ? CU

ti�ðvti�vðt�1ÞiÞK
U
i Z0, 8t, 8i ð9jÞ

0r1�ZU
ti ? CU

ti Z0, 8t, 8i ð9kÞ

0rZD
ti ? CD

ti�ðvðt�1Þi�vtiÞK
D
i Z0, 8t, 8i ð9lÞ

0r1�ZD
ti ? CD

ti Z0, 8t, 8i ð9mÞ

0rvti ? mmin
ti PGmin

ti �
X

b

mGmax
tib PGmax

tib þKU
i ðZ

U
ti�Z

U
ðtþ1ÞiÞ

�KD
i ðZ

D
ti�Z

D
ðtþ1ÞiÞþb

max
ti Z0, 8toT, 8i ð9nÞ

0rvti ? mmin
ti PGmin

ti �
X

b

mGmax
tib PGmax

tib þKU
i Z

U
ti

�KD
i Z

D
tiþb

max
ti Z0, t¼ T , 8i ð9oÞ

0r1�vti ? bmax
ti Z0, 8t, 8i ð9pÞ

X
ðiACnÞb

PG
tib�

X
ðjACnÞk

PD
tjk ¼

X
mAYn

Bnmðdtn�dtmÞ, 8t, 8n ð9qÞ

dtn ¼ 0, 8t,n¼ 1 ð9rÞ

To analyze the tradeoff of integrality vs. complementarity
(previously dropped) integrality conditions need to be added to
MLCP (9) to obtain a DC-MLCP. Taking into account (5) and
including a price uplift to ensure the nonnegativity of profits,
renders the following problem:

min o1

X
tib

ðsG
tibþs

Gmax
tib Þþ

X
tjk

ðsD
tjkþs

Dmax
tjk Þ

8<
:
þ
X

ti

ðsmin
ti þs

U
tiþs

U0
ti þs

D
tiþs

D0
ti þs

vmin
ti þsvmax

ti Þ

þ
X
tnm

ðsLmin
tnm þs

Lmax
tnm Þþ

X
tn

ðsdmin
tn þsdmax

tn Þ

)

þo2

X
ti

ðe0�
ti þe

0þ
ti þe

1þ
ti þe

1�
ti Þ

( )
þa
X

ti

tup
ti ð10aÞ

s:t: Appropriate constraints of the form of ð5bÞ2ð5oÞ

corresponding to the relaxation of constraints ð9Þ ð10bÞX
tb

ðltnþtup
ti ÞP

G
tib�

X
tb

lG
tibPG

tib
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�
X

t

CU
ti�
X

t

CD
ti Z0 8i,8n : iACn ð10cÞ

where o1, o2 and a are positive weighting factors. Note that tup
ti

represents the price uplift applied to producer i in period t. The
term a3

P
tit

up
ti is included in the objective function (10a) so that

the sum of uplifts is minimized. Constraints (10c) impose the
nonnegativity of producer’s profits (including the price uplifts
tup

ti ). Problem (10) is an MINLP since constraints (10c) include
products of variables (ltnPG

tib and tup
ti PG

tib). To avoid the drawbacks
associated to MINLP solvers, Eqs. (10c) are replaced by the
following mixed-integer, linear set of equations:X

b

PG
tib�DP̂

G

ti r
X

q

P̂ tiqxtiqr
X

b

PG
tib 8t, 8i ð11aÞ

X
q

xtiq ¼ 1 8t, 8i ð11bÞ

0rltn�ztiqrGð1�xtiqÞ 8t, 8i, 8n : iACn,8q ð11cÞ

0rztiqrGxtiq 8t, 8i,8q ð11dÞ

0rtUP
ti �ytiqrGð1�xtiqÞ 8t, 8i, 8q ð11eÞ

0rytiqrGxtiq 8t, 8i, 8q ð11fÞ

X
tq

ðztiqþytiqÞP̂
G

tiq�
X

tb

lG
tibPG

tibZ0 8i ð11gÞ

xtiqAf0,1g 8t, 8i, 8q ð11hÞ

where G is a suitably large, positive constant. The aim of (11) is to

substitute the production
P

bPG
tib in (10c) by a discrete valueP

qP̂
G

tiqxtiq that is as close as possible to the continuous one, i.e.,P
bPG

tibffi
P

qP̂
G

tiqxtiq (note that index q refers to the discretized

generation blocks running from 1 to Q). This is achieved by
equation (11a) which enforces that the distance between the

actual production value
P

bPG
tib and the discrete one

P
qP̂

G

tiqxtiq

does not exceed DP̂
G

ti , which is considered constant for each

producer i and period t, and is defined as DP̂
G

ti ¼ P̂
G

tiðqþ1Þ�P̂
G

tiq. Eq.

(11b) ensures that the actual production of producer i at period t

is approximated by only one discrete value. Eqs. (11c)–(11f)

linearize the products ltnxtiq and tUP
tiq xtiq that results in (10c) from

replacing
P

bPG
tib by

P
qP̂

G

tiqxtiq, where ztiq and ytiq are two auxiliary

continuous variables. The approximate linear version of the
nonnegative profit constraints is finally formulated in (11g).
Numerical results in Section 5 using the linearized uplift con-
straints (11) show that this approach is viable.
1 Note that the parameter tReg
12 and variable t12 represent tariffs or extra

payments/costs similar to the t used in the uplift computations shown earlier.

However, tReg
12 and t12 are otherwise not related to the previous t.

