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Abstract

It is commonly found that the presence of uncertainty helps discipline economic
agents in strategic contexts where incentives would otherwise induce inefficient be-
havior (Eso and White (2004), Bramoullé and Treich (2009)). We consider a variant
of the celebrated Nash Demand Game (Nash, 1953) where two values of the resource
(low and high) are possible. We show that the presence of uncertainty here may
actually have an opposite effect: strategic interactions may lead groups of risk-averse
agents to take inefficiently risky decisions. We then develop an experimental setting
to assess the severity of the coordination problem in the lab. Our findings confirm
our theoretical predictions that the (Pareto-dominant) cautious equilibria are pre-
dominantly played at the individual level. In the aggregate, however, coordination
failures abound but are decreasing in the likelihood of the high value of the resource.
It is only when this likelihood becomes low enough that cautious behavior translates
in high rates of cautious equilibria.
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1 Introduction

It is well known since the works of Olson (1965) and Hardin (1968) that group behavior
can lead to inefficient outcomes in the form of wasted resources—like over-harvesting and
over-pollution—or of forgone opportunities—e.g., under-provision of public goods—for the
group. It is also increasingly well established that the presence of uncertainty can help
discipline risk-averse agents, thus countering the inefficiency of group behavior. Using
different frameworks, Eso and White (2003), White (2004), Sandler and Sterbenz (1990)
and Bramoullé and Treich (2009) show that despite strategic motives uncertainty pushes
groups of risk-averse agents toward more prudent collective choices. For instance, it is well-
known that in a first-price auction risk-averse agents bid too aggressively in order to reduce
the risk of losing the object. By contrast, when the value of the object is uncertain due to
exogenous noise, as in Eso and White (2003), risk-averse agents of the DARA type bid less
aggressively and are better-off as a result.1 Eso and White (2003) call this precautionary
bidding. Bramoullé and Treich (2009) arrive at a similar conclusion by considering a
version of the commons problem where the (continuous) damage function is subject to
some exogenous risk. They show that risk-averse individuals act more conservatively so as
to avoid large variances in payoffs, thus mitigating the tragedy of the commons.

In sharp contrast with the aforementioned literature, we show that the presence of
uncertainty can lead groups of risk-averse agents to adopt risky behavior, inefficiently so.
We do so using a stochastic variant of the Nash demand game (Nash, 1950; henceforth
NDG), with two possible values of the stock—low and high—occurring with probabilities
(1−p) and p, respectively.2 The realized value of the stock occurs ex post and agents have
to coordinate ex ante on how to exploit the stock appropriately. Two main sets of equilibria
may coexist (Proposition 1). In one set, dangerous equilibria, agents collectively exploit
up to the "high" value of the stock, thus exposing themselves to a probability (1− p)
of collapse. In the other set, cautious equilibria, agents exhibit precautionary behavior
both at the individual and collective level by asking for a split of the "low" stock, thus
guaranteeing that their claims will be met.3,4

1The increase in welfare on the bidders’ side comes at the expense of the seller who would prefer a
reduction in uncertainty.

2The standard NDG is a special case of this model where p ∈ {0, 1}. Should the collective activity
exceed the stock, all obtain a zero payoff.

3A third set of equilibria exists, dreadful equilibria, which coexist with the other two types of equilibria
regardless of risk aversion. In a dreadful equilibrium, agents collectively claim so much of the resource
that no unilateral deviation by any one agent can stop its exhaustion. Dreadful equilibria are of course
always equilibria of the standard NDG.

4In a context relatively close to ours, Guth et al. (2004) study an NDG with two players and an
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From a welfare standpoint, the two types of equilibria can in general be ranked ac-
cording to the Pareto criterion: Any cautious equilibrium is efficient and Pareto-dominates
all dangerous equilibria that can be reached from it while increasing every agent’s claim
(Propositions 3 and 4). In particular, the symmetric cautious equilibrium always Pareto-
dominates the symmetric dangerous equilibrium. Moreover, the welfare distribution of any
Pareto-efficient dangerous equilibrium is severely lopsided. Thus, even though both types
of equilibria may coexist, a planner with a modicum of concern for distribution would
choose a cautious equilibrium over a dangerous one. Simply put, all agents are better off
taking less risk but strategic interaction may prevent them from doing so, thus confining
them to a dangerous equilibrium. The tragedy of the commons reappears.

The stochastic NDG captures a number of concrete situations related to the decen-
tralized use of common resources. The climate change issue immediately comes to mind:
climate scientists point to irreversible effects that may occur past a given accumulation
level of greenhouse gases in the atmosphere, but disagree on the precise threshold. Hence,
countries emit CO2 without knowing which threshold is the relevant one. Despite being a
long-term problem, coordinating on a high CO2-emissions path today makes it even more
difficult to meet low concentrations targets in the future. Among applications related to
public health issues are epidemiological concerns: some diseases become epidemic past
a threshold of infected people, with uncertainty about the threshold. Similarly, certain
viruses become resistant to antibiotics past an (uncertain) level of collective use of a spe-
cific drug (for more examples we refer the reader to Laurent-Lucchetti et al, 2013). An
important feature of the stochastic NDG which again fits well with these illustrative exam-
ples is that agents have the possibility of protecting themselves against risk by collectively
reducing their activity.

So why do we find that groups of risk-averse individuals may engage in overly risky
behavior in equilibrium when the literature finds the opposite? The explanation lies in the
nature of the uncertainty: Unlike previous works, we consider a bimodal distribution of
outcomes (threshold effects). This adds a new layer to the coordination problem. Recall
that a central caveat with the standard NDG is the size of the set of Nash equilibria and
the coordination problems that may arise as a result. There, the coordination problem is,
stated loosely, "within" the set of equilibria because agents have to coordinate on shares
that sum to the (known) stock. In the stochastic NDG, the coordination problem arises

uncertain surplus size. They allow each party to choose to "wait" until uncertainty is resolved before
making a claim. Adding the "wait" strategy yields two equilibria in which one of the players takes almost
the whole surplus, provided uncertainty is small. We deal here, however, with a class of problems in which
the type of surplus to be distributed does not allow for waiting until uncertainty resolves.
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within each set of equilibria, as in the standard game, but also between sets of equilibria
when dangerous and cautious equilibria co-exist. We believe that, in practice, "within"
coordination failures may not be so serious because agents often focus on an equal split of
the targeted stock value. However, how agents solve the "between" coordination problem
is far from clear, which is why we turn to experiments.

We develop an experimental setting to assess (i) the severity of the coordination problem
in the lab, and (ii) whether uncertainty shifts agents’ behavior towards cautious equilibria.
Subjects play a simple stochastic Nash Demand Game where the total amount to be divided
can either be "high" or "low", with known probabilities. Our design varies the probability
p of the high value, and we also elicit subjects’ risk preferences. Our experimental results
confirm the theoretical findings: both types of equilibria may coexist, even if all agents are
risk-averse. However, subjects coordinate more easily on the symmetric (Pareto-optimal)
cautious equilibrium, where they collectively claim the certain amount of resource. This is
more and more true as the probability of occurrence of the high state is lower. Finally, we
find that coordination failures between sets of equilibria decrease as the probability p of
the uncertain stock goes down. Thus, the probability of being in the high state thus plays
an important role in achieving coordination.

Related Literature: A set of recent papers are interested on variants of the NDG (for
example, Feltovich and Swierzbinski, 2011, Anbarci and Boyd, 2011, Anbarci and Feltovich,
2012 or Andersson et al., 2014) but none focus on the type of uncertainty we consider here.

Feltovich and Swierzbinski (2011) find using experiments that introducing strategic un-
certainty in a NDG has an effect on bargaining outcomes. Anbarci and Boyd (2011) and
Anbarci and Feltovich (2012) introduce random implementation in the NDG: with exoge-
nous probability q one bargainer receives her demand, with the other getting the remainder.
Even more recently, Andersson et al. (2014) study strategic uncertainty theoretically. They
model a player’s uncertainty about another player’s strategy as a probability distribution
over that player’s strategy set. They show that robustness to symmetric strategic uncer-
tainty singles out the (generalized) Nash bargaining solution. By contrast, the uncertainty
we introduce here is about the size of the resource.

The division of private goods also received much interest in the psychology literature,
investigating the effects of resource uncertainty on cooperative behavior in experimental
settings (Budescu, Rapoport and Suleiman, 1992; Budescu, Suleiman and Rapoport, 1995;
Rapoport et al., 1992; Suleiman, Budescu and Rapoport, 1994). As in our setting, subjects
were free to request as much as they wanted of a resource with the consequence that subjects
received nothing if the total requests by the group exceeded the available resource. Their
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main finding is that as uncertainty (defined as the interval between a lower and upper bound
of a uniform probability distribution) increased, subjects overestimated resource size and
requested more. These findings are in line with results of experimental papers on threshold
uncertainty in discrete public-good contribution games—McBride, 2010, found that wider
threshold uncertainty may also hinder collective action—and on common-resource problems
in a dynamic setting: Fischer at al. (2004), for example, showed that an increase in
uncertainty leads to overly optimistic expectations.

