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Abstract

Group Polarization refers to the tendency of groups to make more ex-

treme decisions than individuals. In decision problems under incomplete

information, individuals make decisions based on their private informa-

tion while groups gather the information of their members. As a result,

groups are typically better informed than individuals. This paper sees

group polarization as an outcome of the difference in access to informa-

tion. We consider two decision makers, a group and an individual, fac-

ing a monotone decision problem. They share similar preferences and

prior belief but the group is better informed than the individual in the

sense the monotone information order (Athey and Levin, 2001). This pa-

per presents sufficient conditions under which the group’s decisions po-

larize as compared to the individual’s. Group polarization is considered

from two points of view: ex ante, the group’s decisions are more dispersed

in the sense of second order stochastic dominance if optimal actions are a

linear function of beliefs. Conditional on a particular state, the group’s ac-

tions are more extreme (in a stochastic sense) if optimal actions are linear

in beliefs and the group has more information conditional on that state.
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We present natural environments where the linearity condition fails and

in which group polarization does not fully occur. We relate our results to

existing experimental evidence. Journal of Economic Literature Classifica-

tion Numbers: A12, D01; Keywords: statistical decision problem; group

polarization; behavioral economics; psychology.



1 Introduction

Group polarization refers to the tendency of groups to make more extreme

decisions than individuals. This phenomenon was first discovered by Stoner

(1961) and has been extensively studied since then in the field of experimen-

tal social-psychology. This paper studies group polarization in decision prob-

lems under incomplete information. As groups gather the private information

of their members, they are typically better informed than individuals. We at-

tempt to see group polarization as a consequence of this difference in access to

information.

An example of group polarization experiment is an experimental court case

(Kaplan, 1977; Myers and Kaplan, 1976; Schkade, Sunstein and Kahneman,

2000). Jurors have to decide upon the severity of punishments to be inflicted

to a defendant. After being exposed to the evidence, each juror makes up his

mind and record an individual recommendation. Later on, jurors deliberate

until they agree as to which verdict the jury will sentence. The comparison

of individual and group (distribution of) verdicts reveals that groups reinforce

the initial tendencies of individuals: in a case where isolated jurors recommend

severe (lenient) punishments on average, the average juries’ sentence is even

more severe (lenient). Juries’ verdicts are then more dispersed across cases.

Group decisions are then said to polarize.

Section 2 points out that this pattern is consistent with simple models of

information aggregation. In the models, jurors try to estimate the appropriate

level of punishment (the state). They share the prior belief that the average de-

fendant deserves intermediate punishments. Each juror then extracts a private

signal from the trial. A juror’s verdict results from the (convex) combination of

the prior belief and his signal. Polarization arises because the relative weight at-

tributed to the signal is increasing in its reliability. A relatively culpable defen-

dant makes it likely for jurors to draw incriminating signals which make their

verdicts moderately increase on average relative to intermediate punishments.

Juries’ signals are more reliable since they come from multiple sources. They

are consequently weighted more heavily which makes juries increase their ver-

dicts more strongly. In cases where the defendant is more culpable than initially
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expected, juries sentence higher punishments than isolated jurors on average.

The same mechanism holds for relatively innocent defendants so juries sen-

tence lower punishments than isolated jurors in those cases. Group decisions

then are more extreme than individual decisions conditional on essentially ev-

ery state (ex post) and more dispersed across states (ex ante). The models in

which those two results arise are specific: the utility function is quadratic and

the signals are distributed according to standard distributions. In the rest of

the paper, we consider a more general framework and determines conditions

under which the two results follow from groups being better informed than

individuals.

Section 3 presents the framework. We consider statistical decision prob-

lems. A decision maker faces a choice under incomplete information about fu-

ture payoffs. Payoff relevant information is captured by a state variable whose

realization is unknown. A decision maker receives private signals that convey

information about the state. The informational content of signals is described

by the joint distribution on signals and states, which will be referred to as the

decision maker’s information structure. Upon receiving his signal, the decision

maker updates his prior belief and makes a utility maximizing decision. We

consider two decision makers, a group and an individual, with similar utility

function and prior belief. The group receives signals that are more informative

for the state than the individual’s. Intuitively, the group’s signals are more cor-

related to the state than the individual’s are. We aim to compare the group’s

and individual’s actions.

We do so in monotone environments. Actions, states and signals are real

numbers. The utility function and information structure are constrained so as

to ensure that the decision maker responds to a higher signal by increasing his

action. In the court case presented above, the state describes the level of cul-

pability of the defendant. A juror (or a jury) receives signals that are more or

less incriminating and responds to higher signals by increasing his punishment

verdict. Working in monotone decision problems is restrictive but this frame-

work seems like a reasonable approximation of the experimental tasks from

the group polarization literature. Moreover, Sobel (2012) shows that in general

decision problems, the mere assumption of one decision maker being better
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informed than another does not constrain the way their decisions compare.

In monotone problems, a natural way to describe the assumption that the

group is better informed is to use the monotone information order (Athey and

Levin, 2001). The monotone information order can be thought of as an adap-

tion of Blackwell information criterion (Blackwell, 1953) to monotone environ-

ments. An information structure Blackwell dominates another if it provides

greater ex ante expected utility whatever the utility function considered. The

monotone information order operates similarly on restricted classes of infor-

mation structures and utility functions. In sections 4 and 5, we determine con-

ditions under which the two polarization results introduced above results from

the group’s information being more precise than the individual’s with respect

to the monotone information order.

Section 4 studies conditions under which the group’s decisions are more

dispersed ex ante. The main result shows that higher dispersion of the group’s

actions is guarantied if actions respond linearly to changes in belief. The impor-

tant point is that the precision of an information structure can be characterized

by the ex ante dispersion of the posterior beliefs it induces. The better informed

a decision maker, the more variable his posterior beliefs. Intuitively, a poorly

informed juror does not extract much information from a trial so that he ex-

pects his posterior belief to remain close to the prior. His posteriors then are

relatively constant across cases. Equipped with superior information, a jury’s

belief is likely to be more affected by a trial so its posteriors are more variable

across states. Whether a well informed group’s actions are more variable than

a poorly informed individual’s then depends upon the relation between beliefs

and actions. If this relation is linear, then the group’s actions are more vari-

able in the sense of the mean preserving increase in risk order (Rothschild and

Stiglitz, 1970). 1 This linearity property is satisfied for the class of quadratic

utility functions used in the models of section 2. So the higher dispersion of

group actions in those examples does not depend on the particular information

structures we choose. Quadratic utility functions describe situations where a

decision maker wants to hit a target. Losses incurred when failing to hit the

1The mean preserving increase order is equivalent to second order stochastic dominance
when the two distributions being compared have equal means.
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target only depends on the distance between the action and the target. There

are natural situations however where this assumption is not sensible. For in-

stance, in a court case context, it would typically be the case that overestimating

punishments is more costly than underestimating them. The relation between

belief and action would then be convex, which implies that an improvement

in information shifts actions upward on average. Intuitively, it requires confi-

dence (in one’s information) about a defendant’s culpability to sentence high

punishments, which makes a well informed jury more likely to sentence high

punishments. In those cases, we show that the group’s decisions will be ”asym-

metrically more variable”. The weaker the restrictions on the utility function,

the weaker the sense in which the group’s decisions are more variable. In fact,

we show that in the general case, the group’s decision could be less variable

than the individual’s.