2 All maximum values for primal variables denoted by an overbar are assumed

to be positive as are cost coefficients gA
1 ,gB

1 ,gC
2 ,gD

2 .
4. Energy network equilibrium with multiple players

The next example is from [14] and depicts an equilibrium in an
energy network (e.g., natural gas, electricity) where production,
consumption, and transmission of the energy product is analyzed.
The model is a simplified form of the natural gas market
equilibrium problems described in [11,12] but also applicable to
power markets. For ease of presentation, only two nodes are
considered but larger realistic examples would also have the
same structure. There are four energy price-taking producers
denoted as: A, B, C, D with the first two located at node 1 and
the latter two at node 2. The production levels are denoted as qn

p

where node nAf1,2g and producer pAfA,B,C,Dg. Similarly, the
sales levels are denoted as sp

n: Lastly, at node 1, the two producers
A and B have the additional option of sending energy to node
2 and f A

12,f B
12 represents the associated amounts of flow. (Note

that the producers at node 2 are not allowed to ship their product
to node 1.)

Both producers A and B at node 1 have structurally a similar
optimization problem shown below just for producer A. For node
2, the producers have an optimization that is almost the same as
at node 1 with the exception that no flow variables (nor related
terms) are included.

max
sA

1
,qA

1
,f A

12

p1sA
1þp2f A

12�cA
1ðq

A
1Þ�ðt

Reg
12 þt12Þf

A
12 ð12aÞ

s:t: qA
1 rqA

1 ðlA
1Þ ð12bÞ

sA
1 ¼ qA

1�f A
12 ðdA

1Þ ð12cÞ

sA
1 ,qA

1 ,f A
12Z0 ð12dÞ

where pn is the producer price at node nA 1,2f g,cA
1ðq

A
1Þ is the

(marginal) production cost function assumed to be linear, i.e.,
cA

1ðq
A
1Þ ¼ gA

1qA
1 ,gA

1 40,tReg
12 represents the nonnegative, regulated

tariff for using the network from node 1 to node 2; tReg
12 is a fixed

parameter, t12 is the congestion tariff for using the network from
node 1 to node 2 and a variable from another part of the
equilibrium model,1 qA

1 is the maximum production quantity.2

Each producer is maximizing their profit (12a) by choosing
appropriate nonnegative levels of production, sales, and flow
variables subject to not exceeding production limits (12b), and
consistency between sales, production, and flow (12c). The KKT
conditions for each of the producers’ problems are both necessary
and sufficient [2] given the functions chosen and these conditions
for each of the producers is as follows:

Producer X ¼ A,B, node 1

0r�p1þd
X
1 ? sX

1 Z0 ð13aÞ

0rgX
1þl

X
1�d

X
1 ? qX

1 Z0 ð13bÞ

0r�p2þðtReg
12 þt12Þþd

X
1 ? f X

12Z0 ð13cÞ

0rqX
1�qX

1 ? lX
1 Z0 ð13dÞ

0¼ sX
1�qX

1þ f X
12, dX

1 free ð13eÞ

Producer Y ¼ C,D node 2

0r�p2þd
Y
2 ? sY

2 Z0 ð14aÞ

0rgY
2þl

Y
2�d

Y
2 ? qY

2 Z0 ð14bÞ

0rqY
2�qY

2 ? lY
2 Z0 ð14cÞ

0¼ sY
2�qY

2 , dY
2 free ð14dÞ

In addition to the KKT conditions for the four producer
problems, there are market-clearing conditions that force supply
to equal demand:

0¼ ½sA
1þsB

1��D1ðp1Þ p1 free ð15aÞ
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0¼ ½sC
2þsD

2 þ f A
12þ f B

12��D2 ðp2Þ p2 free ð15bÞ

Note that the terms in square brackets are the net supply at
each node (assuming no losses) and Dn pnð Þ,n¼ 1,2 are the nodal
demands as a function of the price pn. While the producers
depicted above operate using the network, there is additionally
a transportation system operator (TSO) who manages the con-
gestion and flows. The TSO’s linear program is as follows (where
other objectives are also possible):

max
g12 ,g21

ðtReg
12 þt12Þg12�cTSOðg12Þ ð16aÞ

s:t: g12rg12 ðe12Þ ð16bÞ

g12Z0 ð16cÞ

Here, the TSO controls the variable g12 which is the flow from node
1 to node 2, cTSOðg12Þ is a network operations cost function (assumed
linear, i.e., cTSOðg12Þ ¼ gTSOg12 where gTSO40) and g12 is the capacity
of the link between nodes 1 and 2. The KKT conditions for this
problem are both necessary and sufficient and since it is a linear
program and these conditions are the following:

0r�tReg
12 �t12þgTSOþe12 ? g12Z0 ð17aÞ

0rg12�g12 ? e12Z0 ð17bÞ

The last part of the equilibrium are the market-clearing
conditions that balance the flow controlled by the network
operator and thus by Producers A and B:

0¼ g12�½f
A
12þ f B

12� t12 free ð18Þ

The LCP for this energy network problem is thus the KKT
conditions of the producers: (13), (14), the nodal market-clearing
(15), the KKT conditions of the TSO (17) and the market-clearing
conditions of the transportation market (18).

Theorem 3. Assume that the demand functions DnðpnÞ satisfy the

following condition:

½9DnðpnÞ9 is bounded) 9pn9is bounded�, n¼ 1,2

Then, there exists a constant Mn for the network equilibrium problem

that satisfies Assumption 1.

Proof. In Appendix.