In these papers, and in the following literature (see for example Gustafson et al., 1999,
Milinsky et al., 2008, Tavoni et al., 2011, or Barrett and Dannenberg, 2012) it is unclear
why resource uncertainty affects cooperation. Gustasfon et al. (1999) states that "a reason
for such overestimation may be that subjects perceive a direct relationship between the
central tendency of a probability distribution and its variability. Increasing the interval
between the lower and upper bound of resource size would therefore cause subjects to
perceive or infer an increase of the expected value of the resource". Another suggested
explanation (Rapoport et al., 1992) is that people may base their estimates of resource
size on a weighted average of the lower and upper bound of its possible realization. It is
furthermore assumed that the more desirable upper bound is overweighed, resulting in an
upward shift of the estimates (the explanation is consistent with research demonstrating
that agents tend to weight more heavily desirable outcomes, see Zakay, 1983).

Our findings shed new light on why uncertainty may lead to the subjects’ collective
optimism in the experimental literature: if subjects heuristically summarize uncertainty
by placing weights on the lower and upper bound they effectively reason as in our setting.
The "overestimation" of the abovementioned studies may then be due to the coordination
problem between cautious and dangerous equilibria even if all agents are risk-averse. In
fact, a second distinguishing feature of our experimental setup is the fact that we elicit the
risk preferences of the subjects. This allows us to confirm the existence of the coordination
problem and quantify its severity, because we observe many dangerous equilibria being
played by risk-averse subjects. To the best of our knowledge, this is the first time that this
coordination problem—resulting from a combination of uncertainty, threshold effects and
risk-aversion—is identified.

The rest of the paper unfolds as follows. The upcoming section lays out the mathemat-
ical notation and the model. Section 3 states and proves our main theoretical propositions.
Section 4 presents the experimental design and Section 5 the main experimental results.
Section 6 brings some concluding remarks.
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2 The basic model

Consider a finite set N = {1, ..., n} of agents who must simultaneously decide how much
of a resource they will claim for themselves. Overall demand is sustainable up to a limit,
but uncertainty lies on the tipping point beyond which the intensity of use becomes un-
sustainable, which we model as the available resource collapsing to 0.5 Let h > l > 0 be
respectively the high and low values that the stock of resource can take. With probability
p ∈ [0, 1], the high value h is realized, with probability (1− p), the low value l is realized.

Denote xi ∈ [0, h] agent i’s claim, demand or request (we use these terms interchange-
ably throughout the paper) on the resource, x = (xi)iεN ∈ [0, h]n a request vector or profile,
X =

∑
N xi total demand, and X−i =

∑
j 6=i xj the sum of all agents’ claims except agent

i’s. Given a profile x ∈ [0, h]n, we also use the notation x−i = (xj)j 6=i for the profile of de-
mands of agents other than i. Likewise, we use xT for the profile of demands of agents that
belong to T , and x−T = (xj)j∈T for the profile of demands of agents that belong to N \ T ,
where T ⊆ N . The utility agent i derives from being delivered her request xi is given by
ui(xi), where the function ui(·) is concave and nondecreasing. Note that concavity of the
utility function implies that agents are risk-averse or risk-neutral. Reaching consumption
level xi is of course conditional on total demand not exceeding the threshold; otherwise all
agents get zero utility (ui(0) = 0 for all i).

Agent i’s expected payoff in this Stochastic Nash Demand Game (Stochastic NDG) is
now given by:

vi(xi, X−i) = ui(xi)I(X ≤ l) + pui(xi)I(l < X ≤ h), (1)

where I(·) indicates whether the condition within parentheses holds (= 1) or not (= 0).
Notice that the classical NDG is the special case of a Stochastic NDG in which p ∈ {0, 1}.

Nash equilibrium: A profile of claims x ∈ [0, h]n is a (pure-strategy) Nash equilibrium
if for all i ∈ N , and all x′i ∈ [0, h]:

vi(xi, X−i) ≥ vi(x
′
i, X−i). (2)

Strong Nash equilibrium: A profile of claims x ∈ [0, h]n is a (pure-strategy) strong
5One interpretation is that agents are sufficiently long-lived to deem the utility from immediate unsus-

tainable resource consumption negligible compared to the lifetime utility of sustained consumption.
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Nash equilibrium if there does not exist T ⊆ N , and x′T ∈ [0, h]|T | such that,

vi(x
′
T , x−T ) ≥ vi(xT , x−T ) for all i ∈ T , and (3)

vj(x
′
T , x−T ) > vj(xT , x−T ) for some j ∈ T. (4)

This completes the description of the model. We now proceed to the derivation of our
main results.

3 Main results

We first characterize the set of Nash equilibria of the stochastic NDG. Later, we will analyze
the efficiency properties of these equilibria.

3.1 Nash equilibria

An agent i’s best response strategy as follows. First, consider the case where X−i > l:

a) If X−i ≤ h, agent i can do no better than to request xi = h − X−i because the
remaining agents already collectively demand more than the sustainable threshold l.

b) If X−i > h, however, agent i can claim any amount xi ≥ 0, because she will end up
with a payoff of zero anyway.

Next, consider the case where X−i ≤ l:

a) If ui(l−X−i) ≥ pui(h−X−i), agent i does best by claiming xi = l−X−i. Requesting
the safe amount l−X−i in this case yields a higher (certain) utility than demanding
the larger but risky amount h−X−i.

b) Similarly, if ui(l −X−i) < pui(h−X−i), agent i’s best response is xi = h−X−i.

This description of the best-response strategies shows that three sorts of Nash equilibria
are possible: (1) cautious equilibria, in which agents collectively demand the highest safe
level, X = l; (2) dangerous equilibria, where agents together request the risky upper ceiling,
X = h, and face a probability 1 − p of exhausting the resource; and dreadful equilibria,
wherein everyone’s claim is so high—X−i > h for all i—that no individual adjustment can
avoid their collapse. We define these formally below.
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Cautious Equilibrium: An equilibrium profile x ∈ [0, h]n is a cautious equilibrium if
X ≤ l.
Notice that for any cautious equilibrium, payoffs are then always positive regardless of p
because l is available with certainty—i.e., vi(xi, X−i) = ui(xi) > 0 for all i ∈ N .

Dangerous Equilibrium: An equilibrium profile x ∈ [0, h]n is a dangerous equilibrium
if l < X ≤ h.

Notice that for any dangerous equilibrium, vi(xi, X−i) = pui(xi) for each i ∈ N .

Dreadful Equilibrium: An equilibrium profile x ∈ [0, h]n is a dreadful equilibrium if
X−i > h for all i ∈ N .

Dreadful equilibria yield zero utility to all. These equilibria already exist in the classical
NDG and are therefore not the focus of our analysis.

Notice that no Nash equilibrium exists in which agents collectively ask for less than l or
strictly between l and h. Moreover, cautious, dangerous and dreadful Nash equilibria can
coexist, despite the fact that all agents are risk averse. This contrasts with the findings
reported so far in the literature (see Bramoullé and Treich 2009, for example).

Example 1. Let there be only two agents, with identical utility function ui(xi) =
√
xi for

i = 1, 2. Suppose l = 0.8, h = 1, and p = 0.8. The strategy profile x = (0.5, 0.5) is
a dangerous equilibrium because vi(0.5, 0.5) = 0.7 · 0.8 = 0.56 > vi(0.3, 0.5) = 0.54 for
i = 1, 2. At the same time, the profile x′ = (0.4, 0.4) is a cautious equilibrium because
vi(0.4, 0.4) = 0.63 > vi(0.6, 0.4) = 0.77 · 0.8 = 0.62 for i = 1, 2; and x′′ = (1.5, 1.5) is also
clearly an equilibrium, a dreadful one which brings each agent’s payoff to 0.6 �

In order to grasp the conditions underlying the existence of each type of Nash equilibria,
we introduce an extra piece of notation. Let 0 ≤ X i ≤ l refer to the cut-off demand level
of the other agents such that:

ui(l −X−i) > pui(h−X−i) if X−i < X i,
ui(l −X−i) < pui(h−X−i) if X−i > X i.

(5)

This allows us to make the following preliminary statement.
6Although we exclude such risk attitudes for reasons of tractability, note that all three types of equilibria

may also coexist with only risk-loving agents. To see this, simply modify the Example by supposing that
i = 1, 2, ui(xi) = x2

i , and p = 0.4. One can check that x = (0.5, 0.5) is a dangerous equilibrium,
x′ = (0.4, 0.4) is again a cautious one, and x′′ = (1.5, 1.5) is a dreadful equilibrium.
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Lemma 1. For each i, there always exists a unique cut-off demand level, X̄i.

