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Abstract

A central issue in the study of sustainable development is the interplay of

growth and sacrifice in a dynamic economy. This paper investigates the relationship

among current consumption, sacrifice and sustainability improvement in a general

context and in two canonical, stylized economies. We argue that the maximin value

of utility measures what is sustainable and provides the limit to growth. Maximin

value is interpreted as a dynamic environmental-economic carrying capacity and

current utility as an environmental-economic footprint. The time derivative of

maximin value is interpreted as net investment in sustainability improvement. It

is called durable savings to distinguish it from genuine savings, usually computed

with discounted-utilitarian prices.
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1 Introduction

The term sustainable development describes growth toward a developed state that can be

sustained for what Solow (1993) calls the very long run.

The maximum level of utility that can be sustained from a given, current economic

state is the so-called maximin level of utility (Solow, 1974; Cairns and Long, 2006). This

reference level depends on the economic endowments and the technology. The develop-

ment paths that sustain this level are given by the solution of a maximin optimization

problem.

An important criticism of applying maximin as a social objective in a poor economy

is that future generations may be mired in a “poverty trap.” Poverty may be sustained.

This criticism implies that the sustainable (maximin) level of utility is considered to be

so low that economic development is called for. Development, or growth, entails the

diversion of resources from consumption by the current generation to investment that

will increase productivity in the future. For sustainable growth to occur the standard of

living of the present must be reduced to an even lower level than that of the poverty trap.

Moreover, the development path followed by the economy must be within environmental

and technological constraints.

The issue is how to grow out of poverty while improving what can be sustained. The

concept of sustainability, which has sometimes been defined as requiring that utility be

no greater than the maximal sustainable utility, is not sufficient to tackle this issue. It

characterizes the sustainability of current utility, but provides no information on how

current decisions impact future sustainability and the development prospect.

The present paper formalizes the relationship among current consumption, sacrifice

and sustainability improvement. Current decisions reduce the level of utility that soci-

ety is able to sustain over time if the current maximin value decreases. Sustainability

improvement is defined as non-decreasing of the current maximin value. This concept is

used to characterize sustainable development paths.

We examine the conditions for a sacrifice by present generations to improve the sus-

tainable level of utility (the maximin value). We find that, except for a non-regular case,
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if the current level of utility is greater than the maximin value the current maximin value

decreases. Conversely, if the level of utility is lower than the maximin value, sustainable

development is possible, with both current utility and the sustainable level of utility of the

economy increasing through time. Once utility catches up with the (dynamic) maximin

value, utility can be sustained at (but not above) the maximin level then prevailing.

Our results are illustrated in two canonical models that have been prominent in the

study of sustainability, the simple fishery and the Dasgupta-Heal-Solow (DHS) model

(Dasgupta and Heal, 1974; Solow, 1974). Each addresses a fundamental issue in envi-

ronmental economics. Each implies that growth is subject to environmental constraints.

Open access in the fishery leads to a tragedy of the commons. The DHS model illustrates

the fact that sustaining an economy may not involve a steady state. Each of open access

and growth can lead to unsustainability and to a poverty trap.

Our contributions to the analysis of sustainable development stress two current in-

dicators that, as conveyed by the words “sustainable” and “development,” look to the

ability to sustain economic well-being in the very long run. In particular, we use

1. the current maximin value as the indicator of sustainability; and

2. the rate of change of the current maximin value as an indicator of sustainability

improvement (if it is non-negative) or decline (if it is negative).

The maximin value is a well known indicator in a maximin program. In the present

paper, we extend it outside a maximin program to apply to any trajectory, optimal or

not, efficient or not. The maximin value characterizes the dynamic limit to growth.

It generalizes the concept of ecological footprint. The evolution of the maximin value

over time is measured by current net investment at maximin accounting prices. This

investment indicator, that we call durable savings, can be used to measure sustainable

development, providing an alternative to genuine savings, which is usually computed

with discounted-utilitarian prices.
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2 Maximin value and sustainability

For a vector of available capital stocks X ∈ Rn
+ (including natural resources, levels of tech-

nological knowledge and other forms of comprehensive capital) and a vector of decisions

within the set of feasible controls, c ∈ C(X) ⊆ Rp, let utility at time t be represented by

U(X(t), c(t)). The transition equations for the stocks are

Ẋi(t) = Fi (X(t), c(t)) , i = 1, . . . , n . (1)

Formally, the maximin value of a given economic state X is defined as

m(X) ≡ max
c(·)

min
s≥t

U(X(s), c(s)) (2)

s.t. X(t) = X ,

Ẋi(s) = Fi (X(s), c(s)) , i = 1, . . . , n ,∀s ≥ t .

This is the highest level of utility that can be sustained, over all feasible paths starting

from state X. By Bellman’s principle the maximin value m(X) depends only on the

current state X and not on the vector of current decisions c.

We restrict the analysis to models for which a maximin value function is well-defined,

in the sense that maximin paths actually achieve the maximin value at any time.1

The maximin value is sometimes identified as intertemporal social welfare, but such an

identification is not essential to a study of the properties of sustainability and sustainable

development. We do not assume that the economy follows a maximin path, nor any

other optimal or efficient path. The maximin value is defined for all states and it can

be computed at any time for the current economic state. We study the evolution of the

maximin value over time for any feasible vector of decisions c ∈ C(X).

Sustainability has sometimes been defined (see, e.g., Pezzey, 1997) as requiring that

utility be no greater than the maximal sustainable utility, i.e.,

U(X(t), c(t)) ≤ m(X(t)) . (3)

1Assuming that the maximin value can be achieved allows us to consider a “max min” problem instead

of a “sup inf” problem. Mitra et al. (2013) provide conditions on the technology for the existence of a

maximin solution in the Dasgupta-Heal-Solow model.
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Condition (3) establishes whether the current level of utility can be sustained by compar-

ing it to the maximin value. That value is a reference point, and not an objective. While

condition (3) plays a supporting role in the formal definition of sustainability, it does not

account fully for the effect of current decisions on the future conditions for sustainability,

in particular of investment decisions.

Sustainable development not only depends on current utility but also on the future

ability to sustain economic well-being. It entails investment choices that do not result in

the decreasing of the maximin value. We argue that the condition of non-decreasing of

the maximin value,
dm(X(t))

dt
≥ 0 , (4)

which we call sustainability improvement, is more useful than condition (3) in the study

of sustainable development.

