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1 Introduction

In recent years, the notion of comonotonicity has received a considerable attention in
different fields. For instance, in the economics of insurance, the concept of comono-
tonic risks goes back to Borch (1962) and Arrow (1963, 1970, 1974), who, without us-
ing this term, proved that under some conditions an optimal insurance contract implies
that the insurer and the insured have comonotonic wealths. In some models of mod-
ern decision theory the independence axiom of expected utility à la Savage has been re-
placed by a comonotonic independence axiom (see, e.g., Yaari (1987), Schmeidler (1989),
Chew and Wakker (1996), Wakker (1996), and Kast and Lapied (2003)). In economic the-
ory Landsberger and Meilijson (1994) show that for every allocation (X1, . . . , Xn) of a ran-
dom endowment Y = ∑n

i=1 Xi among n agents, there is another comonotonic allocation
(X ∗

1 , . . . , X ∗
n ) such that for every i = 1, . . . ,n, X ∗

i dominates Xi in the sense of second de-
gree stochastic dominance. Their result has been recently generalized by Ludkovski and
Rüschendorf (2008). Carlier and Dana (2005) provide an existence theorem for a class
of infinite-dimensional non-convex problems and sufficient conditions for monotonicity
of optimal solutions. Among other things, in a model where agents have strictly Schur-
concave utilities they prove that optimal contracts exist and agents’ wealth are comono-
tonic. In actuarial sciences, the concept of univariate comonotonicity has several appli-
cations within the aggregation of insurance and financial risks, as discussed for instance
in Dhaene et al. (2002a,b) and McNeil et al. (2005, Ch. 6). In the risk management of a
portfolio X = (X1, X2) of losses with given marginal distributions, a financial institution is
typically interested in the amount ψ(X ), representing the aggregate loss or the measure
of the risk deriving from the portfolio. In particular, a regulator might require to calculate
the worst-possible value attainable by ψ(X ). For many aggregating functionals ψ, this
case is represented by comonotonicity among the risks.

In finance Galichon and Henry (2008a,b) propose a multivariate extension of coherent
risk measures that involves a multivariate extension of the notion of comonotonicity, in
the spirit of the present paper.

Consider the partially ordered space R×R with the component-wise order. A subset
of R×R is called comonotonic if it is totally ordered. A random vector is called comono-
tonic if its support is a comonotonic set. It is well known that a random vector (X ,Y ) is
comonotonic if and only if X and Y are nondecreasing functions of a common random
factor, which can always be chosen to be the sum X +Y .

Given two univariate distribution functions FX ,FY , there always exists a comonotonic
vector (X ,Y ) that has these marginal distributions. Its joint distribution is the upper
Fréchet bound of the class of bivariate distributions with marginals FX ,FY (see Fréchet
(1951)). The distribution of a comonotonic random vector with fixed marginals is unique.
In a different language, the copula of a comonotonic random vector is the maximal copula
(see, e.g., Sklar (1959), Schweizer and Sklar (1983), Nelsen (2006)).

An immediate consequence of the above properties is that, for any random variable
X , the vector (X , X ) is comonotonic.

It is important to notice that the definition of comonotonicity only relies on the total
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order structure of R and could be given for any random vectors with values in a product
of totally ordered measurable spaces. Most of its properties would be valid even in this
more general context.

The purpose of this paper is to study comonotonicity for pairs of random vectors,
(X ,Y ). In this framework the multivariate marginal distributions of X and Y will be fixed
and conditions for the existence of a comonotonic version will be studied. More formally,
we want to study comonotonic vectors that take values in a product of partially ordered
spaces.

The related problem of Fréchet bounds for multivariate marginals has been studied by
Rüschendorf (1991a,b). Scarsini (1989) has studied copulae for measures on products of
weakly ordered spaces. Furthermore Rüschendorf (2004, Section 5) has considered some
cases of multivariate comonotonicity. Jouini and Napp (2003, 2004) have extended the
concept of comonotonicity to dynamical settings.

We will consider different definitions of multivariate comonotonicity, trying to extend
different features of the classical definition, and we will show that no definition satisfies
all the properties of the original one. Some definitions do not guarantee the existence of
a comonotonic random vector for any pair of multivariate marginals. Some other defi-
nitions do not guarantee uniqueness in distribution of the comonotonic random vector
with fixed marginals. In order to guarantee these two properties more structure is neces-
sary, hence a definition of multivariate comonotonicity (c-comonotonicity) that relies on
the Hilbert-space nature of Rd . This definition is based on the concept of cyclical mono-
tonicity, introduced in Rockafellar (1970a). This concept of is equivalent to comonoton-
icity for d = 1.

Comonotonic random vectors are known to maximize a class of functionals. This idea
goes back to the theory of rearrangements developed by Hardy et al. (1952), and has been
extended in different contexts by different authors, e.g., Lorentz (1953), Cambanis et al.
(1976), Meilijson and Nádas (1979), Tchen (1980), Rüschendorf (1980). C-comonotonic
random vectors share similar properties (see, e.g., Brenier (1991)). Several other prop-
erties of cyclical comonotonicity are known in the literature (see, e.g., Cuesta-Albertos
et al. (1993), Gangbo and McCann (1996), McCann (1995), Rüschendorf (2004)). We show
that some of the good properties of c-comonotonicity are due to the stronger Hilbert-
space structure its definition requires. A concept of multivariate comonotonicity, called
µ-comonotonicity has been recently introduced by Galichon and Henry (2008a,b) with
applications to measures of multivariate risk. This concept is variational in nature and
will be compared to the other concepts of comonotonicity examined in the paper.