Proof. Let fi(X−i) ≡ ui(l−X−i)−pui(h−X−i). Clearly, f ′i(X−i) = −u′i(l−X−i)+pu′i(h−
X−i) < 0 because the function ui is concave. If fi(0) is nonpositive, set X̄i = 0. If fi(0)

is positive, the fact that fi(a) < 0 and that fi(.) is decreasing and continuous entails that
there is a unique X̄i > 0 such that fi(X̄i) = 0, fi(X−i) > 0 if X−i < X̄i, and fi(X−i) < 0

if X−i > X̄i.

The following proposition characterizes the existence of cautious and dangerous equi-
libria.

Proposition 1. The game always admits at least one non-dreadful equilibrium. More
precisely,

i) A cautious equilibrium exists if and only if
∑

i∈N X̄i ≥ (n− 1)l;
ii) A dangerous equilibrium exists if and only if

∑
i∈N X̄i ≤ (n− 1)h;

iii) Cautious and dangerous equilibria coexist if and only if
(n− 1)l ≤

∑
i∈N X̄i ≤ (n− 1)h.

Proof. Part i): By the above description of best-response strategies, a strategy profile x is
a cautious equilibrium if and only if{

X−i ≤ X̄i for all i ∈ N∑
j xj = l

(6)

Using the fact that X−i = l − xi and adding up all the inequalities in (6), we have that∑
i X̄i ≥ (n − 1)l. Conversely, if

∑
i X̄i ≥ (n − 1)l, one can always find a vector x that

satisfies (6).
Part ii): Similarly, a strategy profile x is a dangerous equilibrium if and only if{

X−i ≥ X̄i for all i ∈ N∑
j xj = h

(7)

Using the fact that X−i = h − xi and adding up all the inequalities in (7), we have that∑
i X̄i ≤ (n− 1)h. Conversely, if

∑
i X̄i ≤ (n− 1)h, one can always find a vector x which

satisfies (7).
Part iii) follows trivially.

Figure 1 illustrates the sets of equilibria in the two-agent case. These sets depend on
the location of the cut-offs X̄i, which in turn depends on the lower bound l, the probability
p, and the agents’ respective utility functions ui(·).
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Figure 1: The two agents case
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Corollary 1. Dangerous equilibria always exist when n > h
h−l , and this independently of

the utility profile and probability p.

Proof. By definition, X̄i ≤ l, which implies
∑

i∈N X̄i ≤ nl. Furthermore, we know from
proviso (iii) of Proposition 1 that a dangerous equilibrium exists if

∑
i∈N X̄i ≤ (n− 1)h.

Hence, a dangerous equilibrium exists if nl ≤ (n− 1)h.

While their existence is guaranteed for high values of n, dangerous equilibria do not
always exist.

Example 2. Let n = 3, l = 9 and h = 12. Notice that the condition n > h
h−l is not satisfied.

If p < 1
4
, then no symmetric profile of utility functions exists such that ui(xi) = (xi)

α,
0 < α ≤ 1, for all i ∈ N , for which a dangerous equilibrium exists. Because agents
have identical preferences, it is enough to check that the symmetric vector of demands,
x = (4, 4, 4), is not an equilibrium. For each i ∈ N , agent 1’s expected utility from
a symmetric demand x = (4, 4, 4) is 4αp < 1 while one from deviating unilaterally to
the cautious demand (1, 4, 4) is simply 1. On the other hand, there exists an infinity of
cautious equilibria. For instance. with p < 1

4
, the symmetric demand (3, 3, 3) is a cautious

equilibrium, and so is the asymmetric demand (1, 1, 7). �

We now discuss a few comparative statics arguments regarding the probability p of the
high value occurring and the intensity of the agents’ risk-aversion. From Proposition 1, a
higher value of p means a lower value of the cut-off X̄i, owing to the fact that claiming the
risky amount of resources, h−X−i, has become relatively more tempting. As a result, the
set of dangerous equilibria expands, in the sense of inclusion, whereas the set of dangerous
equilibria shrinks as p increases. Similarly, if agent i becomes more risk-averse—so that
the coefficient of absolute risk aversion u′′i (·)/u′i(·) uniformly increases, say—the cut-off X̄i

increases because a certain amount of resources, l−X−i, is now relatively more attractive.
It follows from Proposition 1 that the set of cautious equilibria expands while the set of
dangerous equilibria shrinks as agents become more averse to risk, all else equal.

Example 3. Let ui(xi) = (xi)
α, 0 < α ≤ 1, for all i ∈ N . With this functional form,

a symmetric dangerous equilibrium exists if p1/α ≥
(
nl−(n−1)h

h

)
. Similarly, a symmetric

cautious equilibrium exists if p1/α ≤
(

l
nh−(n−1)l

)
. It is noteworthy that p1/α is increasing

in both p and α. This implies that if p and α are such that both types of equilibria coexist,
by decreasing p—and letting α constant—we end up with only the symmetric cautious
equilibrium remaining. Similarly, by decreasing α—letting p constant—we eliminate the
dangerous equilibrium while keeping the symmetric cautious one. �
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Focusing on symmetric equilibria, we now show that the existence of the symmetric
dangerous equilibrium hinges on the preferences of the most risk-averse agent. We make
this fact explicit in the following Proposition:

Proposition 2. Let n ≤ h
h−l and assume ui(xi) = xi

αi, 0 < αi ≤ 1, for all i ∈ N .
The symmetric demand vector x =

(
h
n
, ..., h

n

)
is a dangerous equilibrium if and only if it

is also an equilibrium of a population of n identical agents with common utility function
u (x) ≡ xminαi.

Proof. "Only if". Suppose the demand vector x =
(
h
n
, ..., h

n

)
is not an equilibrium of the

population consisting of n replications of the most risk-averse agent, then it must mean
that p

(
h
n

)minαi <
[
h
n
− (h− l)

]minαi , so that x cannot be an equilibrium of the original
population.

"If". Conversely, if p
(
h
n

)minαi ≥
[
h
n
− (h− l)

]minαi , so that x is an equilibrium of the
population consisting of n replications of the most risk-averse agent. Consider the function
g (α) = p

(
h
n

)α − [h
n
− (h− l)

]α; we shall show that it is increasing on [minαi, 1), so that
p
(
h
n

)αi ≥
[
h
n
− (h− l)

]αi for all i ∈ N , thus proving the result. Consider the derivative
g′ (α) = p

(
h
n

)α
ln
(
h
n

)
−
[
h
n
− (h− l)

]α
ln
[
h
n
− (h− l)

]
and notice that

g′ (minαi) > g (minαi) ≥ 0.

It follows that g is increasing on [minαi, 1).

3.2 Efficiency

We now assess the efficiency properties of each type of equilibria. It turns out that cautious
equilibria are not only Pareto-efficient, they are also strong Nash equilibria. The following
proposition determines whether dreadful and cautious equilibria are strong in this sense.

Proposition 3. Cautious equilibria are strong, but dreadful equilibria are not.

Proof. From a dreadful equilibrium, any group deviation leading to a cautious or a dan-
gerous strategy profile, be it a deviation by the entire set of players, obviously brings a
higher payoff to all agents in the coalition. Hence, dreadful equilibria are not strong.

The proof that cautious equilibria are strong proceeds by contradiction. Let x ∈ Rn
+ be

a cautious equilibrium, and suppose there exists another strategy profile x′ and a coalition
T ⊆ N such that x′k = xk for all k /∈ T , vi(x′) > vi(x) for some i ∈ T , and vj(x′) ≥ vj(x)

for all j ∈ T . Because the utility functions uj’s are increasing, it must be the case that∑
j∈T x

′
j >

∑
j∈T xj and x′j ≥ xj for all j ∈ T . Now, consider an agent j ∈ T such
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that X ′−j > X−j. For this agent, demanding x′j = l − X ′−j or less leads to a lower payoff
than before; her best response must be x′j = h − X ′−j. We then have that vj(x′j, X ′−j) =

vj(h − X ′−j, X ′−j) < vj(h − X−j, X−j) ≤ vj(x), where the last inequality holds because x
is a Nash equilibrium. Agent j is thus worse off under x′ than under x, which contradicts
the initial assertion.

This proposition entails that all cautious equilibria are Pareto efficient. Furthermore,
any cautious equilibrium Pareto-dominates all dreadful ones. The status of dangerous equi-
libria is not so clear-cut, however. The following result shows that a cautious equilibrium
Pareto-dominates all dangerous equilibria that can be reached from it while increasing
every agent’s claim.

Proposition 4. Let the strategy profile x be a dangerous equilibrium. Any cautious equi-
librium x′ such that, for some subset T ⊆ N ,

x′i = xi − αi for all i ∈ T , and
x′i = xi for all i /∈ T ,

(8)

with αi ≥ 0 for all i ∈ T and
∑

i αi = h− l, Pareto-dominates x.

Proof. Suppose a dangerous equilibrium x and a cautious equilibrium x′ verifying condition
(8). For all i ∈ T , we have that

ui(x
′
i) ≥ pui(x

′
i + h− l)

= pui(xi +
∑
j 6=i

αj)

> pui(xi).