Section 5 attempts to derive conditions under which the group’s actions are

more extreme conditional on every state. We treat the particular case where the

state space contains 2 elements, so that there is a high (the defendant is culpa-

ble) and a low (the defendant is innocent) state. The group’s actions will be

higher (lower) conditional on the high (low) state if actions respond linearly to

changes in beliefs and if the information structures are symmetric. The sym-

metry condition implies that an improvement in information ex ante translates

to improvements conditional on both states. Therefore, it guaranties that the

group is better informed whether the state is high or low. Provided that those

two conditions are met, the sense in which the group’s actions are more ex-

treme is expressed by an integral condition on the distribution of actions. This

condition implies in particular that the group’s actions are more extreme on

average. If actions are either concave or convex in beliefs, then the group’s ac-

tions become more extreme only conditional on one state. Intuitively, if it is

safer to sentence low punishments, then a poorly informed juror may sentence

low punishments irrespective of the defendant. Conditional on the defendant

being innocent, a well informed jury would not sentence lower punishments.

Section 6 discusses alternative accounts of the group polarization phenomenon.

This paper follows Sobel (2012) who studies the relationship between the

decision of a group and the recommendations of its members provided that the
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group aggregates the private information of its members. Sobel (2012) shows

that without restrictions on the decision problem, there is no relationship be-

tween the recommendations of group members and the group’s decision. Fo-

cusing on monotone problems, he shows that it requires strong restrictions in

order for the group’s decision to be bounded by the recommendation of its

members, and concludes that the fact that a group tends to make relatively ex-

treme decisions need not be evidence of systematic biases in group decision

making. Our paper only focuses on monotone problems and studies condi-

tions under which group polarization is likely to occur. Moreover, we do not

constrain the group’s information to be a combination of its members’ informa-

tion. Instead, the group and the individual have access to two distinguished

information structures, and the sense in which the group is better informed is

weaker than in Sobel (2012).

2 Specific Models of Group Polarization

This section motivates the subsequent analysis by presenting two simple mod-

els of information aggregation in which group polarization arises naturally and

by showing how the models help organizing existing experimental evidence.

Most of the experimental research on group polarization was done in a task

referred to as choice dilemma questionnaire. The task presents a hypothetical sit-

uation where a subject faces two alternative courses of action. One action, the

cautious action, leads to a certain outcome. The alternative risky action leads

to two possible outcomes, one better and one worse than the certain outcome.

In the following example from Stoner (1968), the safe action is to go to the hos-

pital, and the risky one is to board on plane.

Mr. B is about to board a plane at the airport at the beginning of

his overseas vacation. Although he has been looking forward to this

trip for some time, he is troubled because he awoke in the morning

with a severe abdominal pain. Because he was never flown before,

he thinks that the pain may simply be an upset stomach brought on

by anticipation of the flight. Although he is not far from a hospital
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where he knows he will obtain quick attention, he realizes that a

visit to the hospital will cause him to miss his flight which in turn

will seriously disrupt his vacation plans. The pain has gotten more

severe in the last few minutes.

Subjects are presented with several cases similar to this one. For each case, a

subject rates on a scale the extent to which he would recommend an alternative

over the other. 2 Subjects are then divided into small groups and asked to reach

a consensual group rating. Finally, subjects record their individual ratings once

again after the group decision had been made. The comparison of group and

(initial) individual distributions of actions within cases reveals that individual

and group responses are related in two ways: first, in those cases where the

average individual response is relatively risky (cautious), the average group

response will be even more risky (cautious) (Stoner, 1968; Brown, 1986). Sec-

ond, the more extreme the average individual response, the more strongly the

average group response shifts toward the extreme. (Brown, 1986; Teger and

Pruitt, 1967).

The following model of information aggregation accounts for both results.

Faced with a case, subjects have to pick a response a ∈ [0, 1], where 1 corre-

sponds to the extreme preference for the risky alternative. A case is described

by an unknown state θ ∈ [0, 1]. Subjects share similar preferences represented

by the utility function u(a, θ) = −(a − θ)2 so that the state can be thought of

as the appropriate response. Subjects hold a common prior belief on θ which is

Beta distributed on [0, 1] with parameters tr and (1− t)r. t is the initial mean

of θ and r the precision of the prior. 3 Each subject reads the description of

the problem and forms an opinion as to which response he should make. We

model this process by assuming that he receives k binary signals independently

drawn from the set S = {0, 1}where the probability of receiving signal s = 1 is

θ. Signals 0 and 1 can be thought of as arguments pro-caution and pro-risk (re-

2In the early literature subjects were asked to provide the minimum probability of success
in the risky alternative required to choose the risky alternative. Using this probability scale was
proved to be equivalent to using a scale indicating the extent of agreement with the cautious
alternative (Fraser, Gouge and Billig, 1971).

3The precision is the inverse of the variance
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spectively) a subject comes up with to motivate his choice. 4 Subjects exchange

their opinions during the group discussion. 5 As a result an isolated subject

makes a decision based on k signals while a group composed of I members has

Ik signals.

Equipped with a set of n signals, a decision maker updates the prior belief

using Bayes rule and makes a decision

a∗(s̄) =
r

r + n
t +

n
r + n

s̄

where s̄ is the mean of the n signals. The decision rule is a weighted average

of t, the initial mean of θ, and s̄ the mean of the received signals. Group polar-

ization arises naturally in this model because the weight placed on signals is

increasing in the number of signals received. In a particular case θ, the group

and each subject receive the same proportion of pro-risk signals on average

(that is θ) but the group’s expected response is more extreme relative to the

initial mean t because it weights his information more strongly. In those cases

where the situation requires a riskier response than initially expected (θ > t),

the group tends to make more severe punishments than an isolated subject,

while the converse holds when t > θ. Moreover, the more extreme the state θ

(relative the initial mean t), the stronger the shift of the group response toward

extremity. The difference between the average group response and the average

individual response is r(I−1)
(r+I)(r+1)(θ − t) which is increasing (in absolute value)

with respect to θ − t.

Given that the group is better informed than the individual, it is able to

better discriminate the appropriate response from one case to another. This

translates to his decisions being more variable across cases. The ex ante vari-

ance of a decision maker’s responses is n[r2t(1− t)]/[(n + r)(1 + r)] which is

indeed increasing in the number of signals received.

Group polarization has been observed in various contexts. In Myers, Woj-

4Silverthorne (1971) and Vinokur and Burstein (1974) (among others) observe that subjects
motivate their response using arguments favoring either alternatives. They show that the ratio
of pro-caution vs pro-risk arguments collected in a population of subjects predicts the aver-
age individual response in the case. The group discussion then consists in exchanging those
arguments.

5Since they have identical preferences, there are no problems of information revelation.
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cicki and Aardema (1977), subjects are simply asked to rate the extent to which

they agree with some proposition such as ”should ministers take a stand on

political issues”. Kaplan (1977) and Schkade, Sunstein and Kahneman (2000)

study group polarization in experimental court cases. Subjects are presented

with a description of a court case and are asked to rate the severity of punish-

ment on a (bounded) scale. The model presented above can be applied to these

situations as an individual’s response involves some private information (his

view on the problem) which is exchanged during group discussion.

It is also possible to consider slightly different tasks. In Schkade, Sunstein

and Kahneman (2000), subjects evaluate the punitive awards (in dollars) to be

inflicted to a defendant. The action set therefore is the set of positive num-

bers. In the following model of punitive awards evaluation, group polariza-

tion arises as in the previous model. Subjects try to estimate the appropriate

amount of punitive awards which is captured by a state θ ∈ [0, ∞). They have

quadratic preferences, u(a, θ) = −(a− θ)2. The prior is a Gamma distribution

with parameters α and β. Each subject draws a signal from the set S = N. The

conditional distribution of signals is a Poisson distribution with parameter θ.