The paper is organized as follows. Section 2 considers the classical notion of comon-
otonicity for univariate marginals and its characterizations. In Section 3 several multi-
variate extensions are introduced and compared. Section 4 considers the maximization
of some classes of functionals. Finally Section 5 consider two variational notions of mul-
tivariate comonotonicity.
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2 Univariate marginals

In this section we review well-known results about the case of univariate marginals. We
first fix some notation. Given two nonempty, partially ordered spaces (X ,≤X ) and (Y ,≤Y ),
we will denote by . the product partial order on X ×Y :(

x1, y1
)
.

(
x2, y2

) ⇐⇒ x1 ≤X x2 and y1 ≤Y y2.

Except when explicitly said, we will consider the case (X ,≤X ) = (Y ,≤Y ) = (
Rd ,≤)

, where
≤ is the natural component-wise order.

Given a nondecreasing function ψ : R→ R its (right-continuous) generalized inverse
is the function ψ−1 :R→R, defined as

ψ−1 (
y
)

:= sup{x ∈R :ψ (x) ≤ y}.

All random quantities will be defined on the probability space (Ω,A ,P). Given a ran-
dom vector X , FX is its distribution function; Y ∼G means that G is the distribution func-

tion of Y ; X
dist= Y means that X and Y have the same distribution; U [0,1] is the uniform

distribution on the unit interval; finally D := {1, . . . ,d}.
In the sequel we will often use the concept of copula and some of its basic properties.

For this we refer the reader to Schweizer and Sklar (1983) and Nelsen (2006). We indicate
by C+ and C− the upper and lower Fréchet bounds in the class of copulae:

C+(u1, . . . ,ud ) = min(u1, . . . ,ud ),

C−(u1, . . . ,ud ) = max

(
d∑

i=1
ui −d +1,0

)
.

Definition 2.1. The set Γ⊂ R×R is said to be comonotonic if it is .-totally ordered, i.e. if
for any

(
x1, y1

)
,
(
x2, y2

) ∈ Γ, either
(
x1, y1

)
.

(
x2, y2

)
, or

(
x1, y1

)
&

(
x2, y2

)
.

Any random vector (X ,Y ) with comonotonic support is called comonotonic.

The following characterizations of comonotonic random vectors on R×R are well-
known. They can be found for instance in Cuesta-Albertos et al. (1993, Proposition 2.1),
Denneberg (1994, Proposition 4.5), Landsberger and Meilijson (1994, Section 2), and Dhaene
et al. (2002b, Theorem 2).

Theorem 2.2. The following statements are equivalent:

(a) the random vector (X ,Y ) is comonotonic;

(b) F(X ,Y )
(
x, y

)= min{FX (x),FY (y)}, for all
(
x, y

) ∈R×R;

(c) (X ,Y )
dist= (

F−1
X (U ) ,F−1

Y (U )
)
, where U ∼U [0,1];

(d) there exists a random variable Z and nondecreasing function f1, f2 such that (X ,Y )
dist=

( f1(Z ), f2(Z ));

3



(e) X and Y are almost surely nondecreasing functions of X +Y ;

Note that all the characterizations of the theorem hold for an arbitrary (but finite)
number of random variables.

Remark 2.3. In the case of univariate marginals the following properties hold:

(i) For every pair of marginals FX ,FY there exists a comonotonic random vector having
these marginals.

(ii) The distribution of this comonotonic random vector is unique.

(iii) Only the total order structure of R is needed to define comonotonic random vectors.
The definition could be given for random variables with values in any (measurable)
totally ordered space.

(iv) For any random variable X , the vector (X , X ) is comonotonic.

(v) If (X ,Y ) is comonotonic and FX = FY , then X = Y with probability one.

We now introduce the class of supermodular functions. The reader is referred to Top-
kis (1998) for properties of these functions.

Definition 2.4. A function c :Rn →R is said to be supermodular if

c(u ∧v )+ c(u ∨v ) ≥ c(u)+ c(v ), for all u, v ∈Rn , (2.1)

where u∧v is the component-wise minimum of u and v , and u∨v is the component-wise
maximum of u and v . Call Sn the class of supermodular functions on Rn .

When n = 2, a function c :R×R→R is supermodular if and only if

c
(
x1, y1

)+ c
(
x2, y2

)≥ c
(
x1, y2

)+ c
(
x2, y1

)
, for all x2 ≥ x1, y2 ≥ y1. (2.2)

Comonotonic vectors maximize the expectation of supermodular functions over the
class of all random vectors having the same marginals.

Theorem 2.5. For every possible univariate distributions FX and FY , denote by (X ∗,Y ∗)

a comonotonic random vector such that X ∗ dist= FX and Y ∗ dist= FY , and let c : R2 → R be
right-continuous. Then

E
[
c
(
X ∗,Y ∗)]= sup

{
E
[
c
(
X̃ , Ỹ

)]
: X̃ ∼ FX , Ỹ ∼ FY

}
for all FX and FY , (2.3)

if and only if the function c ∈S2.
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Proof. The if part follows from Rachev and Rüschendorf (1998, Remark 3.1.3), but many
authors have derived the same result under different regularity conditions: see, e.g., Lorentz
(1953), Cambanis et al. (1976, Theorem 1).

For the only if part, suppose that the right-continuous function c is not supermodular,
i.e. it is possible to find x2 ≥ x1 and y2 ≥ y1 such that c

(
x1, y1

)+ c
(
x2, y2

) < c
(
x1, y2

)+
c
(
x2, y1

)
. We will show that there exist two distribution functions FX and FY such that a

comonotonic vector having these marginals does not attain the supremum in (2.3). Let
FX assign mass 1/2 to the points x1 and x2, and FY assign mass 1/2 to the points y1 and
y2. The random vector (X ∗,Y ∗) that assumes values

(
x1, y1

)
and

(
x2, y2

)
with probability

1/2 is comonotonic. Let now (X ,Y ) be a random vector that assumes values
(
x1, y2

)
and(

x2, y1
)

with probability 1/2. Both vectors have the required marginals and

E
[
c
(
X ∗,Y ∗)]= 1/2

[
c
(
x1, y1

)+ c
(
x2, y2

)]< 1/2
[
c
(
x1, y2

)+ c
(
x2, y1

)]= E [c (X ,Y )] ,

which contradicts (2.3).