Remark. Depending on the form of the demand function, the
condition that DnðpnÞ bounded ) pn is bounded in the previous
theorem can be verified. Note that this condition is the contra-
positive, hence equivalent form of coercivity of DnðpnÞ, i.e.,
:pn:-1) DnðpnÞ-1:

Remark. More generally, if DnðpnÞ is invertible, this boundedness
condition is not necessarily satisfied. To see this take for example
DnðpnÞ ¼maxf1,e�pn g which is bounded below by 0 and above by
1 for pZ0. However,the boundedness premise in the previous
theorem does not hold as the sequence fpk

ng-1 as k-1 will not
violate the bounds on the demand function.

In the case of linear demand, then a specific value for M1 can be

determined and is shown in the next result. This is directly useful

for the relaxation of complementarity discussed earlier.

Theorem 4. Suppose that DnðpnÞ ¼ an�bnpn for an,bn40: Then, the

following bounds are valid with
1.
 0rfsA
1 ,qA

1 ,f A
12,sB

1,qB
1,f B

12,sC
2 ,qC

2 ,sD
2 ,qD

2 grqmax
2.
 0r f A
12,f B

12rg12
3.
 ðan�3k1Þ=bnrpnran=bn, n¼ 1,2
Fig. 1. Six-bus test system.
4.
 0rflA
1 ,lB

1,lC
2 ,lD

2 grða1=b1þa2=b2Þ
5.
 ða1�3k1Þ=b1rdA
1 rgA

1þða1=b1þa2=b2Þ
6.
 ða1�3k1Þ=b1rdB
1rgB

1þða1=b1þa2=b2Þ
7.
 ða2�3k1Þ=b2rdC
2 rgC

2þða1=b1þa2=b2Þ
8.
 ða2�3k1Þ=b2rdD
2 rgD

2 þða1=b1þa2=b2Þ
9.
 �3k1=b2�gA
1�a1=b1�tReg

12 rt12rmaxfgTSO�tReg
12 ,

a2=b2�tReg
12 �ða1�3k1Þ=b1g
10.
 0re12rtReg
12 �g

TSOþmaxfgTSO�tReg
12 ,

a2=b2�tReg
12 �ða1�3k1Þ=b1g
where k1 :¼maxfqA
1 ,qB

1,qC
2 ,qD

2 ,g12g: Thus, a valid bound Mn for all the
variables for the network equilibrium problem is greater than or
equal to the maximum of all the right-hand sides in 1–10 with
associated M1 that does not cut off any solutions given by M1Z

maxfMn,maxifðq1Þigþmaxjf:Aj
11:1þ:Aj

12:1gM
n
g where Aj

11, Aj
12 are

defined just after Assumption 1.

Proof. In Appendix.

5. Numerical experiments

In this section, numerical results for the electric power market
model and an energy network equilibrium are presented. These
results show that the proposed approach is viable for equilibrium
problems with integer constraints. All results were obtained by
using GAMS for solving the appropriate models.

5.1. Numerical results: multi-period network-constrained electric

power market model

In this numerical example we apply the market-clearing
procedure presented in (8) and its DC-MLCP version derived in
(10) to a multi-period network-constrained electric power mar-
ket. The test system considered is a power market made up of
eight producers and six demands that are distributed in a six-
node power network. The purpose of this example is to verify that
the market-clearing outcomes (prices, uplifts, production, on/off
status of the units and profits) are adequate and reasonable when
the DC-MLCP approach derived in this paper is applied.

5.1.1. Data

The network topology used for this case study is depicted in
Fig. 1. There are two separated areas interconnected by two tie-lines.
Note that most of the generating units (and thus most of the
capacity) are located on the left-hand side of the network whereas
most of the demands are located on the right-hand side. All the lines
are considered to have the same susceptance equal to Bnm ¼ 100 p.u.

Table 1 provides data for the units considered in this example. The
second column contains the marginal cost of each unit. Note that a
two-period study horizon is considered with a single block marginal
offer. Moreover, we assume that the marginal cost does not vary over
the time horizon. The third and fourth columns indicate, respectively,
the lower and upper bounds for the power production. Columns five
and six show the startup and shutdown costs of each generating unit.
The last column displays the on/off status of each unit at time t¼0.



Table 1
Data for the generating units.

Generator lG
ti1 ($/MWh) PGmin

ti1 (MWh) PGmax
ti1 (MWh) KU

ti1 ($) KD
ti1($) v0i

G1 24 25 50 100 500 0

G2 22 25 50 140 350 0

G3 20 25 50 180 300 1

G4 18 25 50 220 250 1

G5 16 25 50 250 220 1

G6 14 25 50 300 180 1

G7 12 25 50 350 140 0

G8 10 25 50 500 100 0

Table 2
Demand blocks of each period of time.

Marginal Cost of

Gen. Unit
lD

1j1 ($/MWh) lD
2j1 ($/MWh) PDmax

1j1 (MWh) PDmax
2j1 (MWh)

D1 25 20 100 50

D2 26 20 100 50

D3 26 21 100 50

D4 27 21 100 50

Table 3
Case study #1 (no congestion).

Lower Bound on

Power Prod.