The first inequality holds because x′ is itself a Nash equilibrium. The second (strict)
inequality follows from the fact that

∑
j 6=i αj > 0, for

∑
j 6=i αj = 0 would mean that x is

not a Nash equilibrium (since the cautious equilibrium x′ could then be reached from it
through a unilateral move by agent i).

An important consequence of Proposition 4 is the following. If dangerous and cautious
equilibria co-exist, not only a symmetric cautious is Pareto efficient and strong, but then
the symmetric dangerous equilibrium is always Pareto inefficient.
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3.3 From Theory to Evidence

Our theoretical results reveal that a collection of risk-averse individuals may engage in
overly risky behavior in equilibrium. This adds a new layer to the coordination problem:
not only must players coordinate "within" the set of equilibria whose demands sum to a
given level, say l, but they must also coordinate between sets of equilibria—those summing
to l and those summing to h—when dangerous and cautious equilibria co-exist.

In practice, "within" coordination failures may not be so serious because agents often
focus on symmetric share profiles where each asks for an equal split of the targeted stock
value. However, how agents solve the "between" coordination problem is far from clear,
which is why we turn to experiments. We shall investigate the following three hypotheses:

Hypothesis #1: Cautious and dangerous equilibria can coexist even though all agents
are risk averse (consistent with Proposition 1).

Hypothesis #2: When both types of equilibria coexist, cautious equilibria are more
likely to emerge (due to their appealing robustness and welfare properties; consistent with
Propositions 3 and 4). This trend should be clearer as p goes down.

Hypothesis #3: Coordination becomes more difficult for higher values of p (consistent
with an increase in between-coordination failures as dangerous equilibria become more
tempting).

4 Experimental Design

The experiment took place in the spring of 2014 at the experimental lab of the University of
Bern. Participants were recruited via ORSEE (Greiner, 2004) from the student pool at the
University of Bern. The experiment lasted for up to 60 minutes per session and consisted
of three different treatments, three sessions for each treatment, and each session involving
different participants. Participants earned an average of 32 CHF for their participation
(including a 5 CHF show-up fee)—roughly $31US).

We ran three treatments, each with three sessions of twelve subjects for a total of 108
subjects. Our treatment variable is the probability p for the high value of the resource.
Each session consisted of two parts. Part 1 was a 10-period version of a Stochastic NDG
with fixed probability p for the high value of the resource, fixed h = 24 while l = 18 for all
treatments, all common knowledge. There is no framing and the wording is neutral—see
attached instructions in the Appendix. The second part of the experiment is divided into
two subparts in which subjects face two different price lists. In the first subpart (called
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Part 2), subjects face a standard risk-preference elicitation questionnaire (Holt and Laury,
2002). In the second subpart (called Part 3), subjects face a tailor-made questionnaire to
evaluate their propensity to play symmetric cautious equilibria, i.e. we evaluate there the
probability p at which a subject would play a symmetric cautious equilibrium given that
the others do as well. We will use mostly the latter task. Treatments 1 to 3 had values
of p = 0.7, 0.5 and 0.3, respectively. Let these treatments be labeled T07, T05 and T03,
respectively.

Each session is composed of twelve subjects who are divided into two silos (blocks) of
six for the first part of the experiment. Subjects in different silos never interact with one
another. In Part 1, at the beginning of each period, participants are assigned randomly into
groups of three. Groups are reshuffled each period and identities are unknown throughout
to minimize on reputation effects. Given the silos construction, we have six independent
observations per treatment (two per session). In each period, groups play the Stochastic
NDG given the probability p that prevails in the session. The probability p is common
knowledge among participants. For Part 1, subjects are informed that they will be paid
three randomly chosen periods out of the ten periods played. With this, we aim at forcing
subjects to be focused on their choices in each period, as well as reducing hedging and
repeated-game effects. When moving to the next part, subjects are informed that only one
of the subparts (Part 2 or Part 3) will be randomly chosen to be payoff-relevant. At the
beginning of the experiment, subjects are told that the experiment will be composed of
three different parts, but are not given any information regarding these until they actually
take place.

For the values of parameters used—l = 18 and h = 24—dangerous equilibria and cau-
tious equilibria can coexist, depending of course on the utility profile and p. For example,
assuming ui(xi) = (xi)

α, we can refer to Example 2 to determine the values of α for which
the symmetric cautious and the symmetric dangerous equilibria exist in each treatment.
For p = 0.7 the symmetric cautious equilibrium exists as long as α ≤ 0.5 and the symmetric
dangerous equilibrium exists as long as α ≥ 0.25. For p = 0.5,the symmetric cautious equi-
libria always exist and the symmetric dangerous equilibrium exists for mildly risk-averse
agents; i.e., if α ≥ 0.5. For p = 0.3 the symmetric cautious equilibrium always exists
and the symmetric dangerous equilibrium exists only for weak risk aversion parameters
α ≥ 0.87. Recall, from Proposition 2, that if agents have different risk aversion parameters
(i.e. different α’s) a dangerous symmetric equilibrium exists if the conditions above holds
for the most risk averse agent of the group.

Before the start of each session, participants are given a detailed set of instructions
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Treatment T07 T05 T03
Probability 0.7 0.5 0.3
Sessions 3 3 3
Subjects 36 36 36

Table 1: Experimental Design

explaining the first part of the experiment (the probability p, the payoffs, etc.) and sum-
marizing the Stochastic NDG in which they will take part. Control questions assess the
understanding by participants. The experiment does not start until all participants have
answered correctly the control questions. Part 1 lasts for ten periods. Each period is de-
composed into two steps. First, participants are asked to give an estimation of the sum of
the demands that the other two in their groups will ask for. We interpret this as the belief
that participants form regarding the behavior of their group members. This belief elicita-
tion is incentivized. If a participant correctly estimates the demand of the others in his
group, he gets 1.5 extra experimental dollars. If his estimation deviates by one, he receives
only 1 experimental dollar. If his estimation differs by 2 points, he gets 0.5 experimental
dollar. If it differs by more, he gets nothing. In the second step, each participant is asked
to play the stochastic NDG by submitting an integer demand between zero and 24. At the
end of each period, each participant is informed about the total demand in his group as
well as his payoff in this given period.

5 Experimental Results

From now on, we will call a demand profile x consistent with a Nash equilibrium whenever
demands sum to 18 or 24, and this for all of our treatments. Likewise, we will talk about
a symmetric individual Nash strategy for subject i if his demand xi is either 6 or 8, and
this for any of our treatments.

We start with an overview of the statistical observations, pointing at our main results
before exposing them formally. Our first result is that, even though subjects are mostly
risk averse, both types of equilibria are played (Result 1). We then stress that, overall,
equilibrium play is mostly cautious and that the tendency to play Cautious decreases with
p (Result 2). Finally we establish that coordinations failure are more prevalent when p

increases (Result 3).
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Figure 2: Average individual demand by period

Preliminary remarks We give here an overview of important trends coming out of our
experiment. This will help us forming some first intuitions regarding the three central
results of the experiment. Over all treatments almost half of the outcomes are Nash
equilibria (49%). The rate of Nash equilibria is 28.3% in T07, and climbs to 49% in T05
and 70% in T03. The majority of these equilibria are symmetric: 75% of all equilibria are
symmetric when p = 0.7, 76% when p = 0.5 and 85% when p = 0.3.

First, we observe that behavior differs across treatments, both at the individual and
group levels. Figure 2 shows average individual demands over time by treatments—the two
horizontal lines at 8 and at 6 stand for the dangerous and cautious symmetric demands,
respectively. Treatment T03 stands in contrast with the other two treatments. Demand
there is always between 6 and 6.5 after Period 1 while demand in T07 is clearly increasing
towards 8. T05 stands in the middle with no clear convergence to either of the two values.
Hence as we move across treatments we see a shift away from the cautious strategy.

Table 2 confirms that the average behavior across treatments significantly differs, al-
though with less significance for the comparison of T05 with respect to T07. We observe
overall that the average demand decreases when p decreases. However, average demands
are not necessarily the best measure of behavior to consider in our set up since they are
silent regarding the type of strategy chosen by participants (as well as equilibrium versus
non-equilibrium behavior). Indeed, Result 1 will confirm that both types of strategies
(cautious and dangerous) coexist in the data.
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Average individual demand(1) Average group demand(2) Test T0X=T07(3)
T07 7.4∗∗∗

[7.1,7.7]
22.2∗∗∗

[21.3,23.1]

T05 7.05
[6.5,7.2]

21.1
[19.5,21.6]

0.14 0.14

T03 6.2∗∗∗
[5.9,6.5]

18.5∗∗∗
[17.6,19.5]

< 0.01 < 0.01 (< 0.01)
The mean and statistical tests are calculated using all observations. 95% Confidence intervals for each variable are shown below each mean and are
constructed from a random effects regression specification, which includes only the treatment dummy as an explanatory variable, and with robust
standard errors clustered at the block level the constant playing the role of T07. Column (3) presents the p-values of tests based on these regressions
(identical p-values both for individual and group demands specifications) and Mann-Withney tests which compare average group demands by block and
treatment. The first number in each row of column (3) is the p-value testing for the absence of a treatment effect on the individual or group demand.
The second number in each row of column (3) reports the p-value of a Mann-Whitney test with block average group demand as the unit of observation
(6 observations per treatment). In the T03 row of column (3), the number in parentheses indicates the p-value of the same Mann-Whitney test but
between T05 and T03. Asterisks above coefficients indicate the level of significance of the coefficients in the regressions (* means significance at the
10% level, ** significance at the 5% level and *** significance at the 1% level ).