Before presenting our formal analysis, some comment is in order concerning our per-

ception of sustainability and sustainable development. Our approach has a great deal

of kinship with those of Doyen and Martinet (2012) and Fleurbaey (2013), who also use

maximin as a foundation for the study of sustainability and consider maximin in non-

optimal economies. A part of Fleurbaey’s analysis, in particular, can be considered to be

complementary to ours and, though there are some significant differences, is in several

ways parallel.2 An important technical difference is that he considers a discrete time

model with finite horizon while we consider a continuous time model in infinite time.3

2Fleurbaey (2013) presents an insightful discussion of how to incorporate the sustainability indicator

into a welfare analysis.
3Analysis in discrete time allows Fleurbaey to introduce the consideration of overlapping generations

in the traditional way. As regards the choice of the time horizon, we lean to the argument of Takayama

(1974, p.446) in discussing optimal growth theory: “[T]here is one serious objection to a finite T [the

horizon], however large T may be. What happens after time T?... When we decide the size of T , we

automatically decide to ignore the time after T , and such a T is arbitrarily chosen for there is no a priori

criterion by which to choose the size of T . The general consensus among economists about this point

seems to be to choose T = ∞ in order to avoid such an arbitrary cut-off point.” Takayama’s further

discussion deals with some of the points raised by Fleurbaey to support his assumption, and in particular

with what Fleurbaey judges to be “complications of dubious practical relevance that are solely due to

what may happen in an infinite time.” These technical points are kept out of our discussion, which does
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Fleurbaey (2013) defines sustainability in a discrete time framework as the condition

that current utility is no greater than next period maximin value, i.e., “U(X(t), c(t)) ≤
m(X(t+ 1))”, so that future generations are able to sustain current utility. This sustain-

ability condition is more informative than Criterion (3), as it accounts for the effect of

current decisions on the ability of future generations to sustain utility.

The counterpart condition in our continuous time framework is (a) U(X(t), c(t)) <

m(X(t)) or (b) U(X(t), c(t)) = m(X(t)) and dm(X(t))/dt ≥ 0, as stressed in Doyen and

Martinet (2012). Sustainability improvement then plays a central role in the character-

ization of sustainability and sustainable development in the continuous time framework.

Requiring sustainability improvement leads us to propose a concept of durable savings.

3 Sustainability and sustainability improvement

The formal juxtaposition of the criteria (3) and (4) is instructive to stress the relationship

between (un)sustainability and sustainability improvement or decline. For the sake of

notational simplicity, where there can be no confusion we omit the time argument in

what follows. Let M(X, c) ≡ dm(X)
dt
|c denote the change in the maximin value for given

current economic decisions c = (c1, . . . , cp). The following table summarizes the nine

possible combinations of the conditions U(X, c) Q m(X) and M(X, c) Q 0.

We start by proving the impossibility of case 1 and then characterize the two non-

regular cases 2 and 3. Then, we characterize the sustainability and unsustainability of

the regular case.4 These are done under the following three assumptions.

not utilize (but of course assumes) transversality conditions. (For a discussion of transversality conditions

see Cairns and Long (2006).) We believe that it is prudent to follow the usual practice in the study of

sustainability.
4On a regular maximin path, utility remains constant and equal to the maximin value over time

(Burmeister and Hammond, 1977; Cairns and Long, 2006). One key assumption made by Fleurbaey

(2013) is what he calls transferability. This assumption assures that the program is regular, because

utility can be transferred from one time period to another, so that it is feasible to follow a development

path with constant utility over time equal to the maximin level. This assumption eliminates the possibility

of maximin paths with declining current utility (such as in the simple fishery). It also eliminates from
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Table 1: Utility, maximin value, and net maximin investment

U(X, c) > m(X) U(X, c) = m(X) U(X, c) < m(X)

M(X, c) > 0 1. Impossibility 2. Non-regularity: 6. Sustainability

“Bounded utility” improvement

M(X, c) = 0 3. Non-regularity: 4. Regularity 7. Unproductive

“Bounded investment” (or wasting) sacrifice

M(X, c) < 0 5. Sustainability decline 8. Sustainability decline 9. Sustainability decline

due to due to inadequate due to inadequate

overconsumption investment investment

Assumption 1 The functions Fi (X, c) are continuous and differentiable.5

Assumption 2 Utility U(X, c) is continuous and differentiable.

Assumption 3 A maximin-value function m(X) exists and is differentiable, i.e.,

µi(X) ≡ ∂m(X)
∂Xi

, i = 1, . . . , n, exist.

Under Assumption 3, the maximin value varies smoothly over the state space.6 Cairns

and Long (2006, Proposition 1) show that the partial derivatives µi(X) are the co-state

variables, or shadow-values, of a maximin problem. They depend on the state variable X

and not on choice of the vector of decisions c, and are thus independent of the trajectory

consideration another type of non-regularity described in Cairns and Tian (2010) and discussed in greater

generality by Doyen and Martinet (2012). Our contention is that, in the current state of knowledge, it

is prudent in a general analysis to treat non-regularity as well as regularity. Such a treatment is a

distinguishing feature of the present paper.
5Under assumption 1, along a feasible path satisfying the transition equations (1), the state trajectory

X(·) is continuous.
6Consistently with Bellman’s principle, the maximin value at a state depends on the set of feasible

paths starting from that state. This dependence of the maximin value on time paths is fully encompassed

in the maximin value and its derivatives under our assumptions. In many places, our analysis is founded

on the state dependent functions m(X) and µi(X), allowing us to rely on the current state X(t) at any

point in time and not on particular time paths.
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determined by the functions Fi(X, c). These maximin shadow values are the accounting

prices of the present paper.7

Definition 1 (Net maximin investment) For a current state X(t) and a vector of

decisions c(t), the time derivative of the maximin value measures current net maximin

investment:

M(X(t), c(t)) =
n∑
i=1

∂m(X(t))

∂Xi

Ẋi =
n∑
i=1

µi(X(t))Fi(X(t), c(t)) . (5)

This definition of net maximin investment applies to any feasible vector of decisions

c = (c1, . . . , cp) ∈ C(X).

Future decisions are unpredictable and it is difficult to project the path of an economy.

Our results are related to the current generation’s decisions only. We make no assumptions

about decisions in the future.8 The analysis focuses on the choices at a particular point

in time, t, given the comprehensive capital stocks X(t) at that date.