MILP MLCP Relaxed both R.B. þ pi Z0

t¼1 t¼2 t¼1 t¼2 t¼1 t¼2 t¼1 t¼2

lt1 ($/MWh) 26 14 25 12.2 27 14 26 16

lt2 ($/MWh) 26 14 25 12.2 27 14 26 16

lt3 ($/MWh) 26 14 25 12.2 27 14 26 16

lt4 ($/MWh) 26 14 25 12.2 27 14 26 16

lt5 ($/MWh) 26 14 25 12.2 27 14 26 16

lt6 ($/MWh) 26 14 25 12.2 27 14 26 16

vt1 0 0 0 0 0 0 0 0

vt2 0 0 0 0 0 0 0 0

vt3 1 1 1 1 1 1 1 0

vt4 1 1 1 1 1 1 1 0

vt5 1 1 1 1 1 1 1 1

vt6 1 1 1 1 1 1 1 1

vt7 1 1 1 1 1 1 1 1

vt8 1 1 1 1 1 1 1 1

p1 ($) 0 0 0 0

p2 ($) 0 0 0 0

p3 ($) 150 55.8 200 0

p4 ($) 300 205.8 350 150

p5 ($) 450 355.8 500 500

p6 ($) 600 505.8 650 700

p7 ($) 450 311.7 500 550

p8 ($) 500 361.7 550 600

pT ($) 2450 1797 2750 2500

SW 3850 3850 3850 3500

GAP compl – – 0 0.0015

GAP integr – – 0 0

Table 4
Case study #1 (lines 2–4 and 3–6 limited to 20 MW).
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Table 2 provides demand bids (energy and price) for each
period of time and for each demand. The second and third
columns give the marginal utility for the time periods t¼1 and
t¼2, respectively. The last two columns correspond to the upper
limit of each block for time periods t¼1 and t¼2. Note that we
assume that each demand offer is characterized by a single block.
Observe also that the demand is reduced from t¼1 to t¼2.

Other relevant parameters considered in this case study are
M1 ¼M2 ¼ G¼ 1000, o1 ¼o2 ¼ 10,000, a¼ 0:0001 and Q¼16.
Upper Bound on

Power Prod.

MILP MLCP Relaxed both R.B. þ pi Z0

t¼1 t¼2 t¼1 t¼2 t¼1 t¼2 t¼1 t¼2

lt1 ($/MWh) 18 12.8 18 11.4 18 11.5 18 20

lt2 ($/MWh) 18 11.6 18 10 18 10 18 20

lt3 ($/MWh) 18 14 18 12.8 18 13 18 20

lt4 ($/MWh) 26 20 26 20 26 20.5 26 20

lt5 ($/MWh) 26 18.8 26 18.5 26 19 26 20

lt6 ($/MWh) 26 17.6 26 17.1 26 17.5 26 20

vt1 0 0 0 0 0 0 0 0

vt2 0 0 0 0 0 0 0 0

vt3 0 0 0.1 0.1 0 0 0 1

vt4 1 1 1 1 1 1 1 0

vt5 1 1 1 1 1 1 1 1

vt6 1 1 1 1 1 1 1 1

vt7 1 1 1 1 1 1 1 1

vt8 1 1 1 1 1 1 1 1

p1 ($) 0 0 0 0

p2 ($) 0 0 0 0

p3 ($) �300 �300 �300 0

p4 ($) �160 �200 �200 0

p5 ($) 50 21.4 25 300

p6 ($) 200 171.4 170 20

p7 ($) 690 678.5 700 750

p8 ($) 680 657.1 675 800

pT ($) 1160 1028.4 1070 1870

SW 3100 3105.7 3090 2360

GAP compl – – 0 0.0034

GAP integr – – 0 0
5.1.2. Results

Two case studies are analyzed, the first one does not impose
any limits on any line and the second one forces congestion on the
two tie-lines.

The results are given in Table 3 and 4. These tables provide
results for the locational marginal prices for each node (rows 3–8),
on/off status of the units (rows 9–16), profits of the producers (rows
17–24), total profit of the producers (row 25) and social welfare
(SW) of the market (row 26). These market outcomes are computed
for four different cases: MILP (columns 2 and 3) corresponds to the
formulation provided in (8), MLCP (columns 4 and 5) is the
complementarity formulation provided in (9) where the binary
variables (vti) have been relaxed, Relaxed both (columns 6 and 7)
corresponds to the model derived in (10) without including (10c)
and R.B. þ piZ0 (columns 8 and 9) includes (10) and the mixed-
integer, linear nonnegative profits conditions stated in (11).

It should be noted that the prices provided by the MILP model
are obtained as dual variables of the balance equation (8b). This is
achieved by first solving the MILP (8) and then fixing the binary
variables to their optimal values. The resulting problem is linear
and therefore its sensitivities can be easily computed.

Results for the non-congested case are reported in Table 3.
Note that when there is no congestion the locational marginal
prices are identical throughout the network. Prices decrease from
t¼1 to t¼2 since the demand bid prices also decrease. Prices and
profits are similar among the models and slightly higher for the
case where both integrality and complementarity are relaxed.
Units 1 and 2 are off at all time periods since they are the most
expensive ones.

All the uplifts (tUP
ti ) obtained for the R.B. þ piZ0 case are

equal to 0. Note also that although all profits are nonnegative in
the Relaxed both case, imposing (11) alters the markets outcomes
by shutting down units 3 and 4 from t¼1 to t¼2. This effect is
caused by the slight difference between the actual production and
its discretization, i.e., DP̂

G

ti . Finally, note that the complementarity
gap is slightly higher than zero.

The results for the congested case are presented in Table 4.
Model MLCP does not provide adequate results since the on/off



Table 5
Dataset used.

Parameter tReg
12

gA
1 gB

1 gC
2 gD

2
a1 b1 a2 b2 qA

1 qB
1 qC

2 qD
2

g12 gTSO

Value 0.5 10 12 15 18 20 1 40 2 10 10 4.5 5 15 1

Table 6
Description of problem variations.