Since the function c
(
x, y

) = −(
x − y

)2 is supermodular, we obtain the well-known
fact that comonotonic random vectors minimize the expected Euclidean distance among
their components. Similar results go back to Dall’Aglio (1956) and are fundamental for
the theory of probability metrics (see e.g., Zolotarev (1983) and Rachev (1991)).

3 Multivariate marginals

In this section we show different possible extensions of comonotonicity to (subsets of)
the product space Rd ×Rd .

Unfortunately, we will see that trivial extensions of Definition 2.1 cannot guarantee
at the same time existence and uniqueness of the law of a comonotonic vector having
arbitrarily fixed multivariate marginal distributions.

3.1 s-comonotonicity

We start with the strongest definition of comonotonicity.

Definition 3.1. The set Γ ⊂ Rd ×Rd is said to be s(trongly)-comonotonic if it is .-totally
ordered, i.e. if for any

(
x1, y 1

)
,
(
x2, y 2

) ∈ Γ, either
(
x1, y 1

)
.

(
x2, y 2

)
, or

(
x2, y 2

)
.

(
x1, y 1

)
.

Any random vector (X ,Y ) with s-comonotonic support is called s-comonotonic.

For instance, for d = 2 consider the marginals FX =C+(FX1 ,FX2 ) and FY =C+(FY1 ,FY2 ),
for some univariate distributions FXi ,FYi , i = 1,2. If U v U [0,1], then the vector((

F−1
X1

(U ),F−1
X2

(U )
)

,
(
F−1

Y1
(U ),F−1

Y2
(U )

))
is s-comonotonic and has bivariate marginals FX and FY .

When d = 1, Definition 3.1 reduces to Definition 2.1.
Since the spaceRd is not totally ordered when d > 1, s-comonotonicity imposes heavy

constraints on the marginal distributions FX and FY .
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Lemma 3.2. If the set Γ⊂Rd ×Rd is s-comonotonic, then the setsπi (Γ) , i = 1,2 are ≤-totally
ordered, π1 and π2 being the two natural projections from Rd ×Rd to Rd .

Proof. Let x1, x2 be arbitrary vectors in π1 (Γ). Then there exists y 1, y 2 ∈ Rd such that(
x1, y 1

)
,
(
x2, y 2

) ∈ Γ. SinceΓ is .-totally ordered, then either
(
x1, y 1

)
.

(
x2, y 2

)
, or

(
x2, y 2

)
.(

x1, y 1

)
. In the first case we have that x1 ≤ x2; in the second that x2 ≥ x1. The ≤-total order

of π2 (Γ) is shown analogously.

From Lemma 3.2 and Theorem 2.2(b), it follows that an s-comonotonic random vector
(X ,Y ) has multivariate marginals of the form

FX (x1, . . . , xd ) =C+
(
FX1 (x1) , . . . ,FXd (xd )

)
, (3.1a)

FY
(
y1, . . . , yd

)=C+
(
FY1

(
y1

)
, . . . ,FYd

(
yd

))
, (3.1b)

for some univariate distribution functions FX1 , . . . ,FXd and FY1 , . . . ,FYd .
The following theorem characterizes s-comonotonicity and shows that (X ,Y ) is s-

comonotonic if and only if the 2d random variables X1, . . . , Xd ,Y1, . . . ,Yd are all pairwise
comonotonic in the sense of Definition 2.1.

Theorem 3.3. Let X and Y be two random vectors with respective distributions FX and FY

of the form (3.1). The following statements are equivalent:

(a) the random vector (X ,Y ) is s-comonotonic;

(b) F(X ,Y )
(
x1, . . . , xd , y1, . . . , yd

) = min(FX (x1, . . . , xd ) ,FY
(
y1, . . . , yd

)
), for all(

(x1, . . . , xd ), (y1, . . . , yd )
) ∈Rd ×Rd ;

(c) (X ,Y )
dist=

((
F−1

X1
(U ) , . . . ,F−1

Xd
(U )

)
,
(
F−1

Y1
(U ) , . . . ,F−1

Yd
(U )

))
, where U ∼U [0,1];

(d) there exist a random variable Z and nondecreasing functions f1, . . . , fd , g1, . . . , gd such

that (X ,Y )
dist= ((

f1 (Z ) , . . . , fd (Z )
)

,
(
g1 (Z ) , . . . , gd (Z )

))
;

(e) for all i , j ∈ D, Xi and Yi are almost surely nondecreasing functions of Xi + Y j and
X j +Yi , respectively;

Proof. (a) ⇒ (b). Assume that the support Γ of (X ,Y ) is s-comonotonic and choose an
arbitrary

(
x , y

) ∈Rd ×Rd . Define the sets

A1 := {(u, v ) ∈ Γ : u ≤ x} and A2 := {(u, v ) ∈ Γ : v ≤ y}.

Note that P
[

X ≤ x ,Y ≤ y
]=P [A1 ∩ A2] ≤ min{P [A1] ,P [A2]}.

We now prove that
either A1 ⊂ A2 or A2 ⊂ A1. (3.2)

Suppose on the contrary that A1 6⊂ A2 and A2 6⊂ A1. Then it is possible to find (u1, v 1) ∈
A1 \ A2, and (u2, v 2) ∈ A2 \ A1. By definition of A1 and A2 we have that u1 ≤ x and v 2 ≤ y .
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Since both A1 and A2 are subsets of the .-totally ordered Γ, either (u1, v 1) . (u2, v 2) or
(u2, v 2) . (u1, v 1). The first alternative is not possible, since v 1 ≤ v 2 ≤ y would imply
that (u1, v 1) ∈ A2. The second is not possible, either, since u2 ≤ u1 ≤ x would imply that
(u2, v 2) ∈ A1. Therefore (3.2) holds.