Among all vectors of feasible decisions C(X(t)) at state X(t), at least one is the initial

vector of decisions for a maximin path. It is useful to stress the properties of such decisions

in terms of sustainability and sustainability improvement to discuss the cases in Table 1.

The following characterizes the current decisions that are on a maximin path (for short,

maximin decisions) from the current state.

Lemma 1 (Maximin decisions) Any vector of decisions c(t) ∈ C(X(t)) which is such

that U(X(t), c(t)) ≥ m(X(t)) and M(X(t), c(t)) ≥ 0 is consistent with following a max-

7An important advantage of the continuous time framework is that we provide an exact condition to

measure net maximin investment, which can easily be compared to the genuine savings literature. In

discrete time, the conditions on net investment at shadow prices are only approximations (Fleurbaey,

2013). The approximations improve as the time horizon increases, but are never exact in a finite time

framework.
8Our view is that the decisions of the future properly belong to the future, that the role of the present

is to bequeath opportunities and not outcomes. Fleurbaey (2013) discusses an alternative proposal for

accounting for what actually is expected to happen in the future as opposed to the opportunities given

to the future.
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imin path from the current state X(t) and thus constitutes a vector of current maximin

decisions.

Proof of Lemma 1 Consider a state vector X(t) at time t and the associated maximin

value m(X(t)), as well as a vector of decisions c(t) such that U(X(t), c(t)) ≥ m(X(t)) and

M(X(t), c(t)) ≥ 0. The transition equations Ẋ = F (X(t), c(t)) define a state X(t + dt).

From that state, it is possible to sustain m(X(t+dt)), which, by condition M(X(t), c(t)) ≥
0 is greater than or equal to m(X(t)). As U(X(t), c(t)) ≥ m(X(t)), there is thus a

path starting from state X(t) and decisions c(t) sustaining m(X(t)). Decisions c(t) are

maximin decisions.

Cases 1 to 4 in Table 1 thus correspond to maximin decisions. We show in Theorem

1 that it is not possible to have both a utility level greater than the maximin value and a

positive net maximin investment. This impossibility theorem is key to the discussion of

the other cases in Table 1.

Theorem 1 (Maximin impossibility theorem) : For any state X, there is no vector

of decisions c such that U(X, c) > m(X) and M(X, c) > 0.

Proof of Theorem 1 Consider a state vector X(t) at time t and the associated max-

imin value m(X(t)). Suppose that there exists a vector of decisions c(t) ∈ C(X(t))

such that U(X(t), c(t)) > m(X(t)) and M(X(t), c(t)) > 0. The transition equations

Ẋ = F (X(t), c(t)) define a state X(t + dt). The condition M(X(t), c(t)) > 0 implies

that m(X(t + dt)) > m(X(t)). From that state, it is possible to sustain m(X(t + dt)) >

m(X(t)). As U(X(t), c(t)) > m(X(t)), there would be a path such that for all s ≥ t,

U(X(s), c(s)) ≥ min(U(X(t), c(t)),m(X(t + dt))) > m(X(t)), in contradiction to the

definition of m(X(t)).

We now turn to case 2, which is non-regular. Proposition 2 states that the maximin

value can increase when utility is equal to the maximin value only if it is not possible at

the margin to increase the utility above the maximin value.9

9Utility is not necessarily globally bounded from above. There may be decisions such that U(X, c) >

m(X), but these decisions cannot be marginally close to maximin decisions, and they necessarily imply

M(X, c) ≤ 0, in accordance with Theorem 1.
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Proposition 2 (Non-regularity due to locally bounded utility) : It is possible to

have both U(X, c) = m(X) and M(X, c) > 0 only if ∂U(X,c)
∂cj

= 0 for all cj ∈ c, wherever

these partial derivatives are defined.

Proof of Proposition 2 Consider a state vector X and a vector of decisions c such

that U(X, c) = m(X) and M(X, c) > 0. Suppose that there is a decision cj ∈ c such that
∂U(X,c)
∂cj

6= 0 and cj is not on the boundary of C(X) so that it is possible to increase utility

above m(X) by marginally changing decision cj.
10 Even if ∂M(X,c)

∂cj
=
∑n

i=1 µi(X)∂Fi(X,c)
∂cj

<

0, by continuity of the Fi(X, c) and of U(X, c), there is a vector of decisions c̃ such that

U(X, c̃) > m(X) while M(X, c̃) > 0. This contradicts Theorem 1.

In this case, for the given state, utility is locally bounded from above in the neigh-

borhood of the maximin decisions considered. This corresponds to a particular case of

non-regularity in maximin problems. An example has been described by Cairns and Tian

(2010).11

Corollary 2 In case 2, it is not possible to increase U(X, c) by decreasing M(X, c) at

the margin.

Proof of Corollary 2 Obvious since ∂U(X,c)
∂cj

= 0 for all cj.

A main result below is that, apart from the non-regular case 2, net maximin investment

cannot be positive unless current utility is lower than the maximin value. There must be

a sacrifice of utility by present generations to increase the sustainable level of utility.

We now characterize another type of non-regularity. Proposition 3 states that utility

can exceed the maximin value without implying a decrease in that value only if no decision

cj marginally affects net maximin investment.

10If some controls are on the boundary of the admissibility set C (X), the derivatives of these controls

are defined on only one side. The condition is then that the derivative is non-positive (resp. non-negative)

on the right-hand (resp. left-hand) side when the control is bounded from below (resp. above).
11In Cairns and Tian (2010), non-regularity arises in states for which the utility is locally bounded from

above. The maximin value is equal to the maximal utility given the state vector, and the maximin path

corresponds to a myopic behavior of instantaneous utility maximization. Along this path, the maximin

value increases as the state evolves.
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Proposition 3 (Non-regularity due to locally bounded investment) : It is pos-

sible to have both U(X, c) > m(X) and M(X, c) = 0 only if ∂M(X,c)
∂cj

= 0 for all cj ∈ c.

Proof of Proposition 3 Consider a state vector X and a vector of decisions c such

that U(X, c) > m(X) and M(X, c) = 0. Suppose that there is a decision cj ∈ c such that
∂M(X,c)
∂cj

=
∑n

i=1 µi(X)∂Fi(X,c)
∂cj

6= 0 and cj is not on the boundary of C(X), so that it is

possible to increase net maximin investment above zero by marginally changing decision

cj. Even if marginally changing cj reduces utility, by continuity of the Fi(X, c) and of

U(X, c), there is a vector of decisions c̃ such that M(X, c̃) > 0 while U(X, c̃) > m(X).