An individual makes a decision based on one signal while a group of size I

receives I signals. Let us note s̄ = ∑I
i=1 si/I the mean of the group’s signals. As

in the previous model, the action rule is weighted average of the initial mean

of θ, α/β and the mean of the signals received (where the weights on signals

increases with the number of signals):

a∗(s̄) =
α

β + I
+

Is̄
β + I

.

Therefore, the same group polarization results hold in this model. The differ-

ence between group and individual expected actions conditional on θ writes
(I−1)

(1+I/β)(1+1/β)
(θ − α/β) which is positive when θ is greater than initially ex-

pected. Moreover, it is linearly increasing in the difference between θ and t.

More extremely culpable or extremely innocent defendants produce greater

shifts of group decisions. However, the prior has a mean greater than its me-

dian. It follows that the average state among cases that induce upward polar-

ization is more extreme (relative to the mean) than the average state among
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cases than produce downwards polarization. As a result, upward shifts appear

to be stronger than downward shifts. Schkade, Sunstein and Kahneman (2000)

observe this result in their experiment and refer to it as severity shift. 6

The two models above have the common feature that group decisions are

more extreme on average conditional on essentially every state and are more

variable ex ante. They feature specific information structures and quadratic

utility function. In the rest of the paper, we generalize those two results to

a wider class of decision problems, namely monotone problems. We identify

conditions under which the decisions of a well informed group are likely to

polarize as compared to those of a poorly informed individual.

3 General Framework

An agent recommends an action a in an interval A = [a, a]. His choice depends

upon an underlying state of the world θ that is drawn from an ordered set Θ

according to a prior distribution Π(·) (π(·) denotes the corresponding density

or probability mass function). The agent receives a signal s informative for the

state of nature that is drawn from an interval S = [s, s]. A joint distribution F
defined on Θ× S describes the information structure ( f denotes the density).

We conduct our analysis using the fixed prior, Π(·) and the conditional distri-

bution of signals A(·|θ) given that the state is θ (α(·|θ) is the corresponding

density or probability mass function). Let us note the ex ante distribution on

signals D where D(·) is obtained as follows:

D(s) =
∫ s

s

∫
θ∈Θ

α(µ|θ)π(θ)dθdµ.

We assume without loss of generality the ex ante distribution of signals is

strictly increasing. 7 Given that the prior is fixed, we will refer to I = {S, {A(·|θ)}θ∈Θ}
as the information structure.

A decision maker who receives signal s updates his prior belief according

6We provide a complementary explanation of the severity shift in section 5
7Assuming that D is strictly increasing and S is an interval is without loss of generality as

for any information structure one can find an informationally equivalent information structure
with continuous signal set and strictly increasing ex ante distribution (Lehmann, 1988).

9



to Bayes rule and obtains a posterior distribution denoted P(·|s) (or P(s)):

P(θ|s) = α(s|θ)π(θ)∫
ω∈Θ α(s|ω)π(ω)dω

.

He then chooses the action that maximizes his expected utility given the

resulting posterior belief, i.e.

a∗(s) = argmaxa∈A

∫
θ∈Θ

u(a, θ)dP(θ|s),

where a∗(·) is referred to as the action rule of the decision maker. 8

We restrict the analysis to monotone environments, i.e. problems where

the action rule is increasing with respect to signals. Athey and Levin (2001)

show that the monotonicity of the action rule obtains from joint assumptions

on the utility function and the information structure. A class of utility functions

is defined by properties of the incremental return function, r(θ) = u(a′, θ) −
u(a, θ), for a′ > a. For instance, incremental returns may be assumed to be

increasing with respect to θ, in which case the utility function is supermodular.

The class of information structures is characterized by the sense in which the

set of induced posteriors, {P(·|s)}s∈S, is ordered. Increasing the signal may for

instance induce a first order stochastic dominance shift of the posterior.

The more restricted the class of utility functions, the larger the class of infor-

mation structures inducing an increasing action rule. Those information struc-

tures will be called monotone (for a given class of utility functions). If the utility

function satisfies the single-crossing property, i.e. r(θ) ≥ 0 implies r(θ′) ≥ 0,

then the action rule is increasing if posteriors are ordered by the monotone likeli-

hood ratio order. 9 If the utility function can be further assumed to be supermod-

ular, then posteriors need only be increasing in the sense of first order stochastic

dominance. When incremental returns are concave in θ, actions are increasing

with respect to second order stochastic dominance shifts in beliefs.

In this paper, we do not restrict attention to a particular class of monotone

decision problems. We will therefore not specify which classes of utility func-

8We assume that the action rule is single-valued.
9Quah and Strulovici (2009) show that actions are increasing as a function of changes of

belief in monotone likelihood ratio for a larger class of utility functions.
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tions and information structures we are referring to.

In this framework, we attempt to establish a relation between the precision

of an information structure and the extremity of the induced actions. We con-

sider two monotone information structures, IG and II , and we assume that the

former is more precise than the latter. A natural way of modeling information

precision in monotone environments is to use the monotone information order

(MIO) introduced by Athey and Levin (2001) which relates the precision of an

information structure to the ex ante expected utility it provides. Given a class

of utility functions, IG is more precise than II if it provides a greater ex ante

expected utility for any utility function in this class. 10

Holding the utility function fixed, we compare the group’s actions induced

by IG to the individual’s actions induced by II . We are interested in deriving

the sense and conditions in which the group’s decisions polarize as compared

to the individual’s. We do so from two points of view. Ex ante, the group’s deci-

sions are more dispersed. A well informed group is able to better discriminate

a state from another than a poorly informed individual. Consequently, the indi-

vidual’s actions are relatively constant across states as compared to the group’s

actions. Conditional on a particular state, the group’s actions are higher condi-

tional on a high state and lower conditional on a low state.

4 Information Precision and Ex Ante Variability of

Actions

The examples presented in section 2 suggest that a well informed group makes

more variable decisions ex ante than a poorly informed individual. This section

derives sufficient conditions on the utility function for this result to hold in

monotone problems. Information precision is measured by ex ante variability

of beliefs: the more precise the information structure, the more variable (ex

ante) the beliefs it induces. As a result, whether group actions are more variable

10The most famous criterion for information precision is due to Blackwell (1953). Blackwell’s
criterion is applicable to any kind of statistical decision problem, that is IG Blackwell domi-
nates II if and only if a decision maker with arbitrary preferences prefers holding IG to II .
Given the analysis is restricted to ordered information structures, Blackwell’s criterion is more
restrictive than the MIO.
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ex ante than individual actions depends upon the relation between beliefs and

actions, which is in turn related to properties of the utility function.

Proposition 1 and 2 relate the sense in which the group’s actions are more

variable to the familiar second order stochastic dominance order. Those two propo-

sitions make restrictive assumptions on the utility function as actions must be

concave, convex (proposition 2) or linear (proposition 1) with respect to beliefs.

If actions are only assumed to be strictly increasing in beliefs, proposition 3

shows that group actions are more variable with respect to a tail ordering. Ex-

ample 1 shows that without any restriction, the group may exhibit less variable

actions than the individual in the sense of second order stochastic dominance.

Lemma 1, which is due to Athey and Levin (2001) formalizes the intuition

that the precision of an information structure can be measured by the ex ante

variability of its posteriors. A monotone information structure I induces a set

of posteriors {P(·|s)}s∈S ⊂ ∆(Θ) which is ordered in some relevant stochastic

sense noted ≥st and an ex ante distribution of signals, D(·). As a result, it in-

duces a random variable taking value in the belief space P̃ whose p-percentiles

are noted P(·|D−1(p)).