By (3.2), P [A1 ∩ A2] ≥ min{P [A1] ,P [A2]}, hence P
[

X ≤ x ,Y ≤ y
] = min{P [A1] ,P [A2]}

from which (b) follows.
(b) ⇒ (c). Assume that U ∼U [0,1]. Note that

P
[(

F−1
X1

(U ) , . . . ,F−1
Xd

(U )
)

,
(
F−1

Y1
(U ) , . . . ,F−1

Yd
(U )

)
≤ (

x , y
)]

=P
[

F−1
X1

(U ) ≤ x1, . . . ,F−1
Xd

(U ) ≤ xd ,F−1
Y1

(U ) ≤ y1, . . . ,F−1
Yd

(U ) ≤ yd

]
=P[

U ≤ FX1 (x1), . . . ,U ≤ FXd (xd ),U ≤ FY1 (y1), . . . ,U ≤ FYd (xd )
]

=P
[

U ≤ min
i∈D

(
min

{
FXi (xi ),FYi (yi )

})]
= min

(
min
i∈D

{
FXi (xi )

}
,min

i∈D

{
FYi (yi )

})
=P[

X ≤ x ,Y ≤ y
]

.

(c) ⇒ (d). Straightforward.
(d)⇒ (e). If (d) is true, then, for all i , j ∈ D , the random vector (Xi ,Y j ) is comonotonic. (e)
then follows from Theorem (2.2)(e).
(e)⇒ (a). Suppose, on the contrary, that (X ,Y ) is not s-comonotonic. Recall that both
X and Y have copula C+, hence they have ≤-totally ordered supports. Therefore, it is
possible to find (x1, y 1), (x2, y 2) ∈ supp(X ,Y ) such that x1 ≤ x2 and y 2 ≥ y 1 with two strict
inequalities, say, in the i -th and j -th coordinate, respectively. This implies that (Xi ,Y j ) is
not comonotonic and, by Theorem 2.2(e), this contradicts (e).

Note that it is possible for a random vector (X ,Y ) to have a distribution as in Theo-
rem 3.3 (b) without having marginals of the form (3.1). This happens in particular cases
when the marginal distributions have big jumps (see Rüschendorf (2004) and references
therein).

Definition 3.1 provides the simplest extension of comonotonicity to the product of
multidimensional spaces, but the concept of dependence that it implies is extremely strong.
Indeed, a reasonable requirement for any notion of comonotonicity is that the vector
(X , X ) be comonotonic for any choice of the d-variate distribution FX . This does not hap-
pen with s-comonotonicity, unless the copula of FX is the upper Fréchet bound C+. This
is unsatisfactory, since we want to consider comonotonicity as a concept of dependence
between two random vectors, and not within them.

Remark 3.4. The following properties hold:

(i) Given a pair of marginals FX ,FY there exists an s-comonotonic random vector hav-
ing these marginals if and only if both FX and FY have copula C+.

(ii) The distribution of this s-comonotonic random vector is unique.
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(iii) Only the partial order structure of Rd is needed to define s-comonotonic random
vectors. The definition could be given for random variables with values in any (mea-
surable) partially ordered space.

(iv) Given a random vector X , the vector (X , X ) is s-comonotonic only if X has copula
C+ (i.e., it is itself comonotonic).

(v) If (X ,Y ) is s-comonotonic and FX = FY , then X = Y with probability one.

3.2 π-comonotonicity

We now consider a weaker concept of comonotonicity according to which the vector
(X , X ) is always comonotonic. Let Ai ,Bi , i ∈ D be measurable subsets of the real line.
Given a set Γ⊂ (×d

i=1 Ai
)× (×d

i=1Bi
)
, for all i ∈ D we denote by Πi (Γ) its projection on the

space Ai ×Bi .

Definition 3.5. The set Γ⊂ (×d
i=1 Ai

)×(×d
i=1Bi

)
is said to beπ-comonotonic if, for all i ∈ D ,

Πi (Γ) is comonotonic as a subset of Ai ×Bi . A random vector (X ,Y ) with π-comonotonic
support is called π-comonotonic.

When d = 1, Definition 3.5 is equivalent to Definitions 3.1 and 2.1. When d > 1, an
s-comonotonic random vector is also π-comonotonic, but not vice versa. Rüschendorf
(2004, Example 5.1) provides an example of a π-comonotonic random vector that is not
s-comonotonic. We show a simpler version of this example. Let FX = FY (y1, y2) =C−, and
let U ∼U [0,1]. Then the random vector

((U ,1−U ), (U ,1−U ))

has bivariate marginals FX and FY , and is π-comonotonic, but not s-comonotonic.
Definition 3.5 imposes some constraints on the marginal distributions FX and FY of

a π-comonotonic random vector (X ,Y ), but they are weaker than the ones imposed by
s-comonotonicity.

Lemma 3.6. If the random vector (X ,Y ) is π-comonotonic, then its marginal distribution
functions FX and FY have a common copula.

Proof. By Sklar’s theorem for any random vector (Z1, . . . , Zd ) there exists a random vector

(U1, . . . ,Ud ) such that, for all i ∈ D , Ui ∼U [0,1] and (Z1, . . . , Zd )
dist= (F−1

Z1
(U1), . . . ,F−1

Zd
(Ud )).

Furthermore, if (X1, . . . , Xd )
dist= (F−1

X1
(U1), . . . ,F−1

Xd
(Ud )) and (Y1, . . . ,Yd )

dist= (F−1
Y1

(U1), . . . ,F−1
Yd

(Ud )),
then FX and FY have a common copula.