This contradicts Theorem 1.

This type of non regularity includes as a main particular case the situation in which

all the elements of the sum
∑n

i=1 µi(X)∂Fi(X,c)
∂cj

are equal to zero, i.e., µi(X) = 0 for any Xi

for which ∂Fi(X,c)
∂cj

6= 0 for some control cj. All the capital stocks that are locally influenced

by at least one decision have no marginal contribution to the maximin value. These stocks

are redundant from a maximin point of view.12 This particular case was studied by Asako

(1980).

Corollary 3 In case 3, it is not possible to increase M(X, c) above zero by reducing utility

at the margin.

Proof of Corollary 3 Obvious since ∂M(X,c)
∂cj

= 0 for all cj.

If the two types of non-regularity are ruled out, maximin decisions belong to case 4

and are regular, as stated in the following proposition.13

Proposition 4 (Regularity) For a state vector X and a vector of maximin decisions

c, if there is a decision cj such that ∂U(X,c)
∂cj

6= 0 and a decision ck such that ∂M(X,c)
∂ck

6= 0,

then the vector of decisions c necessarily satisfies U(X, c) = m(X) and M(X, c) = 0.

12An even more restrictive case is when all the maximin shadow values are equal to zero at the consid-

ered state. This is the case in the simple fishery or in the Ramsey (1928) model when the single capital

stock is above the golden rule level.
13The regular case 4 is the one in which there is “transferability” of utility as discussed by Fleurbaey

(2013). Case 4 could also occur if there is “waste” in non-regular cases, in the sense that potential

maximin investment is “wasted” (case 2) or potential utility is “wasted” (case 3).
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Proof of Proposition 4 Consider a state vector X and any associated vector of max-

imin decisions c. One has U(X, c) ≥ m(X) and M(X, c) ≥ 0 (Lemma 1). It is not possible

to have U(X, c) > m(X) and M(X, c) > 0 (Theorem 1). If there is a decision cj ∈ c such

that ∂U(X,c)
∂cj

6= 0, one cannot have U(X, c) = m(X) and M(X, c) > 0 (Proposition 2). If

there is a decision ck ∈ c such that ∂M(X,c)
∂ck

6= 0, one cannot have U(X, c) > m(X) and

M(X, c) = 0 (Proposition 3). One necessarily has U(X, c) = m(X) and M(X, c) = 0.

Regularity has been understood as the ability “to spread” utility equally over time

(Solow, 1974; Burmeister and Hammond, 1977; Cairns and Long, 2006). The two types

of non-regularity arise if there is a restriction on current spreading (at a particular cur-

rent state). The restriction in case 2 is that current utility cannot be increased given the

current state by reducing the current positive net maximin investment (Corollary 2). The

restriction in case 3 is that net maximin investment cannot be increased given the current

state by marginally reducing current utility (Corollary 3). These two conditions allow

the deducing of conditions for regular current maximin decisions: regular maximin deci-

sions must be able to influence both current utility and current net maximin investment.

Corollary 4 formalizes this property. The condition derived is related to the concept of

“eventual productivity” (Asheim et al., 2001).

Corollary 4 For a state vector X, if for any vector of maximin decisions c there are a

decision cj such that ∂U(X,c)
∂cj

6= 0 and a decision ck such that ∂M(X,c)
∂ck

6= 0, then ∂U(X,c)
∂ck

6= 0

and ∂M(X,c)
∂cj

6= 0, and it is possible to smooth the current utility to the maximin value.

Proof of Corollary 4 Assume that ∂U(X,c)
∂cj

6= 0 and ∂M(X,c)
∂cj

=
∑n

i=1 µi(X)∂Fi(X,c)
∂cj

= 0.

By continuity of the Fi(X, c) and U(X, c), it would be possible to increase current utility

(by changing decisions cj and ck) and the maximin investment (by changing decision ck)

to define a vector of decisions c̃ such that U(X, c̃) > m(X) and M(X, c̃) > 0. This

contradicts Theorem 1. (A similar argument holds if ∂M(X,c)
∂ck

6= 0 and ∂U(X,c)
∂ck

= 0.)

Decision cj thus satisfies ∂U(X,c)
∂cj

∂M(X,c)
∂cj

6= 0. The product cannot be strictly positive

(again, by Theorem 1). Therefore, if ∂U(X,c)
∂cj

> 0, one has ∂M(X,c)
∂cj

< 0, and vice versa. It is

possible to increase (decrease) current utility and decrease (increase) maximin investment

at the margin of maximin decisions.
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We now characterize case 5 in which sustainability decline is due to overconsumption.

Except in the non-regular case 3, realizing a utility greater than the maximin value nec-

essarily reduces this value, i.e., comes at the cost of reducing the maximum sustainable

level.

Proposition 5 (Sustainability decline due to overconsumption) : If there is a

control cj such that ∂M(X,c)
∂cj

6= 0, then U(X, c) > m(X)⇒M(X, c) < 0.

Proof of Proposition 5 A direct consequence of Theorem 1 and Proposition 3.

We now characterize sustainability improvement (case 6). Except in the non-regular

case 2, to increase the maximin value (M(X, c) > 0), there must be a sacrifice of utility

by the current generation (U(X, c) < m(X)). This is stated in part i) of Theorem 6. This

condition is not sufficient, however. The sacrifice results in a sustainability improvement

only if the applied decisions result in a positive net maximin investment, as stated in part

ii) of Theorem 6, which rules out case 3.14

Theorem 6 (Sustainability improvement) :

i) If, for a state vector X and vector of decisions c, there is a decision cj ∈ c such

that ∂U(X,c)
∂cj

6= 0, then M(X, c) > 0⇒ U(X, c) < m(X).

ii) Let a vector of maximin decisions for state X be denoted by cm(X) = (cm1 , . . . , c
m
p ).

If there is a decision cj such that, on an open interval I containing cmj , one has
∂U(X,(cm1 ,...,cj ,...,c

m
p ))

∂cj
6= 0 and

∂M(X,(cm1 ,...,cj ,...,c
m
p ))

∂cj
6= 0, then there are decisions c̃ by which

U(X, c̃) < m(X) and M(X, c̃) > 0 on that interval. The result holds also if the two signs

are reversed.

Proof of Theorem 6 i) A direct consequence of Theorem 1 and Proposition 2.

ii) We demonstrate that is it possible to deviate from a maximin path by reducing current

utility and increasing maximin investment.