Variation s-Complementarity? E-Integrality? Description

1 No No MLCP

2 No No Integer variables

3 Yes No Integer variables

4 Yes No Continuous variables

5 No Yes Continuous variables

6 Yes Yes Continuous variables

Table 7
Description of results.

Variations 1 2 3 4 5 6

sA
1

7.440 Infeasible 8.000 8.000 8.000 8.000

sB
1

0.560 Infeasible 0 0 0 0

sC
2

4.500 Infeasible 4.000 4.500 4.500 4.000

sD
2

0 Infeasible 0 0 0 0

qA
1

10.000 Infeasible 10.000 10.000 10.000 10.000

qB
1

3.000 Infeasible 3.000 3.000 3.000 3.000

qC
2

4.500 Infeasible 4.000 4.500 4.500 4.000

qD
2

0 Infeasible 0 0 0 0

f A
12

2.560 Infeasible 2.000 2.000 2.000 2.000

f B
12

2.440 Infeasible 3.000 3.000 3.000 3.000

lA
1

2.000 Infeasible 2.000 2.000 2.000 2.000

lB
1

0 Infeasible 0 0 0 0

lC
2

0.250 Infeasible 0.500 0.250 0.250 0.500

lD
2

0 Infeasible 0 0 0 0

g12 5.000 Infeasible 5.000 5.000 5.000 5.000

E12 2.250 Infeasible 2.500 2.250 2.250 2.500

dA
1

12.000 Infeasible 12.000 12.000 12.000 12.000

dB
2

12.000 Infeasible 12.000 12.000 12.000 12.000

dC
2

15.250 Infeasible 15.500 15.250 15.250 15.500

dD
2

17.581 Infeasible 18.000 18.000 18.000 18.000

p1 12.000 Infeasible 12.000 12.000 12.000 12.000

p2 15.250 Infeasible 15.500 15.250 15.250 15.500

t12 2.750 Infeasible 3.000 2.750 2.750 3.000

Sum s n/a n/a 0.005 0 n/a 0.005

Sum E n/a n/a n/a n/a 1.000 0
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status of unit 3 is fixed to a non-integer value (0.1). However, the
Relaxing both complementarity and integrality model overcomes
this problem and provides feasible results (integer on/off status of
the units). Note that the market outcomes are very similar when
comparing models MILP and Relaxing both complementarity and
integrability.

Due to the congestion, prices are higher in the right-hand-side
of the network, that is where the consumption prevails. Prices
are again higher at t¼1 because of the higher demand’s
marginal cost.

Units 3 and 4 incur looses in the MILP and Relaxed both cases.
Unit 3 is initially on and it is forced to shut down because of its
high production cost. Unit 4 is also expensive although is kept
working due to its higher shutdown cost.

All profits are nonnegative for the R.B. þ piZ0 model. For this
case the price uplifts are equal to 0 except for tup

14 ¼ 6:25 and
tup

23 ¼ 15:45 that are used to compensate the startup and shut-
down cost of units 3 and 4, respectively. Note that the social
welfare decreases if compared with the MILP and Relaxed both
cases.

As in the non-congested case, the complementarity gap is
different from zero.

We can conclude that the DC-MLCP approach described in this
paper behaves properly and provides an adequate framework to
incorporate nonnegative profit constraints to obtain prices that
support a multi-period network-constrained electric power mar-
ket. This is shown for congested and non-congested network
examples.

5.2. Numerical results: energy network equilibrium with

multiple players

In this problem, sA
1 ,sB

1,sC
2 ,sD

2 ,qA
1 ,qB

1,qC
2 ,qD

2 are the variables that
are integer-constrained in variations 2 and 3. The goal is to find a
solution which has these variables as integers. Note that there are
multiple integer solutions. In what is described below, the values
of M1, and M2 were equal to 100. Given the comment about
multiple solutions, different values of M1, and M2 may lead to
different solutions. The values for the input parameters as well as
the six variations that were tested are shown in Tables 5 and 6.

Several numerical variations were done to see the change
in solutions. Variation 1 was a mixed-complementary problem
(MCP) without imposing integer restrictions. Variation 2 involved
converting the MCP to a formulation with disjunctive constraints
but restricting the variables of production and sales to be integer.
The rest of the variations then go through the different combina-
tions. First, variations 3 and 6 give an integer solution. However,
due to the presence of multiple equilibria, these solutions need
not be unique. Multiple starting points were chosen, and, accord-
ing to the numerical tests, the reported solution had the highest
objective function value (along with some other equilibria not
reported) when a feasible integer solution was desired. Hence,
variations 3 and 6 can be used to obtain optimal, integer solutions
that are feasible. Note that variation 6 targets integers through
e-complementarity, while variation 3 actually restricts solutions
to integer values. Variation 1 yielded a non-integer but optimal
and feasible solution while variation 2 was infeasible. Again, this
shows that s-complementarity is essential to obtain a feasible
integer solution (as in variations 3 and 6). However, only
s-complementarity is not enough to obtain integer solutions
(variation 4) nor is only e-complementarity (variation 5). The
extra advantage of using variations 3 and 6 is that values of dual
variables can be obtained and interpreted. It is interesting to note
that the dual variables change from the continuous to the integer
case, which is what was expected. However, it also shows the
differences in solutions with relaxation of integer variables to
solve a problem and how it leads to solutions that can be very
different from the market dynamics of an integer-constrained
problem (Table 7).