Table 2: Average demands and deviations across treatments

Treatment Cautious NE Dangerous NE Coord. failure rate = 100− CNE −DNE
T03 65% 5% 30%
T05 37.5% 11.7% 50.8%
T07 5.8% 22.5% 71.7%

Table 3: Equilibria Rates by Treatments

Table 3 hints at the next two important features of our results. We can see that two
types of coordination failures are more and more salient as p increases: As we move across
treatments (i.e., as p increases) groups focus less and less on the (Pareto-dominating) cau-
tious equilibrium (Result 2) and, most importantly, focus less and less on any equilibrium
at all (Result 3).

Result 1: Cautious and Dangerous can coexist even if all agents are risk averse.
In Part 3 of the experiment, subjects have a list of 10 decisions to make, each decision
involving the choice between two lotteries—A and B—where A always brings a certain
amount of 6 and B brings 12 with uncertainty. The probability to obtain 12 in decision
B is equal to 0.1 for decision 1, 0.2 for decision 2,... and 1 for decision 10. The number
of successive choices is indicative of the attitude towards risks of subjects with the risk-
averse switching between lotteries A and B after the fifth decision (the fifth decision is
having 6 with certainty or 12 with probability 0.5). The purpose of this task is to elicit
risk preferences and test for the existence of symmetric cautious equilibria in our set up:
notice that an agent switches at the probability where having 12 with uncertainty brings a
higher expected payoff than having 6 with certainty. This coincides with the probability at
which an agent with a belief that the others collectively play 12—he then stands to receive
18− 12 = 6 with certainty or 24− 12 = 12 with risk—switches from the cautious play to
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Number of safe choices u(xi) = xαi Proportion
0 α < 3.32 0%
1 3.32 < α < 2.32 0%
2 2.32 < α < 1.76 0%
3 1.76 < α < 1.32 0%
4 1 < α < 1.32 2.78%
5 0.73 < α < 1 12.04%
6 0.51 < α < 0.73 30.56%
7 0.32 < α < 0.51 27.78%
8 0.15 < α < 0.32 12.04%
9 0 < α < 0.15 4.63%
10 – 10%

Table 4: Number of safe choices and its mapping to risk preferences

the dangerous one (i.e. X̄i = 12). The results are shown in Table 4.
We simply record the decision at which a subject switches between lottery A and B.7

Table 4 shows the distribution of the number of safe choices in the experiment (pooled
data) as well as the mapping to risk preferences. The average number of safe choices is at
6.99 over all treatments, indicating moderate/substantial risk-aversion on the part of the
subjects as indicated in Table 4.8 This means that on average, subjects chooses option
B at the 7th decision only. There seems to be no significant difference across treatments
in the average number of safe choices made at the block level (Kruskall-Wallis test, p-
value = 0.484).9 A Wilcoxon signed-rank test cannot reject H0 that the median of the
distribution of average number of safe choices is 7 in, respectively, T07 (p-value = 0.2),
T05 (p-value = 0.599), and T03 (p-value =0.913). Overall, 72% of the agents switched
at 7 or below. In other words, at a probability of 0.7 only 27.78% of the subjects would
play a symmetric cautious strategy if they expected others to do so. Similarly, 15% of
subjects switched at 5 or below and none switched below 4. If we consider that subjects
exhibit a simple functional form of the u(xi) = xαi this median value of 7 maps to a risk
preference parameter α between 0.32 and 0.51. Following Example 2, this implies that the
symmetric Cautious exists in all treatments and that the symmetric Dangerous exists in
T07. The existence of the Dangerous in T05 requires a degree of risk aversion just equal to

7In total, 10 subjects out of 108 (and no more than 3 per session per treatment) exhibited more than one
switch. We excluded those subjects from the sample whenever necessary as is standard in the literature.

8The average risk indexes are, respectively, 6.71 in T07, 7.23 in T05, and 7.05 in T03.
9We also compute Mann-Whitney tests for pairwise comparisons. The null hypothesis of identical

medians of the distributions of average number of safe choices can never be rejected. For T07-T05, p-
value= 0.227; T07-T03, p-value=0.687; for T05-T03, p-value=0.464
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Figure 3: Risk preferences and individual demands

the highest value implied by our elicitation procedure (i.e. the symmetric dangerous exists
in T05 if α ≥ 0.5) and is very unlikely in T03 (i.e. the symmetric dangerous exists in T03

if α ≥ 0.85).
However, as we will see below, risk preferences do not seem to be statistically related

to the individual strategy chosen by subjects in our sample. This point is consistent with
our first theoretical prediction: despite agents being risk-averse, both types of strategies
(cautious and dangerous) are played when p is not too low.

It is noteworthy that the Holt and Laury procedure (Holt and Laury, 2002)—Part 2 of
our experimental protocol—leads to consistent results (i.e., agents are on average mildly
risk averse and the distribution of risk preferences is similar in each treatment): The
average number of safe choices is, respectively, 6.3 for T07, 6.1 for T05, and 6.3 for T03.

In contrast with previous literature—but in line with our theoretical results—we ob-
serve in Figure 3 an apparent lack of relationship between individual demands and risk
preferences. This observation is supported by a random-effect regression with the number
of safe choices as the unique explanatory variable (p-value = 0.830).10 We will confirm this
when presenting Result 3: risk aversion does not statistically impact the type of strategy
chosen by subjects when integrated as an explanatory variable in a regression.

Studying the distribution of the individual demands in all treatments provides a last
set of evidences in favor of Result 1. In Figure 4, we use a Kernel density estimation to
analyze the distribution of individual demands. We observe a clear bimodal distribution in
demands when p = 0.7, confirming the trend observed in the descriptive statistics: agents
focus on playing both 6 or 8 in this treatment. We interpret this play as consistent with
the coexistence of both types of equilibrium strategies (cautious and dangerous) in this

10We conditioned also individual demands on those who were more risk-averse and also found no apparent
relationship. A similar conclusion is obtained by replacing the number of safe choices from Task 2 with
the one coming from the Holt-Laury procedure in task 1 (p-value = 0.299).
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Figure 4: Individual demand by treatment.

treatment. We observe a strong shift at the individual level toward 6 when p = 0.5 (with
a little bump around "8") and an even stronger shift at p = 0.3. At the group level,
22.5% of observations are dangerous equilibria and 5.83% are cautious equilibria in T07,
11.67% of observations are dangerous equilibria and 37.5% are cautious equilibria in T05
treatment. Finally, 5% of all observation are dangerous equilibrium and 65% are cautious
equilibrium in T03. If both types of strategies are observed in our data, we start seeing
that the cautious play is more and more prevalent as the probability p decreases. This is
the focus of our next result.

Result 2: Subjects mainly play the symmetric cautious equilibrium strategy
overall, but less so for larger values of p.

The Cautious play is prevalent among equilibrium play. A first set of statistical
evidence is provided by Wilcoxon signed rank sum tests: we see that the average cautious
group play rate—36.1%— is significantly higher than the dangerous group play rate—13%
(p-value of 0.02) over all treatments. Similarly the average symmetric cautious individual
play rate—62%—is significantly higher than the symmetric dangerous individual play rate–
20% (p-value < 0.01) over all treatments. A paired t-test confirms these results: the
average rate of cautious equilibria is significantly higher than the average rate of dangerous
equilibria (p-value < 0.01) and the average rate of individual cautious play is significantly
higher than the average rate of individual dangerous play (p-value < 0.01).

This effect is stronger within treatment, when p is lower: Wilcoxon signed rank sum
tests show that the average symmetric cautious group play rate is not statistically different
from the the average symmetric dangerous group play rate in T07 (p-value= 0.115), but is
significantly higher when p = 0.5 and p = 0.3 (p-values = 0.052 and 0.027, respectively). At
the individual level, the average symmetric cautious individual play rate is not statistically
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different from the the average symmetric dangerous individual play rate when in T07 (p-
value = 0.345), but is significantly higher when p = 0.5 and p = 0.3 (p-values = 0.027 and
0.027, respectively).

Coordination on the Cautious play decreases with p. Table 5 shows the rate of
symmetric Nash strategies (individual demand equals 6 or 8). The rate of such strategies
is high overall (91% of all equilibrium play when p = 0.3, 79% when p = 0.5 and 78% when
p = 0.7). First, we see that both types of strategies are played in T07: 48% of individual
plays are equal to 8 (the symmetric dangerous play) and 30% are equal to 6 (the symmetric
cautious play). In the two other treatments, the rate of cautious strategies increases and
the rate of dangerous diminishes: 10% of individual plays are equal to 8 and 69% are equal
to 6 in the T05. Finally, 4% of individual plays are equal to 8 and 87% are equal to 6 in
T03.