Consider a vector of maximin decisions cm(X) =
(
cm1 , . . . , c

m
p

)
for which there is a

decision cj such that, on an open interval I containing cmj , one has
∂U(X,(cm1 ,...,cj ,...,c

m
p ))

∂cj
6= 0

14A sacrifice cannot increase the maximin value in case 3 (e.g., in a fishery), as stated in Corollary 3.
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and
∂M(X,(cm1 ,...,cj ,...,c

m
p ))

∂cj
6= 0. In particular, ∂U(X,cm)

∂cj
6= 0 and ∂M(X,cm)

∂cj
6= 0. According to

Proposition 4, cm is a vector of regular maximin decisions and satisfies U(X, cm) = m(X)

and M(X, cm) = 0. Moreover, from the proof of Corollary 4, ∂U(X,cm)
∂cj

∂M(X,cm)
∂cj

< 0.

Because
∂U(X,(cm1 ,...,cj ,...,c

m
p ))

∂cj
6= 0 on the interval and U(X, c) is continuous in cj, U(X, c)

is also monotone in cj on the interval. The same holds for M(X, c). Since cj has an

opposite effect on U(X, cm) and M(X, cm) and the functions are monotone, this opposite

effect holds on the whole interval. By choosing c̃j − cmj > 0 if ∂U(X,cm)
∂cj

< 0 and c̃j − cmj <

0 if ∂U(X,cm)
∂cj

> 0, one can define a vector of decisions c̃ = (cm1 , . . . , c̃j, . . . , c
m
p ) such

that U(X, c̃) < m(X) and M(X, c̃) > 0. A reversal of the sign of c̃j − cmj entails that

U(X, c̃) > m(X) and M(X, c̃) < 0.

According to Theorem 6, in the regular case it is possible to improve sustainability (to

increase m(X) over time) by reducing utility. This is not a sufficient condition, however,

as the resources freed up by utility reduction have to be reinvested so as to increase the

maximin value; i.e., net maximin investment must be positive. Depending on the sacrifice

of utility, there may be many different vectors of decisions for which M(X, c) > 0. The

notion of sustainability improvement does not rely on any definition of efficiency.15

The remaining three cases in Table 1 correspond to current wasting of consumption

or investment. The following Proposition follows directly from Theorems 1 and 6 and

Propositions 2 to 5.

Proposition 7 (Deficient decisions) :

i) Unproductive sacrifice (Case 7): A sacrifice of current utility with respect to the

maximin sustainable level, U(X(t), c(t)) < m(X(t)), does not result in current sustain-

ability improvement if investment decisions are such that M(X(t), c(t)) = 0 (including

15The assumption that ∂U(X,cm)
∂cj

6= 0 rules out non-regular case 2 in part ii) of Theorem 6. If ∂U(X,cm)
∂cj

=

0, net maximin investment can be positive (M(X, cm) > 0) without decreasing utility in Case 2. The

result on sustainability improvement may, however, hold even for this non-regular case if ∂U(X,c̃)
∂cj

6= 0 for

c̃j ∈ I−{cmj }. A sacrifice of utility makes it possible to increase net investment more than the non-regular

maximin decision, i.e., M(X, c̃) > M(X, cm) > 0.
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the non-regular case 3).

ii) Sustainability decline due to inadequate investment (Case 8): Current decisions

may result in a reduction of the maximin value, M(X(t), c(t)) < 0, even if utility is equal

to the maximin value, U(X(t), c(t)) = m(X(t)). Current decisions yield a sustainable

utility but current investment results in a sustainability decline. In this case, the current

utility will not be sustained, whatever future decisions are, as any path starting from

X(t+ dt) can at best sustain m(X(t+ dt)) < m(X(t)) = U(X(t), c(t)).

iii) Sustainability decline due to inadequate investment (Case 9): A sacrifice of current

utility with respect to the maximin sustainable level U(X(t), c(t)) < m(X(t)) results in

sustainability decline if investment decisions are such that M(X(t), c(t)) < 0. In this

case, from continuity, the current utility may still be sustainable from state X(t + dt) if

U(X(t), c(t)) < m(X(t+ dt)) < m(X(t)).

Case 8 (part ii) of Proposition 7) corresponds to the definition of “unsustainability”

provided by Fleurbaey (2013), but he considers that Case 9 (part iii) of Proposition

7) “achieves sustainability in a dubious way,” as “m(X(t + 1))” is at least equal to

U(X(t), c(t)), even if there is a sustainability decline. We consider Case 9 to be un-

sustainable, because we take sustainable development to mean that current decisions do

not reduce the maximin value, even when current utility is sustainable. The outcome

of both cases 8 and 9 is driven by (poor) investment choices that are harmful to future

generations and lead to M(X, c) < 0 while M(X, c) ≥ 0 is possible. In this assessment,

there is no link with the sustainability criterion (3), which compares current utility to

current maximin value.

Therefore, criterion (3) is suggestive but is not adequate to describe sustainable devel-

opment. It focuses on current utility without considering the effects of current investment

decisions on the future. It fails to characterize sustainability decline when net maximin

investment is negative.

In non-regular cases, and more importantly in economies in which some resources can

be wasted, criterion (3) can be misleading. In a non-efficient or non-optimal setting,
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the sign of M(X, c) indicates sustainability improvement (or decline). Sustainability

improvement always implies that criterion (3) holds. The reverse is not true. The failure

of criterion (3) does not imply a negative net maximin investment (M(X, c) < 0) and

sustainability decline in the non-regular case 3. Current decisions that waste resources

(in particular in terms of investment) may, however, result in a decline of sustainability

even when current utility can be sustained (U(X(t), c(t)) ≤ m(X(t))). The evolution of

the maximin value over time is a measure of sustainable development.

4 (Un)sustainability and sustainability improvement

in two canonical economies

4.1 The Fishery

The simple fishery model involves one renewable resource stock S and one economic

decision, the fishing effort E ≥ 0. This model illustrates cases 3, 4, 5 and 6, including

regular and non-regular cases.16

The natural rate of growth of the stock is given by S(1 − S) and the consumption

(catch level) by C = SE. The evolution of the stock is then given by Ṡ = S(1−S)−SE.

The highest sustainable level of consumption is called the “maximum sustainable yield”

(MSY); its value is CMSY = maxS [S (1− S)] = 1
4
. The associated stock is SMSY = 1

2
and

the level of effort is EMSY = 1
2
.