Remark. Using Theorem 4 (since linear demand functions are
used), the values of Mn and M1 can be figured out for the network
example. In this case, Mn is calculated to be 58 while M1 is 192.
Note that these upper bounds are not tight. Sensitivity analysis
was performed on the problem, for which it was shown that
M1¼27 is actually the numerically evident minimum value for
which no solutions are missed and the formulation is still valid.
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To allow easy interpretation of the results, a value of 100 was
used for M1 and M2. Both M1 and M2 were tested for values from
27 to 106 and gave the same solution (profit function optimal
value).
6. Conclusions and extensions

This paper proposes a methodology to analyze the way
integrality conditions affect complementarity problems, in parti-
cular, MLCPs. From the theoretical analysis carried out and the
examples considered, the following conclusions can be drawn.
First, relaxing both integrality and complementarity allows build-
ing meaningful feasible problems. Second, the relaxed problem
formulated in (5) allows analyzing the tradeoff between comple-
mentarity and integrality. This is done by actually computing the
cost of integrality in terms of complementarity and, conversely,
the cost of complementarity in terms of integrality. Third, the
analysis involves the study of enforcing integrality/complemen-
tarity on the optimal values of both primal and dual variables.
Dual variables are particularly relevant as they often represent
prices. Fourth, a set of relevant case examples is used to illustrate
the interest of the technique proposed and its practical relevance.
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Appendix
Proof of Theorem 1. First note that e1ri and e2ri can be positive,
negative, or zero as they are defined as the difference of two
nonnegative terms. When w1ri ¼ 1 or w2ri ¼ 1, the bounds M2 do
not come into play so it suffices to only consider the cases when
w1ri ¼ 0 or w2ri ¼ 0 for a given integer value i. When w1ri ¼ 0, if
M2 is chosen greater than or equal to N, then e1ri ¼ 0 is optimal
since it is feasible, i.e., from (5f), �M2r�Nrðz1Þr�i¼ z1ð Þr

�i�e1ri ¼ ðz1Þr�irNrM2 and any other feasible choice of
e1ria0 will have a worse objective function value in light of
terms of the form e1rið Þ

þ
þ e1rið Þ

�: Thus, M2ZN is valid. When w2ri

¼ 0, (5g) is just �M2rðz2Þr�i�e2rirM2: Letting M2ZmaxfN1þ

N2,N1�1g ¼N1þN2, shows that e2ri ¼ 0 is optimal since it is
feasible, i.e.,

�M2r
�N1�N2 for i¼ 0, . . . ,N2

�N1þ1 for i¼�N1, . . . ,�1

(
r ðz2Þr�i¼ ðz2Þr�i�e2ri

and

ðz2Þr�i�e2ri ¼ ðz2Þr�ir
N2 for i¼ 0, . . . ,N2

N1þN2 for i¼�N1, . . . ,�1

(
rM2

and any other feasible choice of e2ria0 will have a worse
objective function value in light of terms of the form
ðe2riÞ

þ
þðe2riÞ

�. So a valid bound is to take M2ZmaxfN1þN2g:

Thus, collecting all the conditions on M2 gives the desired
result. &

Proof of Theorem 2. Problem (5) is a linear, hence quadratic
program whose objective function is bounded below by zero since
it is a positively weighted sum of nonnegative variables. If it can
be shown that the feasible region is a nonempty polyhedron, then
by the Frank–Wolfe Theorem [10] the result will be proven. First
note that if the binary variables u, w1ri,w2ri are fixed, then the
resulting feasible region is a polyhedron given the linear
equations and inequalities. We first consider one specific set of
values of these binary variables, namely uj ¼ 1 for all j and
w1ri,w2ri ¼ 1 if i¼0 and equal to 0 otherwise satisfying (5e), (5k)
and (5l). By Assumption 1, the left-most inequalities of constraints
(5b) and (5c) as well as constraint (5d) are satisfied. Also, apart
from the nonnegativity constraints, since ðe1riÞ

þ ,ðe1riÞ
� only appear

in (5h) and ðe2riÞ
þ ,ðe2riÞ

� only in (5i), these two constraints plus the
nonnegativity restrictions (5m)–(5o) will always be feasible. By
choice of u and selection of M1 (e.g., using (6)), the right-hand
inequality of (5b) is met. The right-most inequality of (5c) is satisfied
given that s is unconstrained and M1 is sufficiently large given the
second part of Assumption 1. Thus, (5b)–(5e) are feasible. Now by
virtue of the choice of values for w1ri,w2ri, (5j) is satisfied. With this
choice for w1ri, (5f) reduces to

0rðz1Þr�e1r0r0, 8rA ID
1 ð19aÞ

�M2r ðz1Þr�i�e1rirM2, 8i¼ 1, . . . ,N, rA ID
1 ð19bÞ

Eq. (19a) means that ðz1Þr ¼ e1r0 which is valid as ðz1Þr Z0 and e1r0 is
a free variable. Eq. (19b) is feasible given the choice of M2 and
Theorem 1. As for (5g), we have

0rðz2Þr�e2r0r0, 8rA ID
2 ð20aÞ

�M2r ðz2Þr�i�e2rirM2, 8i¼�N1, . . . ,�1,1, . . . ,N2, 8rA ID
2

ð20bÞ

But (20a) is valid as it just states that ðz2Þr ¼ e2r0 and both variables
are free. Eq. (20b) holds by virtue of Theorem 1 and the choice of M2:

In summary, the feasible region to (5) for this particular choice of
binary values has been shown to be a nonempty polyhedron so that
the Frank–Wolfe theorem applies. For the remaining finite number
of possible choices for the binary variables, either fixing them leads
to an infeasible set of constraints or the Frank–Wolfe theorem
applies. For all those finite number of choices that lead to a feasible
region (including the one just shown), we can take the minimum
objective function value and the desired result is shown. &