Cautious or Dangerous Strategy 0.3 0.5 0.7
6 313 250 110
8 13 35 173

No. Observations 326 285 273
Proportions 0.91 0.79 0.78

Table 5: Distribution of Symmetric Nash Strategies

A repeated measure logistic regression confirms that the overall probability to play ei-
ther symmetric cautious or symmetric dangerous at the individual level significantly differs
between T07 and T03 (p-value = 0.02), T05 and T03 (p-value < 0.01) but not between
T07 and T05 (p-value= 0.92). Similar conclusions hold when we look only at symmetric
dangerous or cautious demands separately. Hence, coordination seemed to be easier when
the dangerous equilibrium was less tempting (i.e., when the probability of the high value
of the resource was lower). An interesting outcome of this coordination failure is the fol-
lowing: we observe that the average payoff of agents across all period decreases with the
probability p: the average payoff is 4.29 in T07, 4.42 in T05 and 4.94 in T03. Hence, the
higher the probability of having the high level of resource, the lower is the observed aver-
age payoff. This observation is supported by a random-effect regression (standard errors
clustered at the block level) with only the treatment dummies as explanatory variable. We
find that there is no difference in per period average individual payoff between T07 and
T05 (p-value = 0.766) while a significant difference appears between T07-T03 and T05-
T03 (p-values = 0.013 and 0.291, respectively). The lack of coordination on the (Pareto
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efficient) cautious strategy is consistent with this finding.11

The determinants of the cautious behavior at the individual level (regres-
sion analysis). The tendency to adopt cautious behavior is even clearer when we study
the determinants of individual demands in more details. We run a random-effect probit
regression to evaluate the determinants of the probability of playing the cautious (respec-
tively, dangerous) symmetric demand strategy: the dependent variable takes value 1 if the
demand by subject i in period t is 6, and 0 otherwise. As independent variables, we include
the variable first belief ≥ 18, which takes value 1 if the belief in the first period of subject
i is higher than 18, and 0 otherwise. Recall that a belief higher than 18 makes cautious
play irrelevant. We add a lag variable, lag realized value, which is subject i’s threshold
realization (18 or 24) in Period t − 1. To test if risk preferences influence behavior, we
also include risk dummy which takes value 1 if subject i’s switch to lottery B is at p = 0.7

or above. Finally, we add dummy variables to capture whether there is a treatment effect
(with T07 as the reference).

In Table 6, columns (1) and (2) reports regressions at the group level. Column 1 shows
that the propensity for groups to play either a dangerous or cautious equilibrium varies
significantly across treatments in any given period. The probability for equilibrium play
increases by 22.3% in T05, and by 42.5% in T03, compared to T07. In addition, column (2)
shows that, if an equilibrium is played, the probability that it be a symmetric equilibrium is
also much higher both in T05 and T03 (an increase of 18.5% and 44.4%, respectively). This
confirms also that the salience of cautious play, and the focality of symmetric demands is
prevalent in T03. Let us now go to Columns (3) and (4) where we study the determinants
of cautious and individual play at the individual level. In column (3) we first see that
having a high belief in the first period plays a statistically significant (and quantitatively
important) role in the likelihood of adopting a cautious play. The threshold realized in
the previous period has no impact in playing cautious. Interestingly, the fact that agents
are risk-averse has no significant impact on the probability of playing cautiously (in line
with our theoretical results). However, in T05 and T03, there is a significant shift in
the probability of playing cautiously (p-values < 0.01), of respectively 45.5% and 60.4%
compared to T07 –recall that the rate of cautious equilibria in Table 2 was at 5% in T07,
while the rate of individual cautious strategies was roughly 30% (110 observations out of
360).

The regression in column (4) of Table 6 mirrors column (3) but with the individual
11The same effect of treatments on payoff is found if we control in addition for "period". Also payoffs

are stable across period, in all treatments.
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Equilibrium(1) Symmetric(2) Cautious(3) Dangerous(4)
Constant (T07) −1.101∗∗∗

(0.192)
−1.181∗∗∗

(0.190)
−1.599∗∗

(0.651)
1.175∗
(0.666)

Period 0.092∗∗∗(0.037)
(0.024)

0.069∗∗∗(0.026)
(0.024)

0.023
(0.029)

−0.024
(0.038)

First Belief ≥ 18 −0.811∗∗(−0.289)
(0.382)

−0.463
(0.497)

Lag realized value 0.304
(0.254)

−0.031
(0.021)

Risk dummy 0.308
(0.262)

0.001
(0.358)

T05 0.568∗∗∗(0.223)
(0.170)

0.475∗∗∗(0.185)
(0.171)

2.140∗∗∗(0.455)
(0.442)

−2.569∗∗∗(−0.151)
(0.594)

T03 1.138∗∗∗(0.425)
(0.173)

1.179∗∗∗(0.444)
(0.171)

2.763∗∗∗(0.604)
(0.446)

−3.039∗∗∗(−0.242)
(0.594)

Observations 360 360 882 882
Log likelihood -661.889 -648.371 -343.697 -248.379
All regressions are probit regression specification, the constant playing the role of T07. Columns (1) and (2) are standard probit
with robust standard errors clustered at the block level. Columns (3) and (4) include in addition an individual specific random
effect (random effect probit). Column (1) dependent variable takes value 1 when either a cautious or dangerous equilibrium is
played. Column (2) dependent variable takes value 1 when either a symmetric cautious or a symmetric dangerous equilibrium is
played. Columns (3) and (4) are at the individual level. Observations for subjects exhibiting multiple switching points in Task 2
are excluded from the regressions in (3) and (4). Explanatory variables are explained in the text prior to the regression results.
In each of columns (1), (2) and (3) numbers in parentheses are the predicted probabilities. Asterisks above coefficients indicate
the level of significance of the coefficients in the regressions (* means significance at the 10% level, ** significance at the 5% level
and *** significance at the 1% level).

Table 6: Equilibrium Play

dangerous demand as explanatory variable. As before, risk preferences play no role for
the propensity to play the dangerous demand. The regression also confirms the strong
treatment effect observed in column (3). The probability of focusing on the dangerous
equilibrium strategy strongly differs across treatments. Hence, dangerous play at the indi-
vidual level is influenced by the probability p of obtaining the high value: as p goes down,
agents focus more and more on the cautious strategy.

Result 3: Coordination on any equilibria becomes more difficult for higher val-
ues of p. The main observation here is that agents focus less and less on any equilibrium
as p increases. An important aspect of equilibrium versus non-equilibrium behavior in the
stochastic NDG is the extent to which subjects fail to precisely coordinate on one of the
two of the symmetric dangerous and cautious demand. Given the anonymity conditions
in which the experiment takes place, and despite the possible learning at play because of
repeated interactions, having symmetric (equilibrium) demand profiles seems focal. This is
however not informative regarding the extent to which subjects may fail to fully coordinate
on one of the two of the symmetric dangerous and cautious demand profiles. Table 7 shows
some evidence based on probit regressions with different measures of coordination failures
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Low failure(1) Medium failure(2) Pure failure(3)
T07 0.680∗∗∗

(0.245)
(0.716∗∗∗) 0.387∗∗

(0.176)
(0.625∗∗∗) −0.671∗∗

(0.216)
(0.266∗∗∗)

T05 −0.573∗
(0.350)

(0.50∗∗∗) −0.572∗∗
(0.282)

(0.40∗∗∗) −0.527∗∗
(0.252)

(0.125∗∗∗)

T03 −1.098∗∗∗
(0.359)

(0.30∗∗∗) −0.892∗∗∗
(−0.283)

(0.283∗∗∗) −0.709∗∗∗
(0.281)

(0.035∗∗∗)

All regressions are computed using all observations at the groups level (360 observations). Standard errors for each variable are shown below each
coefficient and are constructed from a probit regression specification with robust standard errors clustered at the block level. Each regression includes
only the treatment dummies (the constant playing the role of T07) and "period" as explanatory variables. The non-significant variable "period" is not
shown. Dependent variables are dummies which takes value 1 if at least one subject’s demand is 6 or 8 in the group (column (1)), or takes value 1
if at least two subjects’ demands are either 6 or 8 in the group (column (2)), or takes value 1 if all subjects’ demands are either 6 or 8 in the group
but the group demand is neither 18 nor 24. In each of columns (1), (2) and (3) numbers in parentheses next to the coefficients are the predicted
probabilities obtained from the probit regressions. Asterisks above coefficients indicate the level of significance of the coefficients in the regressions (*
means significance at the 10% level, ** significance at the 5% level and *** significance at the 1% level).