If the initial stock S0 is less than SMSY , the maximin criterion (2) prescribes a constant

harvest, C(t) = S0 (1− S0). If the initial stock is greater than SMSY , the maximin value

is CMSY . The maximin value is thus given by

m(S) =

{
SMSY (1− SMSY ) if S > SMSY ,

S(1− S) if S ≤ SMSY .

Consider a harvesting schedule with four time intervals which correspond with the

conditions of cases 3, 5, 4 and 6, respectively. Let S(0) = 1. For simplicity, let the fishing

16As a single decision determines consumption (the catch) and investment (the growth rate of the

stock) simultaneously, we cannot use this model to illustrate cases 7–9 with the appropriate wasting.
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effort be constant within each interval.17 The four intervals are defined as follows and

depicted in Fig. 1.
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Figure 1: (Un)sustainability and sustainability improvement in the fishery

• (Case 3): The first interval is characterized by a constant fishing effort E0 > EMSY

(E0 = 0.9 in Fig. 1) and by a fish stock S(t) > SMSY . Consumption is C(t) =

E0S(t) > CMSY . The stock declines over time to SMSY at the end of the interval.

As long as S(t) > SMSY , one has dm(S)
dS

= 0. The maximin value of the stock is

zero at the margin and the maximin value remains constant at the MSY level. In

this non-regular case, consuming more than the maximin value does not reduce

this value (Proposition 3). At the end of the interval, t1, S(t1) = SMSY = 1
2

and

m(S(t1)) = 1
4
.

• (Case 5): The second interval begins at t1, where the stock declines below SMSY .

The effort level is kept constant at E0 and the stock keeps decreasing. Once the MSY

17Along a constant-effort path with effort E0 ∈]0, 1[, consumption at time t is given by C(t) = E0S(t)

and the dynamics of the resource by Ṡ(t) = S(t) (1− E0 − S(t)). The stock evolves as S(t) =[
1

1−E0
+
(

1
S0
− 1

1−E0

)
e−(1−E0)t

]−1
. The stock tends toward a limit S∞ = 1 − E0 if the effort is main-

tained.
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stock is overshot, dm(S)
dS

> 0. The maximin value decreases as the stock decreases.

This interval illustrates the sustainability decline due to overconsumption described

in Proposition 5. It corresponds to the “tragedy of the commons” for a fishery in

open access.

• (Case 4): At the beginning of the third time interval, t2, a limitation of the fishing

effort is implemented to maintain the stock at S(t2). On the interval, the trajectory

follows the maximin path. Net investment is Ṡ(t) = 0 (the catch equals natural

growth). The catch stays constant at m(S(t2)). This part of the path illustrates

sustainability as described in Proposition 4. If the catch is low, this part of the

program corresponds to a poverty trap.

• (Case 6): On the last time interval, beginning at t3, a recovery strategy is adopted.

Effort is set at E(t) = EMSY , which for S(t) < 1/2 is less than the maximin level of

effort Emm = 1−S(t). The stock size increases toward SMSY and the maximin value

increases toward m(SMSY ). Consumption is C(t) = 1
2
S(t) < m(S(t)). Moreover,

C(t3) < C(t2): the catch is initially less than the level of the poverty trap. An

initial sacrifice is required for sustainability improvement. Consumption increases

toward CMSY as the stock increases. This part of the path illustrates sustainability

improvement as described in Theorem 6.

Interval 1 is part of a maximin path whatever the level of effort: the maximin path is

not unique. On intervals 1, 2 and 4, the levels of effort need not be constant. (On interval

3, of course, the level of effort is endogenous.) All that is required in intervals 1 and 2 is

that the level of effort remains greater than 1/2. The times t2 and t3 are arbitrary but

t2 determines the stock size in interval 3. In interval 4, effort could have been chosen in

the interval [1/2, Emm(S(t))]; the stock would tend to a limit S∞ < SMSY . The paths of

C(t) and S(t) would be determined by these choices.
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4.2 The Dasgupta-Heal-Solow model

The DHS model can be used to illustrate cases 4, 5, and 6, as well as case 9 on sus-

tainability decline due to inadequate investment. Consider a society that has stocks of

a nonrenewable resource, S, and of a manufactured capital good, K, at its disposal. It

produces output (consumption c and investment K̇) by using the capital stock and de-

pleting the resource stock at rate Ṡ(t) = −r(t), according to a Cobb-Douglas production

function,

c+ K̇ = F (K, r) = K αr β, with 0 < β < α, and α + β ≤ 1 .

If the discounted-utility criterion with a constant, positive discount rate is applied

to this economy, consumption decreases asymptotically toward zero (Dasgupta and Heal

1974, 1979). Analysis of how consumption can be sustained requires a different approach.

For given levels of the capital and resource stocks, Solow (1974) and Dasgupta and

Heal (1979) show that the maximin consumption is given by

m(S,K) = (1− β) (α− β)
β

1−β S
β

1−βK
α−β
1−β . (6)

This maximin value is the highest level of consumption that the economy can sustain for

the long term. Sustaining consumption at this level requires that investment in manufac-

tured capital offset the depletion of the resource (Hartwick, 1977).

To illustrate the interplay of consumption, investment and sustainability improvement,

we choose a feasible trajectory and study the evolution of the maximin value along that

trajectory. The path depicted in Fig. 2 is composed of four time intervals, corresponding

to the conditions of cases 5, 9, 6 and 4, respectively. Each interval is characterized by

an illustrative consumption pattern and extraction rule. For simplicity, we consider a

constant rate of change of consumption in each interval.

• (Case 5): At first let consumption be greater than the maximin value (c0 >

m(S0, K0)) and decrease at a constant rate γ > 0, so that c(t) = c0e
−γt. Ex-

traction is determined such that production is equal to consumption. Investment

in manufactured capital, K̇, is zero but the resource stock is depleted; therefore,
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Figure 2: Sustainability and unsustainability in the DHS model

net investment dm(S,K)
dt

= M((S,K), (r, c)) is negative.18 The maximin value de-

creases in accordance with Proposition 5. This program is inefficient: the same

consumption path could be followed with a higher level of net investment, so that

the maximin value would not fall so fast. But overconsumption alone would also

have led to a decrease of the maximin value, i.e., to sustainability decline due to

overconsumption.

• (Case 9): The second time interval starts once consumption decreases below the

maximin value, at t1. The consumption and extraction decisions are unchanged.