Assume that the random vector (X ,Y ) = ((X1, . . . , Xd ) , (Y1, . . . ,Yd )) is π-comonotonic.
Then the random vector (Xi ,Yi ) :=Πi (X ,Y ) is comonotonic. By Theorem 2.2(c), for all i ∈
D , there exists Ui ∼U [0,1] such that (Xi ,Yi ) ∼

(
F−1

Xi
(Ui ) ,F−1

Yi
(Ui )

)
. Therefore (X1, . . . , Xd )

dist=
(F−1

X1
(U1), . . . ,F−1

Xd
(Ud )) and (Y1, . . . ,Yd )

dist= (F−1
Y1

(U1), . . . ,F−1
Yd

(Ud )), hence FX and FY have a
common copula.
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Lemma 3.6 implies that a π-comonotonic vector (X ,Y ) is forced to have marginals of
the form

FX (x1, . . . , xd ) =C
(
FX1 (x1) , . . . ,FXd (xd )

)
, (3.3a)

FY
(
y1, . . . , yd

)=C
(
FY1

(
y1

)
, . . . ,FYd

(
yd

))
, (3.3b)

for some univariate distribution functions FX1 , . . . ,FXd ,FY1 , . . . ,FYd , and a copula C . Note
also that, if X and Y are s-comonotonic, then C in (3.3) is the upper Fréchet bound C+.

The following theorem characterizes π-comonotonicity and shows that (X ,Y ) is π-
comonotonic if and only if X and Y have the same copula and every pair (Xi ,Yi ) is comon-
otonic in the sense of Definition 2.1.

Theorem 3.7. Let X and Y be two random vectors with respective distributions FX and FY

of the form (3.3). The following statements are equivalent:

(a) the random vector (X ,Y ) is π-comonotonic;

(b) F(X ,Y )
(
x , y

) = C
(
min

{
FX1 (x1) ,FY1

(
y1

)}
, . . . ,min

{
FXd (xd ) ,FYd

(
yd

)})
, for all(

x , y
)= (

(x1, . . . , xd ) ,
(
y1, . . . , yd

)) ∈Rd ×Rd ;

(c) (X ,Y )
dist=

((
F−1

X1
(U1) , . . . ,F−1

Xd
(Ud )

)
,
(
F−1

Y1
(U1) , . . . ,F−1

Yd
(Ud )

))
, where U = (U1, . . . ,Ud ) is

a random vector having distribution C ;

(d) there exists a random vector Z = (Z1, . . . , Zd ) and nondecreasing function f1, . . . , fd ,

g1, . . . , gd such that (X ,Y )
dist= ((

f1(Z1), . . . , fd (Zd )), (g1(Z1), . . . , gd (Zd )
))

;

(e) for all i ∈ D, Xi and Yi are almost surely nondecreasing functions of Xi +Yi ;

Proof. (a) ⇒ (b). Assume that the random vector (X ,Y ) = ((X1, . . . , Xd ) , (Y1, . . . ,Yd )) is π-
comonotonic. As noted in the proof of Lemma 3.6, there exists Ui ∼ U [0,1] such that

(Xi ,Yi )
dist=

(
F−1

Xi
(Ui ) ,F−1

Yi
(Ui )

)
; and this for all i ∈ D . Therefore we have that

P
[

X ≤ x ,Y ≤ y
]=P[

×d
i=1

{
Xi ≤ xi ,Yi ≤ yi

}]
=P

[
×d

i=1

{
F−1

Xi
(Ui ) ≤ xi ,F−1

Yi
(Ui ) ≤ yi

}]
=P

[
×d

i=1

{
Ui ≤ FXi (xi ) ,Ui ≤ FYi

(
yi

)}]
=P

[
×d

i=1

{
Ui ≤ min

{
FXi (xi ) ,FYi

(
yi

)}}]
=C

(
min

{
FX1 (x1) ,FY1

(
y1

)}
, . . . ,min

{
FXd (xd ) ,FYd

(
yd

)})
.

(b) ⇒ (c). Already noted in the proof of Lemma 3.6
(c) ⇒ (d). Straightforward.
(d) ⇒ (a) Assume (d). Then the support of (X ,Y ) is the set{((

f1 (z1) , . . . , fd (zd )
)

,
(
g1 (z1) , . . . , gd (zd )

))
, (z1, . . . , zd ) ∈ supp(Z )

}
,
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which is π-comonotonic.
(d) ⇐⇒ (e) Note that (d) holds if and only if for all i ∈ D the vector (Xi ,Yi ) is comonotonic.
The equivalence then follows from Theorem (2.2)(e).

Corollary 3.8. Let (3.1) hold. Then (X ,Y ) isπ-comonotonic if and only if it is s-comonotonic.

Even if weaker than s-comonotonicity, Definition 3.5 can be applied only to vectors
having marginals with the same dependence structure. Therefore, we need to weaken the
definition of comonotonicity even further.

Remark 3.9. The following properties hold:

(i) Given a pair of marginals FX ,FY there exists aπ-comonotonic random vector having
these marginals if and only if both FX and FY have the same copula.

(ii) The distribution of this π-comonotonic random vector is unique.

(iii) Only the fact that Rd is a product of totally ordered spaces is needed to define π-
comonotonic random vectors. The definition could be given for random variables
with values in any (measurable) product of totally ordered spaces.

(iv) Given a random vector X , the vector (X , X ) is π-comonotonic.

(v) If (X ,Y ) is π-comonotonic and FX = FY , then X = Y with probability one.

3.3 w-comonotonicity

In this section we show that any attempt at defining a multivariate concept of comono-
tonicity based on the component-wise ordering of random vectors leads to unsatisfactory
results.

Definition 3.10. The set Γ⊂Rd ×Rd is said to be w(eakly)-comonotonic if

x1 ≤ x2 ⇐⇒ y 1 ≤ y 2, for any
(
x1, y 1

)
,
(
x2, y 2

) ∈ Γ. (3.4)

Any random vector (X ,Y ) with w-comonotonic support is called w-comonotonic.