Lemma 1 (Athey and Levin (2001)). IG is more precise than II if and only if for all

q ∈ [0, 1], PI(· | DI ≤ q) ≥st PG(· | DG ≤ q).

Given that the group and the individual receive informations DG(s) ≤ q

and DI(s) ≤ q respectively, the group should be more confident that the state

of nature is low since its information is more precise. This is represented by

the fact that the group’s posterior is lower than the individual’s with respect to

the relevant stochastic order. The group would then choose a lower action as

compared the individual. Since the prior is fixed, it follows that PI(· | DI ≤
1) = PG(· | DG ≤ 1) = Π(·). The condition of lemma 1 can therefore be

rewritten the other way around: for all q ∈ [0, 1], PI(· | DI ≥ q) ≤st PG(· |
DG ≥ q). Provided that that the signal is ”high” for both the group and the

individual, the group should be more confident that the state is high.

To see that this condition captures the idea that group posteriors are more

variable ex ante, it is convenient to restrict attention to problems with two states

of nature. When Θ contains two elements, the belief space is the unit inter-

val (a belief is represented by the probability of the high state). The random
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variable P̃ can then be conveniently represented by its distribution over [0, 1],

denoted Γ. Then P(·|DG ≤ q) corresponds to
∫ q

0 Γ−1(z)dz, where Γ−1 is the

quantile function of P̃. Athey and Levin (2001)’s condition then reduces to∫ q
0 Γ−1

G (z)dz ≤
∫ q

0 Γ−1
I (z)dz which is the quantile formulation of mean preserv-

ing increase in risk relation (Rothschild and Stiglitz, 1970). So, Athey and Levin

(2001)’s condition on P̃I and P̃G is a multivariate generalization of the mean pre-

serving increase ranking. 11

Since an information structure and a utility function give rise to a (ex ante)

distribution of signals D and an action rule a∗ : S→ A, they generate ex ante a

random variable, Ã, taking value in the action set A. Let us note the associated

distribution Λ(·) in which Λ(a) = Prob({s : a∗(s) ≤ a}). Defining s∗a(a) by

s∗a(a) ≡ sup{s : a∗(s) ≤ a} if {s : a∗(s) ≤ a} contains at least one element and

s∗a(a) ≡ s if {s : a∗(s) ≤ a} is empty, we obtain Λ(a) = D(s∗a(a)). Note that

a∗(D−1(·))is the quantile function associated to Λ(·).
We relate the precision of the information structure to the variability of Ã.

To do so, it is convenient to define the following function: given some pref-

erences u(a, θ), the action function δ associates to each posterior P in ∆(Θ) an

optimal decision a = δ(P), where

δ(P) = argmax
∫

θ∈Θ
u(a, θ)dP(θ).

The action function is defined over the beliefs, rather than a linear space. It only

depends on the utility function so the group and the individual share the same

δ. The action function is increasing with respect to posteriors by construction.

We abuse terminology by calling δ(·) linear, concave or convex for a given in-

formation structure if δ(γP + (1− γ)P) is equal, higher or lower (respectively)

than γδ(P) + (1− γ)δ(P) for γ ∈ (0, 1) and for any posteriors P, P′ induced by

this information structure.

Proposition 1 presents a sufficient condition on the action function for the

distributions of group and individual actions to be ranked in terms of mean

preserving increase in risk.

11A random variable is a mean preserving increase of another if and only if the two random
variables have the same mean and are ranked by second order stochastic dominance.
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Proposition 1. Suppose IG is more precise than II . If the action function is linear for

IG and II , then
∫

a≤ã ΛG(a)da ≥
∫

a≤ã ΛI(a)da for all ã ∈ A with equality for ã = a.

Proposition 1 follows from a change-of-variables argument. When the ac-

tion function is linear, variability of the posteriors induced by the information

structure translates directly into variability of the distribution of actions.

Claim 1 presents sufficient conditions on the utility function for the action

function to be linear for any information structure.

Claim 1. The action function is linear for any information structure if the utility

function is quadratic, i.e. u(a, θ) = −(a− h(θ))2.

If the marginal return to action satisfy the too conditions set in claim 1,

then they take the form: u′a(a, θ) = a + h(θ). The optimal action associated

to signal s equalizes the expected marginal returns to action to 0, i.e.
∫

θ∈Θ a +

h(θ)dP(θ|s) = 0. The optimal action is linear in the expected value of h(θ), so

is linear in P.

Quadratic utility functions model situations where decision makers can be

seen as trying to hit a target h(θ). The costs associated to missing the target

only depends on how far from the target the action is.

This assumption may be sensible in the context of the choice dilemma ques-

tionnaire presented in section 2. Subjects are presented with two alternative

courses of actions and indicate the extent to which one is preferable to the other.

On the other hand, when the tasks consists in evaluating the punitive awards

to be inflicted to a defendant as in Schkade, Sunstein and Kahneman (2000),

it may be natural to assume that over-estimating the appropriate punishments

is more costly than under-estimating them. 12 The verdicts of the a juror then

tend to be biased downward. Example 1 presents a decision model describing

this bias and shows that it induces the action function to be convex with respect

to beliefs.

Example 1. Consider that a juror wants to match his verdict a with the ap-

propriate amount of punitive awards θ. a and θ are both positive numbers.

12This assumption would have more bite in an actual court case where verdicts have conse-
quences than in an experimental court case.
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His payoffs are modeled by the function U(a− θ) which is concave,twice dif-

ferentiable and reaches its maximum at 0. The asymmetry in losses is mod-

eled by assuming that U′(·) is concave. To see that the jurors’ actions are

convex with respect to beliefs, consider two degenerate beliefs on θ and θ′

that we will note (abusing notations) θ and θ′. The optimal actions associ-

ated to those beliefs are δ(θ) = θ and δ(θ′) = θ′ respectively. Now, consider

that the juror believes that each state occurs with probability 1/2 and evalu-

ates the punitive awards at 1/2θ + 1/2θ′. His expected marginal gains then is
1
2U′(1

2(θ − θ′)) + 1
2U′(1

2(θ
′ − θ)) which is strictly negative since U′ is concave.

The optimal evaluation therefore is lower than 1
2 θ + 1

2 θ′ so the action function

is convex.

There also are situations where missing the target is more serious when the

target is high than when it is low. Consider a police commissioner who must

decide how many policemen are needed to ensure security around a strike. He

only has noisy information about the number of participants. Suppose that

sending too many or too few policemen is equally costly: in the first case, the

media will critic a disproportionate use of force while in the other they will

blame his recklessness. However, the bigger the strike, the greater the media

coverage so the greater the costs of the mistake. The police commissioner’s ac-

tion would then be biased upwards. Example 2 presents a model that captures

this situation and shows that it leads to a concave action function.

Example 2. The action a and the state θ are positive numbers. The utility func-

tion is u(a, θ) = −θ(a − θ)2. The marginal returns to action function (which

satisfies the single-crossing property) writes−2θ(a− 1). δ(P) is therefore equal

to the ratio of the second order moment of P to the expected value of P:

δ(P) =
EP(θ

2)

EP(θ)
.

The action function is concave in P if for all P, P′ induced by the information

structure, δ(P′) > δ(P)⇒ E(P′) ≥ E(P).

When the utility function exhibits a bias (towards high or low actions) that

is captured by a concave or convex action function, the less precise an agent’s
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information, the more biased his decisions. In example 1, it requires confidence

about the defendant’s culpability to sentence high punitive awards. Equipped

with superior information, a jury is more likely to be confident enough to sen-

tence high awards than an isolated juror. As a result, the group and individual

distributions of actions have different means and cannot be compared as in

proposition 1. Proposition 2 formalizes these intuitions in the case where the

state space contains two elements.