Consumption is lower than the maximin value, but still net maximin investment

M((S(t), K(t)), (r(t), c(t))) is negative and the maximin value continues to decrease.

This interval illustrates Proposition 7, where sustainability decline is not related to

overconsumption but to inadequate investment.

• (Case 6): At the beginning of the third interval, t2, consumption has reached a low

18We thus have the feedback rule r(c,K) = c1/βK−α/β . As there is no investment in manufactured

capital, we can express the extraction as an open-loop decision, r(t) = c0e
−γtK

−α/β
0 .
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level, c(t2) = c0e
−γt2 . A decision is made to follow a growth path while improving

what can be sustained. The consumption pattern changes; it is now defined by a

positive growth rate g, so that c(t) = c(t2)e
g(t−t2). As long as c(t) < m(S(t), K(t)),

net investment can be positive. The extraction rule is modified so that production

is sufficient to have a positive net investment.19 With this positive level of net

investment, the maximin value increases, resulting in a sustainability improvement

in accordance with Theorem 6. Consumption growth can be maintained as long as

consumption remains below the maximin value.

• (Case 4): The fourth time interval starts once consumption has caught up with

the maximin value, at t3. To avoid the unsustainability of interval 1, the con-

sumption pattern must change from the constant-growth path to the maximin path

with consumption constant at cm(t) = m(S(t3), K(t3)). Net maximin investment

M((S(t), K(t)), (r(t), c(t))) is nil. Extraction and investment in capital are deter-

mined by the maximin solution. This is a sustainable path as described in Propo-

sition 4.

At any time, the society can choose to follow a regular maximin path with a maximin

value determined by the stocks at that time, or to deviate from it. We have examined

some particular cases that are illustrative. On intervals 1, 2 and 3, society deviates from

the maximin paths at each point of the intervals. On intervals 1 and 2, “degrowth”

(negative growth) results in sustainability decline. On interval 2, the maximin value

decreases even though consumption is lower than the sustainable level. On interval 3,

the maximin value increases even though consumption is growing at a constant, positive

rate. Growth may be sustainable.

19In Fig. 2, the extraction rule is arbitrarily defined so as to maximize M((S,K), (r, c)) given the

current stock levels and current consumption. It is in fact the feedback extraction rule of a maximin

program. This extraction rule is not efficient, however, as the Hotelling rule is not satisfied. This is not

an issue, here, as the choice of the extraction rule is purely illustrative. The question of the “efficiency”

of sustainability improvement requires different concepts than those discussed in this paper and will be

addressed in future research.
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The analysis of these two models illustrates that the maximin value can be used as

an indicator of sustainability and of sustainability improvement, even when sustaining

utility by following the maximin path is not a policy objective. What is sustainable in

the long-run is eventually defined by the maximin value, which is dynamic and depends

on investment.

5 A perspective on sustainable development and its

measurement

The findings of the theorems, propositions and corollaries, which hold at any point on a

path being followed by an economy (sustainable or not, efficient or not) can be used to

provide a perception of sustainability. We begin by defining sustainable development.

Definition 2 (Sustainable development) The path of the economy exhibits sustain-

able development at time t if M(X(t), c(t)) ≥ 0 and dU(X(t),c(t))
dt

≥ 0.

5.1 Sustainable growth paths and “degrowth” paths

Departures from the maximin path have implications for the maximin value. Theorem 6

shows that, apart from the non-regular case 3, so long as utility is less than the maximin

value, the maximin value can be increased. It is possible to choose the vector of decisions c

such that both utility and the maximin value increase. In the DHS model, for example, a

deviation downward from the maximin consumption can allow for growth at a parametric

rate through investment (d’Autume and Schubert, 2008). Asheim et al. (2007) show

that it is possible, with what they call quasi-arithmetic growth, for the maximin value

to increase indefinitely and for the consumption level to approach it asymptotically. It

is also possible for the utility level to catch up with the maximin value in finite time, as

illustrated in subsection 4.2. Once U(X(t), c(t)) = m(X(t)), the only sustainable program

is for current utility to remain equal to the maximin value forever. Such paths can be

considered to be sustainable-development paths.
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Also possible is what may be called “degrowth to sustainability” from an initial utility

level that is greater than the maximin value. So long as the utility level remains above

the maximin level, the latter decreases. The utility level can be decreased until it reaches

the maximin level and thereafter held constant at the maximin level. Degrowth to sus-

tainability consists of decreasing utility until it reaches the maximin value; for example,

it would have resulted in interval 1 of Figure 2 if the society had chosen to follow the

maximin path from t1.

Obviously, on inefficient paths there is scope to reduce the inefficiency. Llavador et al.

(2011) find that sustainable consumption for the USA was higher than actual consumption

in 2000. A possible reason is inefficiency. For them, the long-term solution is to address

the inefficiency, not necessarily to invest more in the present. Our result in Case 9 stresses

that the two issues are linked.

We have not stressed technological progress, which is often viewed as a major source

of continuing improvement in the human condition. In the general model of the present

paper, endogenous or exogenous technological progress can be introduced by defining

stocks of knowledge or R&D among the n states. Investments in the associated stocks

then have maximin prices.20

5.2 Practical implications for sustainability accounting based on

investment at maximin shadow values

The maximin indicator is a very-long-run indicator of what is sustainable, of the sort

that Solow (1993) seeks. At least two other indicators have been proposed to evaluate

sustainability, namely the ecological footprint and genuine savings.

The ecological footprint has been proposed as an indicator of the environmental limit

to sustainable output. It seeks to compare the level of current utilization of environmental

resources (the ecological footprint) with the available flow of environmental services (the

20As regards unanticipated exogenous technological change, it is not possible to include it directly in a

deterministic approach. The possibility of such technological progress, however, does not invalidate our

results. Such technological progress acts like manna from heaven. When occurring, there is a “jump” in

the maximin value, offering room for growth by increasing the limit to growth.
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ecological carrying capacity), evaluated in terms of land of a given quality. If the level

of utilization is greater than the flow of available services, the society depletes the stock

and is considered to be unsustainable at its current level of utilization. The ecological

footprint has no explicit objective, although an implicit objective is some form of ecolog-

ical sustainability. This lack of an explicit objective is what leads to the derivation of

accounting prices from the (natural) constraints facing the society.21

Maximin analysis puts the insights of the ecological footprint on a sounder, more com-

prehensive footing, based not on land capacity but on “generalized capacity to produce

economic well-being” (Solow, 1993). In the present paper, the idea of the footprint is made

more comprehensive through the analysis of evolving environmental and technological con-

straints. The current level of utility corresponds with the environmental-economic foot-

print. The maximin value may be considered to be a dynamic, environmental-economic

limit to growth. Current decisions modify this limit. In the regular case, as predicted

by analyses of the ecological footprint, society faces diminishing long-run prospects, or

diminishing sustainability, if utility exceeds the limit.