Table 7: Coordination Failures

as explanatory variables.
Let us define a coordination failure as an instance in which subjects in a group tried to

coordinate on one of the two symmetric equilibrium demand profiles, but fail. We introduce
three different measures of such failures. In column (1), we define low coordination failure
as those groups in which at least one subject chose one of the two symmetric equilibrium
demands—Column (2) is for the case when there are at least two subjects who chose
symmetric equilibrium demands. A pure coordination failure (Column (3)) is a situation
in which all subjects in a group each demanded either 6 or 8 but the sum of their demands
didn’t sum to either 18 or 24. We see that coordination failures decrease as p goes down.
The predicted probability to witness a pure coordination failure significantly decreases from
26% in T07 to 9% in T03 (p-values < 0.01). The predicted difference between T05 and
T03 is however not significant. The observation that coordination failures decrease with p
carries over to the alternative definitions used for the explanatory dummy in column (1)
and (2). This, along with our first observation that symmetric Nash equilibrium rates are
negatively correlated with p, indicates that subjects find it easier to pin down the correct
action when p goes down. Another interpretation could be that subjects become more
prudent when the high value h becomes less likely, and revert to cautious demands. This
possibility is reinforced by our next observation.

Let us briefly investigate collective claims beyond either the high or low value of the
resource. We say (i) that a group is overshooting in a given period if its (group) demand
exceeds 24 –recall that subjects in the group each gets 0 in this case–, and (ii) that a group
demand is in the dangerous zone if it exceeds 18 –in such a case, with probability (1− p)
subjects in the group each gets 0. Regarding overshooting we notice interesting differences
across treatments. At the group level, rates of overshooting are rather low, 8.3% (T07)
and 11.6% (T05) with a drop at 0.08% in T03. Table 8 shows estimations based on probit
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Overshoot(1) Dangerous zone(2) Test T0X=T07 (Dangerous zone)(3)
T07 −1.382∗∗∗

(0.341)
(0.082) 1.330∗∗∗

(0.259)
(0.908∗∗∗)

T05 0.191
(0.451)

(0.116∗∗) −1.120∗∗∗
(0.345)

(0.583∗∗∗) 0.52

T03 −1.010∗∗
(0.485)

(0.008) −2.085∗∗∗
(0.294)

(0.225∗∗∗) 0.33 (0.20)

The coefficients and statistical tests are calculated using all observations at the group level (360 observations). Standard errors for each
variable are shown below each coefficient and are constructed from a probit regression specification with robust standard errors clustered at
the block level. Each regression includes only the treatment dummies (the constant playing the role of T07) and "period" as explanatory
variables. The non-significant variable "period" is not shown. Explanatory variables are dummies which takes value 1 if the group demand is
beyond 24 (column (1)), or takes value 1 if the group demand is above 18 (column (2)). In each of columns (1) and (2), numbers in parentheses
are the predicted probabilities obtained from the probit regressions –numbers in parentheses in row T07 for columns (1) and (2) are the
predicted probability for a group demand to be respectively in overshoot or only in the dangerous zone. Column (3) shows the p-values of
a Mann-Whitney non-parametric test with block average group demand clustered over demands higher than 18 as the unit of observation (6
observations per treatment). In the T03 row, the number in parentheses for the last indicates the p-value of the Mann-Whitney test between
T05 and T03. Asterisks above coefficients indicate the level of significance of the coefficients in the regressions (* means significance at the
10% level, ** significance at the 5% level and *** significance at the 1% level).

Table 8: Determinants of the dangerous zones

regressions with explanatory variables overshooting and dangerous zone coded as dummies.
Column (1) shows that the probability of overshooting is not significantly different between
T07 and T05 –predicted probability at 8% in T07 and 11% in T03– but there is a drop to a
less than 1% probability in T03 –this predicted probability is not significant but the effect
on the latent propensity to overshoot is negative and significant in T03. In conjunction
with our discussion of Table 7, it is important to notice that subjects behave significantly
more cautiously as p goes down. Indeed, using our definition dangerous zone, column 2
of Table 8 shows significant differences across treatments. The predicted probability for a
group to be in the dangerous zone in T07 is 90%. There is a significant decrease (p-value
< 0.01) in the probability to reach the dangerous zone for both T05 and T03, respectively
a decrease to a probability of 58% and 22% compared to T07 –over the pooled data, the
predicted probability to be in the dangerous zone is at 55% (p-value < 0.01).12

6 Concluding remarks

We analyzed the behavior of rational agents sharing a non-excludable good that disappear
beyond an uncertain threshold. We modeled this situation as a version of the well-known
Nash Demand Game in which the amount to be split follows a discrete probability distribu-
tion. This brought two new theoretical insights. First, strategic interaction can have much
more impact on the outcome than individual characteristics: irrespective of the agents’

12Different estimation methods lead to similar results, e.g. random effect probit or repeated measures
logistic. We choose a simple probit estimation method because predicted probabilities and marginal effects
are easily computed.
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degree of risk aversion, "cautious" equilibria—where agents together behave as if the low-
est (and safest) threshold were certain—were found to coexist with "dangerous" equilibria
—where the agents’ request might lead to a breakdown—and even "dreadful" equilibria,
where so much is claimed collectively that no single player’s actions can prevent the col-
lapse. Second, cautious equilibria were shown to have robust properties: they are strong
and dominates many dangerous equilibria.

Our experimental results mostly confirm these results. First, both types of strategies,
cautious and dangerous, coexist in the experiment even if all subjects are risk averse. Our
findings confirm our theoretical predictions that the (Pareto-dominant) cautious equilibria
are predominantly played at the individual level. However, coordination failures abound
but are decreasing in the likelihood of the high value of the resource. It is only when this
likelihood becomes low enough that cautious behavior translates in the aggregate to high
rates of cautious equilibria.
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A Appendix: Instructions (for online publication only)

We attach below the instructions used in the experiment –all parts compiled in a single
document. Part 1 refers to T07. Recall that subjects knew that there would be three parts
in the experiment. However, they had no knowledge of the content of Part 2 while playing
Part 1.
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General Instructions	


!
Welcome to this economic experiment. In the experiment you and other participants will make decisions. 

Next to the fee of 5 CHF for showing up in time, you can earn money in the experiment.  How much you 

earn depends on your own decisions and the decisions of other participants. At the end of the experiment 

the show-up fee and the earnings from the different parts will be added up and confidentially paid out to 

you.	



!
The experiment consists of three different parts that are all independent of one another. For each part you 

will receive specific instructions. These instructions will explain how you make decisions and how your 

decisions and the decisions of other participants influence your earnings. Therefore, it is important that 

you read the instructions carefully.	



!
From now on you are not allowed to communicate in any other way than specified in the instructions. 

Please obey to this rule because otherwise we have to exclude you from the experiment and all earnings 

you have made will be lost. Please also do not ask questions aloud. If you have a question raise your hand. 

A member of the experimenter team will come to you and answer your question in private.	



!
!
!
!
!
!
!
!
!
!
!
!
!

31



v.1	



Specific instructions – Part 1	


!
In this part of the experiment you can earn money with the decisions you make. How much you earn 

depends on your own decisions, the decisions of other participants as well as random events. We will not 

speak of CHF during the experiment, but rather of experimental dollars. All you earnings will first be 

calculated in points. At the end of the experiment the total amount of points you earned in this part will be 

converted to Euro at the following rate:	



1 point = 0.8 CHF	



!
At the beginning of this part of the experiment participants will be randomly divided into two blocks of 

six. You will not get to know the identity of the people in your block, neither during nor after the 

experiment. The other block members will also not get to know your identity. These two blocked stay 

the same throughout Part 1. Next, within each of the two block,  two groups of three will be formed. You 

will not get to know the identity of the other group members, neither during nor after the experiment. 

The other group members will also not get to know your identity.  A decision situation (explained 

below) will be repeated for 10 periods. Each period, new groups of three will be randomly formed within 

each block.	



!
The decision situation:	



You will be the member of a group of 3 people. Available to each group is a sum of experimental dollars. 

However the sum available can take two different values. With probability 0.7, the amount of 

experimental dollars available to the group is 24. With probability 0.3, the amount of experimental dollars 

available to the group is 18. Each group member has to privately decide on the share of the amount of 

experimental dollars he/she will demand. The share demanded must be an integer between 0 and 24. At 

the time of deciding on the share demanded, the amount of experimental dollars available to the group 

(either 18 or 24) is not known. The realized amount available will be determined randomly according 

to the above probabilities by the computer once all decisions have been made.	



Once each group member has made his/her decision, the computer randomly determines whether the 

amount of experimental dollar available is 24 or 18. With probability 0.7, the amount available is 24. With 

probability 0.3, the amount available is 18. 	



The way earnings are determined is as follows. If the sum of the demands in the group is less than or equal 
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to the amount of experimental dollar available, then each group member receives the share he asked for, 

and the surplus of experimental dollars (if any) is thrown away. However if the sum of demands exceeds 

the amount of experimental dollars available, then each group members receives 0 (the amount of 

experimental dollars available is thrown away).	