Proof of Theorem 3. First, note that all ‘‘primal’’ variables

fsA
1 ,qA

1 ,f A
12,sB

1,qB
1,f B

12,sC
2 ,qC

2 ,sD
2 ,qD

2 g

are bounded given that they are nonnegative, the (positive)
maximum production levels qA

1 , qB
1, qC

2 , qD
2 , the maximum flow

amount g12, the market-clearing conditions (18), and the con-
straints linking sales, production, and flow. In particular, by the
constraints in producer A’s problem: sA

1þ f A
12 ¼ qA

1 rqA
1 given that

sA
1 ,f A

12 are nonnegative and likewise for the other producers,
sB

1þ f B
12 ¼ qB

1rqB
1,sC

2 ¼ qC
2 rqC

2 ,sD
2 ¼ qD

2 rqD
2 . So,

fsA
1 ,qA

1 ,f A
12,sB

1,qB
1,f B

12,sC
2 ,qC

2 ,sD
2 ,qD

2 grqmax :¼maxfqA
1 ,qB

1,qC
2 ,qD

2 g

From the TSO’s (16) and related market-clearing conditions (18),
the following conditions hold:

0r f A
12þ f B

12 ¼ g12rg12 ) ff
A
12,f B

12grg12

Letting k1 : maxfqmax,g12g, we see that this value is a valid upper
bound on all the primal variables with zero as a lower bound. As
for the other variables, first consider (15) as well as the above
reasoning to get

0rD1ðp1Þ ¼ sA
1þsB

1r2k1 ð21aÞ

0rD2ðp2Þ ¼ sC
2þsD

2 þ f A
12þ f B

12r3k1 ð21bÞ

so that the demand functions are bounded (the lower bound of
zero is from the fact that the sales and flow variables are
nonnegative). By the premise, this means that pn,n¼ 1,2 are also
bounded. Combining (13a) and (13b) for Producer A shows that
p1rdA

1 rgA
1þl

A
1 so if lA

1 can be shown to be bounded, then dA
1 will
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also be bounded. But Producer A’s problem is a linear program
given the choice of a linear cost function. A feasible solution is to
take all primal variables equal to zero. The feasible region is
compact so by the Weierstrass theorem [2], an optimal solution
exists to this problem and its dual by strong duality [2]. The dual
of Producer A’s problem is

min
lA

1 ,dA
1

qA
1l

A
1

s:t: dA
1 Zp1

lA
1�d

A
1 Z�g

A
1

dA
1 Zp2�tReg

12 �t12

lA
1 Z0, dA

1 free

By strong duality for linear programming [2], using the optimal
values for lA

1 ,sA
1 ,f A

12,qA
1 :

lA
1 ¼

p1sA
1þp2f A

12�cA
1ðq

A
1Þ�ðt

Reg
12 þt12Þf

A
12

qA
1

ð22Þ

where given the previous arguments, all the terms on the right-
hand side are bounded except possibly �t12f A

12: If f A
12 ¼ 0 then we

are done. Assume for sake of contradiction that f A
1240 and that

there is a sequence of values tk
12

� �
-1 as k-1: Since all the

other terms on the right-hand side of (22) are bounded, after
some large enough value of k, this would mean that lA

1 o0 which
is a contradiction to being an optimal solution to the dual due to
the nonnegativity constraints. Since t12 is a free variable, also
consider a sequence of values tk

12

� �
-�1 as k-1: But since

f A
1240) g1240 by (18)) tReg

12 þt12 ¼ gTSOþe12 by (17a). If
ftk

12g-�1 as k-1 then for some large enough value of k, the
left-hand side of this equation would be negative contradicting
the nonnegativity of the right-hand side. Consequently, t12 and
hence lA

1 are also bounded which implies dA
1 is too. A similar line

of reasoning for the three other producers’ problems shows that
their dual variables lB

1,lC
2 ,lD

2 ,dB
1,dC

2 ,dD
2 are also bounded. It remains

to establish the boundedness of e12. Note that the TSO’s problem
always has a feasible solution since g12 ¼ 0 so the feasible region
is nonempty and compact. Thus by the Weierstrass theorem [2],
an optimal solution exists to the TSO’s problem and its dual by
strong duality. But the dual of the TSO’s problem is

min
e12

g12e12

s:t: e12ZtReg
12 þt12�gTSO

e12Z0

By strong duality we have

e12 ¼
ðtReg

12 þt12�gTSOÞÞg12

g12
ð23Þ

for optimal e12,g12: Given the boundedness of g12 and t12, this
establishes the boundeness of e12. &

Proof of Theorem 4. From the proof of the previous theorem, it
was shown that the primal variables satisfied

0rfsA
1 ,qA

1 ,f A
12,sB

1,qB
1,f B

12,sC
2 ,qC

2 ,sD
2 ,qD

2 grqmax :¼ maxfqA
1 ,qB

1,qC
2 ,qD

2 g

0r f A
12,f B

12rg12

Under the assumption of linear demand, we see that

an�3k1

bn
rpnr

an

bn
, n¼ 1,2

The lower bound follows since,

a1�b1p1 ¼D1ðp1Þ ¼ sA
1þsB

1r2k1

from the analysis in the proof of Theorem 3 and the market-
clearing conditions for node 1. Solving for p1 then gives
p1Z
a1�2k1