Proposition 2. Consider that Θ has two elements. Suppose IG is more precise than

II , and the suppose that the action function is strictly increasing for IG and II :

• If the action function is concave for IG and II , then
∫

a≤ã ΛG(a)da ≥
∫

a≤ã ΛI(a)da.

• If the action function is convex for IG and II , then
∫

a≥ã ΛG(a)da ≤
∫

a≥ã ΛI(a)da.

Proposition 2 provides a sense in which the group’s actions are ”asymmetri-

cally more variable” than the individual’s. In proposition 1 the two conditions

set in proposition 2 held simultaneously. This was a way of saying that the

group’s actions are more extreme on both sides of the action set. When the

action function is convex (concave), then the group’s actions are only more ex-

treme at the top (bottom) of the action set in the sense of the integral condition

set in proposition 2. At the other hand of the action set, the sense in which

the group’s decisions are more extreme is expressed through a (weaker) tail

ordering, as explained in proposition 3. 13

Proposition 3 shows that the tails of the group’s distribution of actions are

fatter than those of the individual’s distribution of actions. This result only

requires the action function to be strictly increasing, i.e. P′ >st P implies

δ(P′) > δ(P) for P, P′ ∈ {P(s)}s∈S. It is therefore applicable to a much wider

class of monotone environments.

13One may think that adjusting the distributions of actions for their mean makes it possible to
compare the resulting distribution according to the mean preserving increase in risk relation.
To see that this is not true, consider the following characterization of the mean-preserving
increase relation: when there are two states of the world, P̃G is a mean preserving increase of
P̃I if and only if E(ψ(P̃)) ≥ E(ψ(P̃I)) for any convex function ψ. This latter condition does not
apply on the mean adjusted distributions δ(P̃G)− E(δ(P̃G)) and δ(P̃I)− E(δ(P̃I)) in general.
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Proposition 3. Suppose the action function is strictly increasing for IG and II . Sup-

pose also that both information structures induce a finite number of posteriors. If IG is

more precise than II , then:

• if ΛG(a) < ΛI(a) for some a ∈ A, then there exists a′ < a such that ΛG(a′) >

ΛI(a′).

• if ΛG(a) > ΛI(a) for some a ∈ A, then there exists a′ > a such that ΛG(a′) <

ΛI(a′).

The conclusions of Proposition 3 require the assumption that the action

function is strictly increasing. Example 3 demonstrates that this assumption

is necessary. In example 3, payments are quadratic but the action set is dis-

crete. As a result, different posteriors induce the same action so that the greater

variability of group beliefs is hidden at the level of actions. In fact, the point

of example 3 is even stronger: the result of proposition 1 is reversed, i.e. an

improvement in information precision leads to a decrease in action variability

in the sense of second order stochastic dominance.

Example 3. There are two states of nature 0 and 1. The action set contains three

actions: {0, 1/2, 1} and preferences are quadratic u(a, θ) = −(a− θ)2. The in-

termediate action is never optimal under perfect information. It is therefore

natural to expect a well informed group not to play this action as often as a

poorly informed individual. This example shows that this insight is not accu-

rate. The group receives three signals, high medium and low:

0 1

l 8/10 1/10

m 1/10 1/10

h 1/10 8/10

The individual receives only two signals high and low:

0 1

l 3/4 1/4

h 1/4 3/4
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The group’s information is more precise than the individual’s. However, the

individual only plays extreme actions (with equal probability) while the group

plays the intermediate action with positive probability. Indeed, the group pos-

teriors about state 1 are 1/9, 1/2 and 8/9, where the intermediate posteriors

occurs with probability 1/10. The individual posteriors are 1/4 and 3/4. Given

that preferences are quadratic, a decision maker should play 0 if and only if his

belief about state 1 is lower than 1/4 and should play 1 if and only if his belief

is higher than 3/4. The individual has a more dispersed distribution of action

in the sense of second order stochastic dominance.

There is a straightforward, but weak, conclusion that holds for all monotone

decision problems.

Proposition 4. If the group information structure is more precise than the individ-

ual’s, then the support of the ex ante distribution of individual decisions is included in

the range of the support of the ex ante distribution of group decisions.

5 Information Precision and Ex Post Extremity of

Decisions

The models presented in section 2 have the property that the group’s actions

are more variable ex ante than the individual’s. The ex ante analysis of section 4

shows that quadratic utility functions are important to obtain this result. This

section considers the other property of the models of section 2, namely that the

group’s actions are more extreme on average as compared to the individual’s

conditional on essentially all states of the world.

We work in the case where the state space contains two elements. As in

section 4, precision of an information structure is associated to properties of

posteriors and therefore to properties of actions. In the ex ante case, we could

use the known characterization of information precision as ex ante dispersion

of posteriors. In this section, we have to determine how information preci-

sion translates to the conditional distributions of posteriors. Lemma 2 provides

conditions under which information precision translates into posteriors being

higher conditional on the high state and lower conditional on the low state. If
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the information structure satisfies a symmetry condition which implies that an

ex ante improvement in information precision translates to improvements in

precision conditional on both states, then posteriors are higher conditional on

the high state and lower conditional on the low state. Posteriors being higher

or lower is expressed using the integral condition of proposition 2. Without

the symmetry condition, posteriors are only more extreme in the sense that the

tail of the ex post distributions of posteriors are fatter. The extent to which

those properties on posteriors translate to actions is discussed similarly as in

section 4.

Conditional on each state θ, an information structure generates a random

variable P̃θ on beliefs whose support is the same as P̃’s, i.e. {P(·|s)}s∈S. But

the distribution of signals is now taken conditional on θ, i.e. A(·|θ). The p-

percentile of P̃θ is P(·|A−1(q|θ)). In the following definition, P(·, ·) is the joint

density on Θ× S.

Definition 1. An information structure is symmetric if θ ∈ Θ iff −θ ∈ Θ, s ∈ S iff

−s ∈ S and P(s, θ) = P(−s,−θ).

The symmetry condition implies that an ex ante improvement in informa-

tion precision translates to ex post improvements in information precision. As

a result, the higher ex ante dispersion of group posteriors translates to group

posteriors being more extreme conditional on both states. Lemma 2 provides a

formal meaning of this statement.

Lemma 2. Suppose IG is more precise than II and both information structures are

symmetric. Moreover, suppose that both information structures have posteriors strictly

increasing with respect to signals. Then
∫ q

0 ΓG(z|θ0)dz ≥
∫ q

0 ΓI(z|θ0)dz for all q ∈
[0, 1], and

∫ 1
q ΓG(z|θ1)dz ≤

∫ 1
q ΓI(z|θ1)dz for all q ∈ [0, 1].

The stochastic orders involved in lemma 2 provide a sense in which the

group’s posteriors should be more concentrated at the top of the unit interval

conditional on the high state and more concentrated at the bottom of the unit

interval conditional on the low state. As in the ex ante case, linearity of the

action function makes it possible for these stochastic orders to rank ex post

distributions of actions. Proposition 5 states this result.
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Let us note the conditional distribution of actions Λ(·|θ) where Λ(a|θ) =

A(s∗a(a)|θ). The associated random variable is noted Ãθ. a∗(A−1(·)|θ) is the

quantile function associated to Λ(·|θ).

Proposition 5. Suppose IG and II satisfy the assumptions of lemma 2.