The vector (X ,Y ) is w-comonotonic if and only if for every nondecreasing function
f :Rd →R the vector ( f (X ), f (Y )) is comonotonic in the sense of Definition 2.1.

When d = 1, Definition 3.10 is equivalent to Definitions 3.5, 3.1, and 2.1. When d > 1, a
π-comonotonic vector is also w-comonotonic, but not vice versa, as Example 3.11 shows.

Example 3.11. Assume that the distribution of X := (X1, X2) is a nonsymmetric copula C
on [0,1]2, and define the linear transformation T : [0,1]2 → [0,1]2 as T (x1, x2) := (x2, x1). By
Definition 3.10 the vector (X ,T (X )) is w-comonotonic. Denoting by CT the distribution
of T (X ), we have

CT (u1,u2) =P [T1(X1, X2) ≤ u1,T2(X1, X2) ≤ u2]

=P [X2 ≤ u1, X1 ≤ u2]

=C (u2,u1).

Since C is nonsymmetric, C 6=CT , hence (X ,T (X )) is not π-comonotonic (see Figure 1).
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Figure 1: The support of a w-comonotonic vector which is not π−comonotonic. The seg-
ment AB on the left is mapped into the segment AB on the right. Similarly for segment
C D .

Definition 3.10 includes the minimal intuitive requirement for a comonotonic random
vector: high values for the first component go with high values for the other, whenever
the two components are comparable. Nevertheless, this requirement still does not guar-
antee the existence of a w-comonotonic vector for an arbitrary choice of the multivariate
marginals. For instance, if we assume that the first marginal FX of a w-comonotonic vec-
tor (X ,Y ) has copula C+, then the second marginal FY must have copula C+, too.

Moreover, unlike the other definitions of s- and π-comonotonicity given above, Def-
inition 3.10 does not assure uniqueness of the law of a w-comonotonic random vector
having fixed multivariate marginals. The following example illustrates this crucial draw-
back.

Example 3.12. Let d = 2 and FX = FY =C−. The random vector (X , X ) is w-comonotonic,
but it is not the only one with FX and FY as marginals. In fact, the vector (X ,1−X ), where
1 := (1,1), is w-comonotonic too (see Figure 2). The fact is a consequence of the weak con-
straint imposed by the definition. Since no pair of points in supp(C−) is ≤-comparable,
every random vector having these fixed marginals is w-comonotonic.

In fact, all our attempts to define a concept of comonotonicity based on the component-
wise ordering of a support are doomed to fail. It is not possible to define a reasonable
concept of comonotonicity based on (3.4) in any partially ordered space, as the following
impossibility theorem shows.

Theorem 3.13. Suppose that (X ,≤X ) and (Y ,≤Y ) are two partially ordered spaces con-
taining at least two distinct points. If for any Υ1 ⊂ X ,Υ2 ⊂ Y it is possible to define a
w-comonotonic set Γ⊂X ×Y having Υ1 and Υ2 as its projections, then at least one of the
following statement is true:

(a) (X ,≤X ) and (Y ,≤Y ) are totally ordered spaces;

(b) any set Γ⊂X ×Y is w-comonotonic.
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Figure 2: The support of two w-comonotonic vectors having the same marginals. In each
case a point αA+ (1−αB) on the left is mapped to the point αA′+ (1−αB ′) on the right.

Proof. Assume that it is possible to find in one of the two spaces, say X , two points x1, x2

with x1 ≤X x2 and in the other space Y two distinct points y 1, y 2 such that neither y 1 ≤ y 2
nor y 2 ≤ y 1 holds. Choose then Υ1 := {x1, x2} and Υ2 := {y 1, y 2}. Note that Υ1 is a totally
ordered subset of X , while no pairs of vectors are ≤Y -comparable inΥ2. By definition of
w-comotonicity, it is not possible to find a w-comonotonic setΓ in X×Y with projections
Υ1 andΥ2.

Our initial assumption was then absurd, implying that either both spaces are totally
ordered (hence (a) holds) or no pairs of vectors can be ordered in both of them. In this
latter case, Definition 3.10 is always satisfied for anyΥ1 ⊂X andΥ2 ⊂Y and then any set
Γ ∈X ×Y is w-comonotonic, i.e., (b) holds.

Translated in the language of probability, Theorem 3.13 states that every concept of
comonotonicity including the requirement (3.4) on a partially ordered space, has to drop
either the existence of a comonotonic vector for some choice of the marginals, or the
uniqueness of its law.

A satisfactory concept of comonotonicity for univariate marginals is possible because
R is totally ordered.

Remark 3.14. The following properties hold:

12



(i) Given a pair of marginals FX ,FY the existence of a w-comonotonic random vector
having these marginals is not always assured.

(ii) In general, the distribution of a w-comonotonic random vector with fixed marginals
is not unique.

(iii) Only the partial order structure of Rd is needed to define w-comonotonic random
vectors. The definition could be given for random variables with values in any (mea-
surable) partially ordered space.

(iv) Given a random vector X , the vector (X , X ) is w-comonotonic.

(v) If (X ,Y ) is w-comonotonic and FX = FY , then X is not necessarily equal to Y with
probability one.

4 Maximization of functionals

We will now show that a result similar to Theorem 2.5 holds for s-comonotonic random
vectors. To state the result we need to define a class of functions that includes the class of
supermodular functions.

Definition 4.1. Call Ss the class of functions c :Rd ×Rd →R satisfying

c
(
x1, y 1

)+ c
(
x2, y 2

)≥ c
(
x1, y 2

)+ c
(
x2, y 1

)
(4.1)

for all x2 ≥ x1 and y 2 ≥ y 1.

Notice that for d = 1, the inequality in (4.1) reduces to (2.2), hence Ss = S2. The fol-
lowing lemma shows the relation between S2d and Ss for any d .

Lemma 4.2. S2d ⊂Ss.