b1
Z

a1�3k1

b1

A similar analysis for node 2 yields

a2�b2p2 ¼D2ðp2Þ ¼ sC
2þsD

2 þ f A
12þ f B

12r3k1 ) p2Z
a2�3k2

b2

The upper bound on pn follows since the demand functions are

nonnegative (being equal to nonnegative sales and flows in the

market-clearing conditions). Thus,

0rDnðpnÞ ¼ an�bnpn ) pnr
an

bn

Thus, it suffices to consider the bounds on the remaining ‘‘dual’’

variables: lA
1 ,dA

1 ,lB
1,dB

1,lC
2 ,dC

2 ,lD
2 ,dD

2 ,t12,e12: First consider lA
1 : From

(22) we have

lA
1 ¼

p1sA
1þðp2�tReg

12 �t12Þf
A
12�gA

1qA
1

qA
1

¼
p1sA

1þðp2�tReg
12 �t12Þf

A
12�gA

1 sA
1þ f A

12

	 

qA

1

¼
ðp1�gA

1Þs
A
1þðp2�tReg

12 �t12�gA
1Þf

A
12

qA
1

r
ðp1Þs

A
1þðp2Þf

A
12� tReg

12 þt12

	 

f A

12

qA
1

r
a1

b1
þ

a2

b2

� �
�
ðtReg

12 þt12Þf
A
12

qA
1

r

a1

b1
þ

a2

b2

� �
if f A

12 ¼ 0, or ½f A
1240 and tReg

12 þt12Z0�

a1

b1
þ

a2

b2

� �
�ðtReg

12 þt12Þ if ½f A
1240 and tReg

12 þt12o0�

8>>><
>>>:

since qA
1 Zfs

A
1 ,f A

12g. But ½f A
1240 and tReg

12 þt12o0� cannot happen

since tReg
12 þt12o0) e12 ¼ 0 is the unique solution to the dual of

the TSO’s problem which then makes the objective function also

equal to zero. By strong duality, the TSO’s problem must also

have a zero optimal objective function value which is only

achieved for g12 ¼ 0: By (18) and noting that both f A
12 and f B

12

are nonnegative, this means that f A
12 ¼ f B

12 ¼ 0 which is a contra-

diction. Thus,

lA
1 r

a1

b1
þ

a2

b2

� �

A similar line of reasoning holds for establishing the bounds on

lB
1, lC

2 , and lD
2 : Note that it can be shown that lC

2 , lD
2 ra2=b2 but

since a1,b140, the common bound of

a1

b1
þ

a2

b2

� �

for all the l’s is also valid.

To establish bounds on dA
1 ,dB

1,dC
2 , and dD

2 , due to nearly similar

reasoning, it suffices to consider just dA
1 : By (13b)

dA
1 rgA

1þl
A
1 rgA

1þ
a1

b1
þ

a2

b2

� �

and by (13a)

a1�3k1

b1
rp1rdA

1

Likewise, it can be shown that:

a1�3k1

b1
rdB

1rgB
1þ

a1

b1
þ

a2

b2

� �

a2�3k1

b2
rdC

2 rgC
2þ

a1

b1
þ

a2

b2

� �
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a2�3k1

b2
rdD

2 rgD
2 þ

a1

b1
þ

a2

b2

� �

Next consider t12: The lower bound is necessarily �tReg
12 since

from strong duality of the TSO’s problem combined with dual

feasibility (e12Z0)

0re12 ¼
tReg

12 þt12�gTSOÞ
	 


g12

g12

r
tReg

12 þt12

	 

g12

g12

) �tReg
12

g12

g12
rt12

g12

g12

or that �tReg
12 rt12 as long as the nonnegative variable g1240: In

the case when g12 ¼ 0, from (13c) we see that

p2�d
A
1�t

Reg
12 rt12

But taking into account that

p2Z
a2�3k1

b2
, �dA

1 Z�g
A
1�

a1

b1
�

a2

b2

shows

a2�3k1

b2
�gA

1�
a1

b1
�

a2

b2
�tReg

12 ¼
�3k1

b2
�gA

1�
a1

b1
�tReg

12 rt12

Since

�3k1

b2
�gA

1�
a1

b1
o0

the lower bound is shown. The upper bound can be established by

looking at the following two cases: Case 1: g12 ¼ 0, Case 2: g1240,

i.e., f A
1240 or f B

1240: Under Case 1, by (17b) and the fact that

g1240, e12 ¼ 0: From the first constraint of the dual to the

TSO problem we have e12ZtReg
12 þt12�gTSO or gTSO�tReg

12 Zt12:

Under Case 2, without loss of generality assume f A
1240. Then,

either 0og12og12 but with e12 ¼ 0 so we have the same result as

just stated or 0og12 ¼ g12 with e1240 . In this latter case, since

f A
1240, by (13c),

dA
1þt12 ¼ p2�tReg

12 r
a2

b2
�tReg

12

) t12r
a2

b2
�tReg

12 �d
A
1

) t12r
a2

b2
�tReg

12 �
a1�3k1

b1

since

dA
1 Z

a1�3k1

b1

With

k2 :¼max gTSO�tReg
12 ,

a2

b2
�tReg

12 �
a1�3k1

b1

� �

then we see that

�3k1

b2
�gA

1�
a1

b1
�tReg

12 rt12rk2
Lastly, to establish upper bounds on e12, note that in the dual to

the TSO problem e12 ¼maxf0,tReg
12 þt12�gTSOg: But

e12 ¼ tReg
12 þt12�gTSOrtReg

12 �g
TSOþk2

with the lower bound being zero as this variable is always

nonnegative. The desired bound Mn follows from considering all

the individual upper and lower bounds described above and the

bound M1 follows from (6). &
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