• If the action function is concave for IG and II , then
∫ a

a ΛG(z|θ0)dz ≥
∫ a

a ΛI(z|θ0)dz

for all a ∈ A

• If the action function is convex for IG and II , then
∫ a

a ΛG(z|θ1)dz ≤
∫ a

a ΛI(z|θ1)dz

for all a ∈ A.

In the particular case where the action function is linear, both conditions

stated in proposition 5 apply, that is group actions are more extreme than in-

dividual actions conditional on both states. 14 In particular, group actions are

more extreme on average conditional on both states. If the action function is

convex, i.e. agents are biased towards low actions, then the group’s actions are

expected to be higher conditional on the high state, but not necessarily lower

conditional on the low state (the converse holds for a concave action function).

This result can be related to the severity shift of Schkade, Sunstein and Kah-

neman (2000) presented in section 2. When subjects are asked to evaluate the

amount of punitive awards, the upward shift in group decisions (relative to

individual decisions) are much stronger than the downward shift. As argued,

in example 1, it may sensible to assume that subjects prefer underestimating

rather than overestimating the amount of punitive awards and as result have a

convex action function. The decisions of group of subjects then become more

visibly extreme when the defendant is culpable than when he is innocent.

If symmetry cannot be assumed, then the conclusions of lemma 2 must be

weakened. An ex ante improvement in information does not guaranty that

information has improved conditional on both states as example 4 shows.

14Note that the greater extremity of group actions is not expressed by first order stochastic
dominance: the reason is that conditional on the high state, the group may sometimes play
actions lower than any action potentially played by the individual. Intuitively, since the group
is more confident in his information, it sometimes makes bigger mistakes than the individual
could do.
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Example 4. Assume that there are two states 0 and 1 and three signals l, m

and h. The states are equally likely ex ante. The information structure II is

described by the following table of conditional probabilities:

0 1

l .7 .5

m .3 .5

h 0 0

0 1

l .6 .4

m .4 .4

h 0 .2

In the example, the group’s information is plainly superior to the individual’s

when the state is 1 because in that case the group receives a fully informative

signal with positive probability. On the other hand, the individual’s informa-

tion is not inferior when θ = 0 . Ex ante, the group’s more precise information

given 1 compensates for lack of precision given 0.

It is straightforward to check that
∫ q

0 ΓG(z)dz ≥
∫ q

0 ΓI(z)dz for all q ∈ [0, 1],

but
∫ .5

0 ΓG(z|θ0)dz <
∫ .5

0 ΓI(z|θ0)dz. The conclusions of lemma 2 do not hold

conditional on θ0.

If the information structures cannot be assumed symmetric, then the follow-

ing weaker implications on conditional distributions of posteriors still holds:

Lemma 3. If IG is more precise than II , then:

• if ΓG(q|θ0) < ΓI(q|θ0) for some q ∈ [0, 1], then there exists q′ < q such that

ΓG(q′|θ0) > ΓI(q′|θ0).

• if ΓG(q|θ1) > ΓI(q|θ1) for some q ∈ [0, 1], then there exists q′ > q such that

ΓG(q′|θ1) < ΓI(q′|θ1).

Lemma 3 states that, conditional on the high state, the upward tail of the

group’s distribution of beliefs is fatter than the individual’s. The correspond-

ing statement holds conditional on the low state. Therefore, as long as actions
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are strictly increasing in beliefs, the same property will hold for conditional dis-

tributions of actions. This proposition does not imply that the group’s actions

are more extreme on average though, so it does not guaranty polarization.

Proposition 6. If IG is more precise than II and individual and group actions are

strictly increasing with respect to their respective beliefs, then:

• if ΛG(a|θ0) < ΛI(a|θ0) for some a ∈ A, then there exists a′ < a such that

ΛG(a′|θ0) > ΛI(a′|θ0).

• if ΛG(a|θ1) > ΛI(a|θ1) for some a ∈ A, then there exists a′ > a such that

ΛG(a′|θ1) < ΛI(a′|θ1).

If actions are not necessarily strictly increasing with respect to beliefs, then

proposition 6 does not hold. This is illustrated in example 5.

Example 5. Consider an problem with two states and two actions. One decision

maker receives noisy information while the other receives no information at

all. Suppose that the utility function is such that it is optimal for the uniformed

agent to play the low action. Then conditional on the low state, the distribution

of actions of the uninformed agent is lower in any sensible sense.

6 Alternative Theories

Group polarization has been extensively studied in the past 50 years, so that

several different accounts of the phenomenon have been proposed. We distin-

guish theories based on information sharing and theories based on preference

aggregation. The decision of a group can be either seen as the outcome of the

aggregation of its members’ preferences or the combination of its members’

information. During the group’s discussion, subjects exchange their points of

view. Presenting one’s point of view to the group can sensibly be interpreted

as a preference statement or information sharing.

If the preference approach is retained, then the decision of the group re-

sults from a compromise between fixed individual positions. To the best of

our knowledge, there are two different preference based account of group po-

larization. The first relates polarization to the social decision rule that groups
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use. While group polarization is usually measured using the mean of individ-

ual and group distributions of actions, there is no reason to expect a group to

choose the mean of its members’ decisions. In particular if groups adopt plural-

istic voting, the group’s decision will be the median of its members’ responses

(assuming that preferences are single-peaked). A case then generates a shift of

group decisions toward the risky alternative if the median of the distribution

of individual responses is more risky than its mean. 15

An alternative account due to Eliaz, Ray and Razin (2006) relates group

polarization (in the problems involving decisions between a risky and a cau-

tious alternative) to the possibility that an individual reveals a different pref-

erence in a group than in isolation. Groups must decide between a safe and a

risky choice. The paper summarizes group decision making by a pair of proba-

bilities: the probability that an individual’s choice will be pivotal (determine

the group’s decision) and the probability distribution over outcomes in the

event that the individual is not pivotal. In this framework, choice shifts arise

if an individual would select a different recommendation alone than as part

of a group. If individual preferences could be represented by von Neumann-

Morgenstern utility functions, then choice shifts do not arise. Eliaz, Ray and

Razin (2006) prove that systematic choice shifts do arise if individuals have

rank-dependent preferences consistent with observed violations of the Allais

paradox. Assuming that an individual is indifferent between the safe and risky

actions in isolation, she will choose the safe action when a pivotal member of

the group if and only if the probability that the group would otherwise choose

the safe action is sufficiently high.

Existing evidence suggests that group polarization can only be partially in-

terpreted as a result of preference aggregation. Preference based approaches

imply that individual decisions do not change after discussion. Yet, it is sys-

tematically the case that individual decisions collected after the discussion also

polarize as compared to the initial individual decisions. So the group discus-

sion seems to bring some kind of relevant information to group members which

produces a polarization of individual opinions. 16

15More generally, the analysis of the social decision rule used by a group is referred to as
social decision scheme theory (Davis et al., 1974)

16Actually, if one wants to check whether part of the group polarization phenomenon can be
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The alternative set of theories is therefore based on the assumption that

group polarization results from the information subjects obtain during discus-

sion. The two major psychological theories of group polarization (as well as

ours) belong to this class.

According to social comparison theory, individuals evaluate their recom-

mendations relative to a norm of behavior that is reflected in the recommen-

dations of others. For a given choice problem, there is an ideal choice that

may depend on the choices of others. For example, in some problems individ-

uals may wish to make a recommendation that is somewhat riskier than the

average recommendation.17 Individuals make their original, pre-deliberation

recommendation according to their prior perception of the ideal choice. Dur-

ing deliberations, the group’s distribution of choices becomes known. Some

individuals will discover that their original position was not at its ideal loca-

tion relative to the group and shift accordingly. Social comparison theory has

not been formalized, and its description may lead to different modeling ap-

proach. A possibility amounts to see social comparison theory as a particular

case of our informational approach. Assume that the state of nature captures

a social norm. Every individual receives private information about this norm

(his opinion). A group has a more precise idea of what the norm is and group

polarization arises as described in this paper.