Proof. To prove that S2d ⊂ Ss consider x1, x2, y 1, y 2 ∈ Rd such that x2 ≥ x1 and y 2 ≥ y 1.
Call

u = (x1, y 2), v = (x2, y 1).

Then
u ∧v = (

x1, y 1

)
, u ∨v = (

x2, y 2

)
.

Therefore (2.1) implies (4.1).

The above inclusion is strict, as the following counterexample shows.
Consider the function c :R2 ×R2 →R defined as

c(x , y) = max(xa , xb)max(ya , yb),

where x = (xa , xb) and y = (ya , yb).
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Since the maximum is a monotone function, Hardy et al. (1952, Theorem 368) implies
that, whenever x2 ≥ x1 and y 2 ≥ y 1, we have

c
(
x1, y 1

)+ c
(
x2, y 2

)= max(x1a , x1b)max(y1a , y1b)+max(x2a , x2b)max(y2a , y2b) ≥
max(x1a , x1b)max(y2a , y2b)+max(x2a , x2b)max(y1a , y1b) = c

(
x1, y 2

)+ c
(
x2, y 1

)
, (4.2)

with obvious meaning of the symbols. Hence the function c satisfies (4.1), i.e., c ∈Ss.
To show that c is not supermodular consider the points u = (0,1,0,1), v = (1,0,1,0) ∈

R4. We have u ∧v = (0,0,0,0) and u ∨v = (1,1,1,1). Hence

c(u ∧v )+ c(u ∨v ) = 0+1 < 1+1 = c(u)+ c(v ),

i.e., c 6∈S4.

Theorem 4.3. For every possible distributions FX and FY of the form (3.1), let
(

X ∗
s ,Y ∗

s

)
be

an s-comonotonic random vector having such marginal distributions, and let c :Rd ×Rd →
R be right-continuous. Then

E
[
c
(

X ∗
s ,Y ∗

s

)]= sup
{
E
[
c
(

X̃ , Ỹ
)]

: X̃ ∼ FX , Ỹ ∼ FY
}

for all FX and FY , (4.3)

if and only if c ∈Ss.

Proof. If part: Since FX and FY are comonotonic distributions, by Theorem (2.2) (c), we
can write

sup
{
E
[
c
(

X̃ , Ỹ
)]

: X̃ ∼ FX , Ỹ ∼ FY
}

= sup
{
E
[

c
((

F−1
X1

(U1) , . . . ,F−1
Xd

(U1)
)

,
(
F−1

Y1
(U2) , . . . ,F−1

Yd
(U2)

))]
: U1,U2 ∼U [0,1]

}
= sup{E [ĉ (U1,U2)] : U1,U2 ∼U [0,1]} , (4.4)

where ĉ : [0,1]× [0,1] →R is defined as

ĉ (z1, z2) := c
((

F−1
X1

(z1) , . . . ,F−1
Xd

(z1)
)

,
(
F−1

Y1
(z2) , . . . ,F−1

Yd
(z2)

))
.

If c ∈Ss and is right-continuous, then it is easy to show that ĉ is right continuous and su-
permodular. By Theorem 2.5, the supremum in (4.4) is reached when (U1,U2) is comono-
tonic, i.e. when U1 =U2 a.s., i.e., when the vector

(
X̃ , Ỹ

)
is s-comonotonic.

Only if part: Suppose that c 6∈Ss, i.e., that there exist x2 ≥ x1 and y 2 ≥ y 1 such that

c
(
x1, y 1

)+ c
(
x2, y 2

)< c
(
x1, y 2

)+ c
(
x2, y 1

)
.

We will show that there exist two distribution functions FX and FY such that a comono-
tonic vector having these marginals does not attain the supremum in (4.3). Let FX assign
mass 1/2 to the points x1 and x2, and FY assign mass 1/2 to the points y 1 and y 2. The
random vector (X ∗,Y ∗) that assumes values

(
x1, y 1

)
and

(
x2, y 2

)
with probability 1/2 is s-

comonotonic. Let now (X ,Y ) be a random vector that assumes values
(
x1, y 2

)
and

(
x2, y 1

)
with probability 1/2. Both vectors have the required marginals and

E
[
c
(

X ∗,Y ∗)]= 1/2
[
c
(
x1, y 1

)+ c
(
x2, y 2

)]< 1/2
[
c
(
x1, y 2

)+ c
(
x2, y 1

)]= E [c (X ,Y )] ,

which contradicts (4.3).
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We could not find an analogous result for π-comonotonic vectors. As the following
counterexample shows, a π-comonotonic vector does not even maximize the expectation
of a supermodular function.

Let X ,Y , X ∗,Y ∗ have the same distribution, that assigns mass 1/2 to the points (0,1)
and (1,0).

Let now (X ∗,Y ∗) take values ((0,1), (0,1)) and ((1,0), (1,0)) with probability 1/2, and let
(X ,Y ) take values ((0,1), (1,0)) and ((1,0), (0,1)) with probability 1/2. The vector (X ∗,Y ∗)
is π-comonotonic. If

c(x1, x2, y1, y2) = x2 y1,

then c is supermodular since it is twice differentiable and all its mixed second derivatives
are nonnegative. Nevertheless

E[c(X ∗,Y ∗)] = 0 < 1 = E[c(X ,Y )].

5 Variational multivariate comonotonicity

The concepts of s-comonotonicity and w-comonotonicity are based only on the partial
order structure of Rd , whereas π-comonotonicity involves also its product-space struc-
ture. In this section we will study different concepts of comonotonicity, that use the inner-
product and are based on the maximization of some correlation.

5.1 c-comonotonicity

Definition 5.1. Given any two distributions FX and FY , the vector
(

X ∗
c ,Y ∗

c

)
is called c(orrelation)-

comonotonic if
E
[〈X ∗

c ,Y ∗
c 〉

]= sup
{
E
[〈X̃ , Ỹ 〉] : X̃ ∼ FX , Ỹ ∼ FY

}
. (5.1)

The concept of c-comonotonicity is strictly related to the concept of cyclical mono-
tonicity studied by Rockafellar (1970a).