The indicator in Definition 1 closely resembles the genuine-savings indicator as deter-

mined from the extension of the national accounts (e.g., World Bank, 2006; Dasgupta,

2009). Genuine savings (sometimes called genuine investment) generalizes the concept

of savings in the national accounts to include changes in the quantities of capital goods,

especially environmental goods, that do not have market prices. It is equal to the current

change in social welfare, defined to be the integral of discounted utility. An increase in

this integral implies that genuine savings computed at competitive prices is positive at a

given instant. Non-negative genuine-savings is sometimes considered to be an indicator

of sustainability because current welfare does not decrease. For example, the World Bank

(2006: 41) argues that “Economic theory tells us that there is a strong link between

changes in wealth and the sustainability of development – if a country (or a household,

for that matter) is running down its assets, it is not on a sustainable path. For the link

to hold, however, the notion of wealth must be truly comprehensive.”

21Through its set of explicit trade-offs that make land the numeraire, ecological footprint analysis has

implied a form of substitutability among natural and other stocks.
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The issue regarding sustainability turns not solely on the assets to be included but

also on the shadow or accounting prices at which investment is evaluated.22 If there is a

suspicion that the market is not producing a sustainable result, the prices derived from

national accounts should not be used for sustainability accounting. An increase of welfare

signaled by positive genuine savings may not be lasting or durable. Rather, the genuine

savings indicator can be positive along a competitive path even though consumption is

not sustainable (Asheim, 1994). The welfare integral can increase at the current moment

but eventually decrease, even if the environment is incorporated into optimal decisions

(Dasgupta and Heal, 1979; Pezzey, 2004). Genuine savings with a discounted utility

objective functional is not the long-run measure sought in considering sustainability.

According to the generalized concept of genuine savings formalized by Asheim (2007),

non-negative net investment, accounted at the shadow values of a given welfare function,

is associated with non-decreasing welfare at the current time. If the welfare function

is denoted by W (X), the associated shadow values are ∂W (X)
∂Xi

, and generalized genuine

savings is defined as
∑n

i=1
∂W (X)
∂Xi

Ẋi. When welfare is defined as discounted utility, i.e.,

W (X) ≡ V (X) = max[c(·)]
∫∞
t
U(X(s), c(s))e−δ(s−t)ds, for a constant utility discount rate

δ, the shadow values are ∂V (X)
∂Xi

, and genuine savings correspond to the usual genuine

savings indicator. Maximizing discounted utility though time, however, does not require

non-negative investment. There is thus no normative reason to pursue a non-negative net

investment when welfare is defined as discounted utility.

In the study of maximin value, the generalized concept of genuine savings corresponds

to net maximin investment as in Definition 1. Non-negative investment at maximin prices

is a property of the maximin approach.23 Pursuing non-negative investment at maximin

22The comprehensive vector of capital stocks accounted for in the genuine savings approach is the same

as the vector of capital stocks used to define the maximin value. The value of each stock is, however,

different.
23The objective of a maximin problem can mathematically be expressed as the maximization of the

Hamiltonian H(X, c, µ) ≡
∑n
i=1 µiẊi, subject to the constraint U(X, c) ≥ m(X) (Cairns and Long,

2006). The maximin problem is thus tantamount to maximizing the net investment at maximin shadow

values, i.e., M(X, c), subject to the constraint that consumption is no less than the maximin value. By

Lemma 1, maximin decisions are such that U(X, c) ≥ m(X) and M(X, c) ≥ 0.
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prices, even in a sub-optimal economy, is consistent with sustainability and with the

optimality concept of maximin.

Genuine savings measures welfare change. It relies on assumptions about the economic

path being followed and hence on the resource-allocation mechanism, be it optimal or

non-optimal. In contrast, net maximin investment measures the change in the ability to

sustain economic well-being. Given the current state X, it is independent of the resource-

allocation mechanism and of the path the economy follows in the long-run.

We distinguish genuine investment, be it applied to maximized social welfare or the

level of welfare generated by a resource–allocation mechanism describing the economy

(Dasgupta and Mäler, 2000), from investment calculated from the maximin value by

calling the latter maximin or durable investment (from the French term développement

durable).

Durable investment is the indicator of the current change in sustainability. It is com-

prehensive investment evaluated at maximin shadow prices, along any particular path of

the economy. It is the statistic that is appropriate in expressing sustainability improve-

ment. For sustainable development at time t the economy must have M(X(t), c(t)) ≥ 0

and dU(X(t),c(t)
dt

≥ 0. In this case, current growth does not jeopardize the capacity of future

generations to sustain utility.

6 Conclusion

Our discussion stresses a property of a growth path that is not stressed by proponents of

sustainable development out of poverty. If the maximin path is not pursued, but instead

some growth path is followed, then earlier generations must be deprived in order to divert

toward investment the resources needed to development. Growth is possible only at a

cost, and only within limits given by the technology and the environment. Otherwise, it

can cause overshooting.

Our contribution to the literature on sustainability is to use the evolution of the

maximin value as an indicator of sustainability and of sustainability improvement along

any development path (efficient or not, optimal or not). The maximin value is a dynamic
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environmental and economic indicator of the prospect for sustainable growth, which, when

non-decreasing, indicates sustainability improvement.

The definition of durable savings is valid for the inefficient economies of reality.

Durable savings must be evaluated at the maximin shadow values to measure sustain-

ability improvement. How to get the “maximin prices” is a difficult question, even in

simple models. The difficulty is no reason to use genuine savings with discounted utilitar-

ian prices to measure long-term sustainability. This practice can be misleading and send

an incorrect message, as genuine savings can be positive even if current utility exceeds

the maximal sustainable utility and the maximin value indicator is decreasing.

The indicator of sustainability on any program, optimal or not, is the maximin value.

Durable investment, the change in the maximin value, is the indicator of whether or not

the level of well-being that can be sustained is increasing or decreasing.
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