Persuasive Argument Theory (PAT) (Silverthorne, 1971; Vinokur and Burstein,

1974) requires a discussion between group members and is based on the obser-

vation of arguments exchanged during discussion. In a choice dilemma ques-

tionnaire, a subject determines his attitudes by thinking about reasons (argu-

ments) favoring either alternatives. A response then reflects the balance be-

tween conflicting reasons. During group discussion, subjects exchange argu-

ments and an individual’s attitude is affected by arguments that are novel to

this individual. Systematic group polarization occurs in some decision prob-

explained by a preference based account, one needs to compare the individual decisions after
the information exchange to the group decision. Stoner (1968) notes that groups’ decisions
polarize slightly more than post deliberation individuals’ decisions.

17Brown (1986) describes the process as follows: ”people will be motivated to fall on one
or the other side of the central tendency because they seek not to be average but better than
average, or virtuous. To be virtuous, in any of an indefinite number of dimensions, is to be
different from the mean – in the right direction and to the right degree.”
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lems because arguments supporting one alternative are more numerous than

those favoring the other. Each subject randomly draws a subset of k arguments.

Since arguments favoring the risky alternative are more numerous, subjects fa-

vor the risky alternative on average. During the deliberation, an individual

receives on average more novel arguments favoring the risky alternative than

arguments favoring the safe one. A risky shift naturally obtains on average.

Persuasive argument theory is very close in spirit to our account of group po-

larization. We thought of arguments as statistical signals, and relate group

polarization to the pooling of those signals within the group.

7 Conclusion

This paper derives conditions under which a well informed group’s decisions

polarize as compared to a poorly informed individual’s in a monotone deci-

sion problem. We show that polarization is likely to occur in problems where

decision makers try to hit a target and incur losses that only depends on the

distance between the action and the target. When payoffs bias decisions up-

ward or downward, we provide a (weaker) sense in which the group’s actions

polarize.

Our results point out that polarization need not be inconsistent with the

assumption that groups make better decisions on average. Nevertheless, the

existing experiments do not yield a clear normative benchmark for evaluating

decisions so that it is difficult to draw any conclusions. Glaeser and Sunstein

(2009) discuss many situations where agents seem to be prone to systematic

biases in the way they revise their opinions during a discussion. It may be

the case for instance that groups fail in accounting for the possible correlations

in their members’ information so that the resulting polarization it too strong.

We therefore believe that the framework presented here may be useful as a

benchmark for deriving possible evidence of systematic group failures.
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Appendix

Proof of Proposition 1. Given Athey and Levin (2001)’s characterization of

Lehmann criterion, IG is more precise than II if and only if: For all z ∈ [0, 1],

PI(· | DI ≤ z) �MLR PG(· | DG ≤ z). If δ is non-decreasing, then for all

z ∈ [0, 1],

δ (PI(s | DI(s) ≤ z)) ≥ δ (PG(s | DG(s) ≤ z)) .

Since δ is linear, it follows that for all z ∈ [0, 1],

∫ D−1
I (z)

s
δ(PI(s))dDI(s) ≥

∫ D−1
G (z)

s
δ(PG(s))dDG(s).

A change of variable yields
∫ z

0 δ(PI(D−1
I (p)))dp ≥

∫ z
0 δ(PG(D−1

G (p))dp where

δ(PI(D−1
I (p))) and δ(PG(D−1

G (p)) are the p-percentile of the distributions of

actions induced by II and IG respectively. Levy and Kroll (1978) [Theorem 5′]

show that this condition is equivalent to
∫ ã
−∞ ΛGda ≥

∫ ã
−∞ ΛIda for all a where

Λ(a) = sup{p ∈ [0, 1] : a∗(D−1(p)) ≤ a}.

Proof of Proposition 2 Given that the state space has two elements, saying

that IG is more precise than II is equivalent to saying that the information

structures are ranked according to Blackwell’s criterion, i.e. that P̃G is more

dispersed than P̃I in the convex order.

This last condition can be rewritten as (Shaked and Shanthikumar, 2007,

chapter 3): for all convex function ψ, E(ψ(P̃G)) ≥ E(ψ(P̃I)).

If δ is concave (and increasing), then it is true ψ ◦ δ is decreasing convex

for all ψ decreasing convex. Since it is true in particular, that for all decreasing

convex function ψ, E(ψ(P̃G)) ≥ E(ψ(P̃I)), it follows that for all decreasing con-

vex function ψ, E(ψ(δ(P̃G))) ≥ E(ψ(δ(P̃I))). Therefore ÃG dominates ÃI in the

decreasing convex order, i.e.
∫

a≤ã ΛG(a)da ≥
∫

a≤ã ΛI(a)da for all ã ∈ A.

If δ is convex (and increasing), then it is true ψ ◦ δ is increasing convex for

all ψ increasing convex. Since it is true in particular, that for all increasing con-

vex function ψ, E(ψ(P̃G)) ≥ E(ψ(P̃I)), it follows that for all increasing convex

function ψ, E(ψ(δ(P̃G))) ≥ E(ψ(δ(P̃I))). Therefore ÃG dominates ÃI in the

increasing convex order, i.e.
∫

a≥ã ΛG(a)da ≤
∫

a≥ã ΛI(a)da for all ã ∈ A.
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Proof of Proposition 3. We prove the first statement. The second can be proven

symmetrically. The proof only holds for discrete information structures, i.e. the

set of posteriors induced by an information structure contains a finite number

of elements.

Since the group information is more precise than the individual informa-

tion, it must be the case that PG(·|D−1
G (0)) is weakly dominated (in the relevant

stochastic order) by PI(·|D−1
I (0)). Since δ is strictly increasing, if the dominance

is strict then the minimum group action is lower than the minimum individual

action.

Suppose on the other hand that the beliefs are identical, PG(·|D−1
G (0)) =

PI(·|D−1
I (0)). Suppose further that PG(·|D−1

G (q)) and PG(·|D−1
I (q)) are con-

stant over [0, qG) and [0, qI) respectively. This implies that PG(·|D−1
G (qG)) dom-

inates PG(·|D−1
G (0)). Similarly for the individual, we have PI(·|D−1

I (qI)) dom-

inates PI(·|D−1
I (0)). As a result, qG cannot be strictly smaller than qI . If it was

the case
∫ qI

0 PG(·|D−1
G (q))dq would strictly dominate

∫ qI
0 PI(·|D−1

I (q))dq which

is in contradiction with the characterization of the monotone information order

provided in lemma 1.

If qI < qG, then PG(·|D−1
G (qI)) is strictly dominated by PI(·|D−1

I (qI)). There-

fore, δ(PG(·|D−1(qI))) is strictly lower than δ(PI(·|D−1(qI))) and for all q ∈
[0, qI), δ(PG(·|D−1(qI))) is equal to δ(PI(·|D−1(qI))).

Suppose finally that qI = qG. Then it must be the case that PG(·|D−1
G (qI))

is weakly dominated by PI(·|D−1
I (qI)) for otherwise, for ε arbitrarily small,∫ qI+ε

0 PG(·|D−1
G (q))dq would strictly dominate

∫ qI+ε
0 PI(·|D−1

I (q))dq. Either the

dominance is strict in which case δ(PG(·|D−1(qI))) is strictly lower than δ(PI(·|D−1(qI)))

and for all q ∈ [0, qI), δ(PG(·|D−1(qI))) is equal to δ(PI(·|D−1(qI))); or the two

beliefs are equal in which case one can iterate with the same reasoning.