!
Your earnings from your demand decision in a given round are thus equal to EITHER	



1) Your demand if the sum of demands in your group are less than or equal to the realized 

amount of experimental dollars available (as determined by the computer)	



2)  0 if the sum of demands exceeds the realized amount of experimental dollars available (as 

determined by the computer)	



!
!
CONTROL QUESTIONS- decision situation:	



Please answer the following control questions. These questions are arbitrary examples of what could 

happen in the experiment. They will help you to gain an understanding of the calculation of your earnings. 

Your earnings vary with your own decision and with the decisions of the other group members.  

!
Please answer all the questions and write down your calculations. 

!
1. Each of the group members (including you) demands 24. 

What will your earnings be? ___________ 

What will the earnings of each of the other group members be? ___________ 

!
2. You demand 20 and each of the other group member demand 2.  

a) What will your earnings be, if the realized amount of experimental dollars (as determined by the 

computer) is 24? 

Your total earnings ___________ 

b) What will your earnings be, if the realized amount of experimental dollars (as determined by the 

computer) is 18? 

Your total earnings ___________ 
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!
3. You demand 4 and each of the other group member demand 6.  

What will your earnings be? ___________ 

What will the earnings of each of the other group members be? ___________ 

!
4. Each group member (including you) demands 7. 

a) What will your earnings be, if the realized amount of experimental dollars (as determined by the 

computer) is 24? 

Your total earnings ___________ 

b) What will your earnings be, if the realized amount of experimental dollars (as determined by the 

computer) is 18? 

Your total earnings ___________ 

!
!
!
!
ONCE YOU ARE DONE FILLING THE CONTROL QUESTIONS, PLEASE RAISE YOUR 

HAND AND ONE OF THE EXPERIMENTER WILL COME TO CHECK YOUR ANSWERS. 

!
!
!
!
!
!
!
!
!
!
!
!
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In this part of the experiment you will be engaged in the decision situation for 10 successive periods. In 

each period you and the other two group members will be randomly rematched into new groups of three 

within the block you belong to.	



!
In each period you and the other group members have to make a share demand decision but also an 

estimation of the actual sum of demands of the other 2 group members. When you make your decisions 

you do not know the decisions of the other group members nor do the other group members know your 

decisions.  At the end of a period you will be informed about the demands in your group in that period.	



!
In each period you will make your estimation and share demand on a screen as shown below:	



 ---------------------------------------------------------------------------------------------------------------------------- 

! 	

!
!
!
!
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!
l If your estimate is exactly right (that is, if your estimate exactly matches the rounded actual sum of 

demands of the other group members), you will receive 1.5 points extra to your other earnings from 

the experiment. 

l If your estimate deviates by 1 point from the actual result, you will receive 1 points extra. 

l If your estimate deviates by 2 points from the actual result, you will receive 0.5 point extra 

If your estimate deviates by 3 or more points from the correct result, you will receive no points 

!
Your next decision is the Demand decision.  

-------------------------------------------------------------------------------------------------------------------- 

       !  

------------------------------------------------------------------------------------------------------------------------- 

!

36



v.1	



After the 10 periods of this part are over, Part 1 ends. There will be two additional and independent parts 

for this experiment.  

!
From Part 1, 3 out of the 10 periods will be chosen randomly by the computer and paid out, as part 

of your total earnings in the experiment. This is the end of the instructions for Part 1. If you have a 

question please raise your hand. 

!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!

37



v.1	



!
Specific instructions – Part 2	



!
In this part and in the next one (Part 3) of the experiment you can earn money with the decisions you 

make. How much you earn depends on your own decisions as well as random events. A word of caution 

though. You will have to make several choices, but only one of them will be payoff-relevant. So you 

should take each decision seriously. A second word of caution: only Part 2 or Part 3 will be payment-

relevant. The computer will randomly choose (each with probability 0.5) either Part 2 or Part 3 to be 

payment-relevant.	



!
We will not speak of CHF during the experiment, but rather of experimental dollars. All you earnings will 

first be calculated in experimental dollars. At the end of the experiment the total amount of experimental 

dollars you earned in this part will be converted to CHF at the following rate:	



!
1 experimental dollar = 0.05 CHF	
  !

We now describe how this part of the experiment proceeds. First you will be introduced to the basic 

decision situation, thereafter you will learn more specifically how the experiment is conducted. You will 

also be asked some control questions that will help you to understand the decision situation. 	



!
The decision situation:	



You will be faced with 10 decisions. Each decision is a paired choice between two gambles (termed 

Option A and Option B). For each pair, you will have to state a choice between Option A and Option B. 

Once all the participants have decided which option they prefer for each of the ten decisions, the computer 

will randomly determine which of Decision 1, 2,…., or 10 will be payoff relevant.  Once the payoff 

relevant decision is selected, the computer will choose randomly one more time to determine the 

realization you have chosen. How things work in practice will be made clear with the help of an example. 	



!
The way the 10-decisions situation will look like on your screen is shown on the next page.	



!
!
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!
!
!

!  

Remember that the computer randomly determines both which of Decision 1, 2, 3,…, 10 is payoff-

relevant, and the realization (i.e. money) for the option you chose for this decision.  

!
Look at Decision 1 at the top of the table. Suppose Decision 1 is selected by the computer. You see in the 

table that Option A pays 200$ with probability 1/10 and 160$ with probability 9/10. Option B pays 385$ 

with probability 1/10 and 10$ with probability 9/10. This means that Option A pays 200$ if the second 

number selected by the computer is 1, and 160$ if number selected is either 2, 3, 4,…, or 10.  

!
The other Decisions are similar except that as you move down the table, the chances of the higher payoff 

for each option increase. In fact, notice that if Decision 10 is selected as the payoff-relevant decision by 

the computer, then things stop since each option pays the highest payoff for sure (probability 10/10=1). 
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!
To summarize, you will make ten choices: for each decision row you have to choose between Option A 

and Option B. You may choose A for some decision rows and B for other rows, and you may change your 

decisions and make them in any order. When everyone is done, the computer randomly chooses which 

decision is payoff-relevant and which realization is relevant.  

!
Your earnings in experimental dollars will then be determined and stored until the end of the experiment. 

Recall that out of Parts 2 and 3, your earnings from only one of these two parts will be paid out to you (in 

addition to your earnings from Part 1). 

!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
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!
Specific instructions – Part 3	



!
In this part (as in Part 2) of the experiment you can earn money with the decisions you make. How much 

you earn depends on your own decisions as well as random events. A word of caution though. You will 

have to make several choices, but only one of them will be payoff-relevant. So you should take each 

decision seriously. A second word of caution: only Part 2 or Part 3 will be payment-relevant. The 

computer will randomly choose (each with probability 0.5) either Part 2 or Part 3 to be payment-relevant.	



!
We will not speak of CHF during the experiment, but rather of experimental dollars. All you earnings will 

first be calculated in experimental dollars. At the end of the experiment the total amount of experimental 

dollars you earned in this part will be converted to CHF at the following rate:	



!
1 experimental dollar = 1 CHF	
  !

We now describe how this part of the experiment proceeds. First you will be introduced to the basic 

decision situation, thereafter you will learn more specifically how the experiment is conducted. You will 

also be asked some control questions that will help you to understand the decision situation. 	



!
The decision situation:	



You will be faced with 10 decisions. Each decision is a paired choice between two gambles (termed 

Option A and Option B). For each pair, you will have to state a choice between Option A and Option B. 

Once all the participants have decided which option they prefer for each of the ten decisions, the computer 

will randomly determine which of Decision 1, 2,…., or 10 will be payoff relevant.  Once the payoff 

relevant decision is selected, the computer will choose randomly one more time to determine the 

realization you have chosen. How things work in practice will be made clear with the help of an example. 	



!
The way the 10-decisions situation will look like on your screen is shown on the next page.	



!
!
!
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!
Remember that the computer randomly determines both which of Decision 1, 2, 3,…, 10 is payoff-

relevant, and the realization (i.e. money) for the option you chose for this decision.  

!
Look at Decision 1 at the top of the table. Suppose Decision 1 is selected by the computer. You see in the 

table that Option A pays 6$ with probability 1. Option B pays 12$ with probability 1/10 and 0$ with 

probability 9/10. This means that Option A pays 6$ for sure. Option B pays 12$ if the second number 

selected by the computer is 1, and 0$ if the second number selected is either 2, 3, 4,…, or 10.  

!
For each of the other decision, Option A remains the same. Option B changes. As you move down the 

table, the chances of the higher payoff attached to option B increases. In fact, notice that if Decision 10 is 

selected as the payoff-relevant decision by the computer, then things stop since option B pays the highest 

payoff (12) for sure (probability 10/10=1). 

!
To summarize, you will make ten choices: for each decision row you have to choose between Option A 

and Option B. You may choose A for some decision rows and B for other rows, and you may change your 

decisions and make them in any order. When everyone is done, the computer randomly chooses which 

decision is payoff-relevant and which realization is relevant.  

!
Your earnings in experimental dollars will then be determined and stored until the end of the experiment. 
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Recall that out of Parts 2 and 3, your earnings from only one of these two parts will be paid out to you (in 

addition to your earnings from Part 1).
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