In order to prove lemma 2, it will be convenient to use lemma 4. Lemma 4

sets two equivalent implications of the MIO on conditional distributions of pos-

teriors when the state space has two elements. Lemma 4 roughly states that

a more precise information structure should have conditional distributions of

posteriors more distant from each other.
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Lemma 4. If IG is more precise than II , then for all q ∈ [0, 1],

Γ−1
G (ΓI(q|θ0)|θ0) ≤ Γ−1

G (ΓI(q|θ1)|θ1).

Equivalently, for all q, q′ ∈ [0, 1]:

ΓG(q′|θ0) ≤ ΓI(q|θ0)⇒ ΓG(q′|θ1) ≤ ΓI(q|θ1)

Proof of Lemma 4. The first condition is based on Lehmann (1988): IG is more

precise than II if and only if, for all s ∈ SI ,

A−1
G (AI(s; θ0)|θ0) ≤ A−1

G (AI(s; θ1)|θ1)

Assuming that Pi(s) is continuous and strictly increasing for i = I, G, the above

characterization translates to the distribution of beliefs, i.e. for all q ∈ [0, 1],

PG(A−1
G (AI(P−1

I (q)); θ0)|θ0)) ≤ PG(A−1
G (AI(P−1

I (q)); θ1)|θ1))

Since Γi(q) = Ai(P−1
i (q)), the following property on ex post distribution of

beliefs obtains:

Γ−1
G (ΓI(q; θ0)|θ0) ≤ Γ−1

G (ΓI(q; θ1)|θ1) for all q ∈ [0, 1] (1)

The second condition is based on Jewitt (2007): IG is more precise than II if

and only if for all s and s′, AG(s′|θ0) ≤ AI(s|θ0) implies AG(s′|θ1) ≤ AI(s|θ1).

Given that beliefs are non-decreasing with respect to signals, this property

also holds for conditional distributions of beliefs, i.e. for all q′, q ∈ [0, 1]

ΓG(q′|θ0) ≤ ΓI(q|θ0)⇒ ΓG(q′|θ1) ≤ ΓI(q|θ1)

.

Proof of Lemma 2 Note first that symmetry implies that α(s|θ1) = α(−s|θ0),

which in turn implies that A(s|θ1) = 1−A(−s|θ0). Provided that posteriors

are strictly increasing with respect to beliefs, let us denote by s(q) the inverse
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of P(q).

We start by showing that Γ(q|θ1) = 1− Γ(1− q|θ0). Note that Γ(q|θ1) =

A(s(q)|θ1). Since symmetry induces that s(q) = −s(1 − q), it follows that

A(s(q)|θ1) = A(−s(1− q)|θ1) which is also equal to 1− A(s(1− q)|θ1) and

so to 1− Γ(1− q|θ0).

Provided that the information structure is symmetric, the second proposi-

tion of lemma 4 implies that for q ∈ [0, 1]

ΓG(q|θ0) ≤ ΓI(q|θ0)⇔ ΓG(1− q|θ0) ≥ ΓI(1− q|θ0)

that is to say

ΓG(q|θ0) ≤ ΓI(q|θ0)⇔ ΓG(q|θ1) ≥ ΓI(q|θ1). (1)

Condition 1 implies that ΓG(·|θ0) and ΓI(·|θ0) cross at q̃ if and only if ΓG(·|θ1)

and ΓI(·|θ1) cross at q̃.

We now show that if ΓG(·|θ0) and ΓI(·|θ0) cross at q̃ then

∫ q̂

0
ΓG(z|θ0)− ΓI(z|θ0)]dz ≥

∫ q̂

0
[ΓG(z|θ1)− ΓI(z|θ1)]dz. (2)

To see this, note first that
∫ q̂

0 ΓG(z|θk)−ΓI(z|θk)dz =
∫ ΓI(q̂|θk)

0 Γ−1
I (u|θk)−Γ−1

G (u|θk)du.

A change of variable yields
∫ q̂

0 q−Γ−1
G (ΓI(q|θk)|θk)dΓI(q|θk). Therefore,

∫ q̂
0 [ΓG(z|θ0)−

ΓI(z|θ0)]dz ≥
∫ q̂

0 [ΓG(z|θ1)− ΓI(z|θ1)]dz can be equivalently rewritten as

∫ q̂

0
q− Γ−1

G (ΓI(q|θ0)|θ0)dΓI(q|θ0) ≥
∫ q̂

0
q− Γ−1

G (ΓI(q|θ1)|θ1)dΓI(q|θ1)

which holds since Γ−1
G (ΓI(q; θ0)|θ0) ≤ Γ−1

G (ΓI(q; θ1)|θ1) for all q ∈ [0, 1] is im-

plied by IG being more precise than II .

Now, Athey and Levin (2001)’s characterization of the MIO order, i.e.
∫ q

0 ΓG(z)dz ≥∫ q
0 ΓI(z)dz for all q ∈ [0, 1] can be equivalently rewritten as: for all q ∈ [0, 1],

∫ q

0
ΓG(z|θ0)− ΓI(z|θ0)dz ≥

∫ q

0
ΓI(z|θ1)− ΓG(z|θ1)dz. (3)

Conditions 2 and 3 imply that
∫ q

0 ΓG(z|θ0)− ΓI(z|θ0)dz cannot be negative

if the two distributions cross at q. Finally, if the above integral is not negative
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when the two distribution cross, then it is not negative at any point.

Proof of Proposition 5.

Following Shaked and Shanthikumar (2007, chapter 3), the conclusions of

lemma 2 can be equivalently written as follows:

• for all increasing concave function φ, E(φ(P̃G,θ0)) ≤ E(φ(P̃I,θ0))

• for all increasing convex function φ, E(φ(P̃G,θ1)) ≤ E(φ(P̃I,θ1))

Since the composition of two increasing convex functions is convex and the

combination of two increasing concave functions is concave, it follows that:

• if δ is increasing and concave, then for all increasing concave φ, E(φ(δ(P̃G,θ0))) ≤
E(φ(δ(P̃I,θ0)))

• if δ is increasing and convex, then for all increasing convex φ, E(φ(δ(P̃G,θ1))) ≥
E(φ(δ(P̃I,θ1)))

Therefore,

• for all increasing concave function φ, E(φ(ÃG,θ0)) ≤ E(φ(ÃI,θ0))

• for all increasing convex function φ, E(φ(ÃG,θ1)) ≤ E(φ(ÃI,θ1))

Proof of Lemma 3 We prove the first part of lemma 3. The second part can

proven symmetrically. Consider condition 7 of lemma 4. Suppose now that

ΓG(q̃|θ0) < ΓI(q̃|θ0) for some q̃ ∈ [0, 1] and for all q ≤ q̃, ΓG(q|θ0) ≤ ΓI(q|θ0).

Then condition 2 implies that ΓG(q|θ1) ≤ ΓI(q|θ1) for all q ∈ [0, q̃].

Therefore it cannot be the case that π(θ0)
∫ q̃

0 ΓG(z|θ0)− ΓI(z|θ0)dz be higher

than π(θ1)
∫ q̃

0 ΓI(z|θ1)− ΓG(z|θ1)dz, as the former term is strictly negative and

the latter is positive. So it cannot be the case that
∫ q̃

0 ΓG(z)dz ≥
∫ q̃

0 ΓI(z)dz.
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