Definition 5.2. The set Γ⊂Rd ×Rd is said to be monotonic if for any (x0, y 0), (x1, y 1) ∈ Γ,

〈(x1 −x0), (y 0 − y 1)〉 ≤ 0. (5.2)

The set Γ ⊂ Rd ×Rd is said to be cyclically-monotonic if for any m > 1 and (x i , y i ) ∈
Γ, i = 1, . . . ,m, xm+1 := x1,

m∑
i=1

〈(x i+1 −x i ), y i 〉 ≤ 0. (5.3)

A multivalued mapping is called (cyclically) monotonic if its graph is (cyclically) mono-
tonic. A maximal (cyclically) monotonic mapping is one whose graph is not properly
contained in the graph of any other (cyclically) monotonic mapping.

A cyclically monotonic mapping is monotonic. The converse implication holds for
d = 1. Monotonic operators have been studied by Zarantonello (1960, 1967), Minty (1962),
and Brézis (1973).
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Theorem 5.3. A random vector (X ,Y ) is c-comonotonic if and only if its support is cycli-
cally monotonic.

Theorem 5.3 has been proved by different authors, see, e.g., Rüschendorf and Rachev
(1990, Theorem 1(b)) and Gangbo and McCann (1996, Corollary 2.4). A related, but differ-
ent problem has been studied by Rüschendorf (1996), Beiglböck et al. (2008) and Schacher-
mayer and Teichmann (2008). The new definition of c-comonotonicity includes the con-
cepts of s- and π-comonotonicity as particular cases, whenever the marginals satisfy the
appropriate constraints.

Lemma 5.4. A π-comonotonic random vector is c-comonotonic.

Proof. Assume that (X ,Y ) is π-comonotonic. Choose an integer m > 2 and arbitrary vec-
tors (x i , y i ) ∈ supp(X ,Y ), i ∈ {1, . . . ,m}, xm+1 := x1 and denote by x j the j -th component
of the vector x . We have that

m∑
i=1

〈(x i+1 −x i ), y i 〉 =
m∑

i=1

d∑
j=1

(
x j

i+1 −x j
i

)
y j

i =
d∑

j=1

m∑
i=1

(
x j

i+1 −x j
i

)
y j

i ≤ 0,

where the last inequality follows by noting that if (X ,Y ) is π-comonotonic, then for all
j ∈ D the random vector (X j ,Y j ) is comonotonic, i.e. has a cyclically monotonic support
in R×R.

A c-comonotonic vector which is neither π−comonotonic nor w-comonotonic can be
found in Example 5.11 below. Moreover, the w-comonotonic vector (X ,1− X ) in Exam-
ple 3.12 is not c-comonotonic. To prove this latter point, it is sufficient to verify that the
vectors (x1, y 1) = ((0,1), (1,0)) and (x2, y 2) = ((1,0), (0,1)) in supp((X ,1− X )) do not satisfy
condition (5.3) for m = 2. This shows that the concept of c-comonotonicity is not based
on the component-wise ordering of the coordinates in Rd .

Contrary to the definitions of s-, π- and w-comonotonic vectors, Definition 5.1 does
not impose any constraint on the marginal distributions of a c-comonotonic vector, as
the following well known result shows.

Theorem 5.5. Let FX and FY be any two distributions on Rd .

(a) There exists a c-comonotonic random vector (X ,Y ) having marginals FX and FY .

(b) There exists a cyclically-monotonic set which includes all the supports of the c-comonotonic
random vectors having marginals FX and FY .

(c) If the measure induced by either FX or FY vanishes on all Borel subsets of Hausdorff
dimension d −1, then all c-comonotonic random vectors have the same law.

Theorem 5.5(a) and (c) are a suitable rewriting of McCann (1995, Theorem 6 and Corol-
lary 14, respectively). This paper is mainly based on a fundamental result contained
in Brenier (1991, Theorems 1.1 and 1.2). Point (b) is a consequence of Corollary 2.4 in
Gangbo and McCann (1996) applied to the function c(x , y) = 〈x , y〉. If the condition in (c)
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is violated, then several couplings can give rise to a c-comonotonic vector. For instance,
let U ,V ∼U [0,1], and consider the random vectors X = (U ,1−U ) and Y = (V ,V ). It is not
difficult to see that for every possible coupling the vector (X ,Y ) is always c-comonotonic.
To prove this take (x1, y 1), . . . , (xm , y m) in the support of (X ,Y ), with x i = (xi ,1− xi ) and
y i = (yi , yi ). Then

m∑
i=1

〈(x i+1 −x i ), y i 〉 =
m∑

i=1

[
(xi+1 −xi )yi + (1−xi+1 −1+xi )yi

]= 0,

A different counterexample is provided by McCann (1995, Remark 5).
It is well known that the class of all 2d-variate distribution functions having the fixed

d-variate marginals FX and FY contains the independence distribution (see Genest et al.
(1995, Proposition A)). Theorem 5.5 states that this class always contains also a distribu-
tion that corresponds to a c-comonotonic vector.

A function f :Rd →]−∞,+∞] is said to be lower semi-continuous if {x ∈Rd : f (x) ≤ t }
is closed in Rd for every t ∈ R. Denote by C the class of lower semi-continuous, convex
functions for which {x ∈ Rd : f (x) <+∞} 6= ;. Given f ∈C , the subdifferential of f in x is
the multivalued mapping defined by

∂ f (x) =
{

y ∈Rd : f (z)− f (x) ≥ 〈(z −x), y〉, z ∈Rd
}

.

Note that, when ∂ f (x) is a singleton, it reduces to the gradient of f , i.e. ∂ f (x) = {∇ f (x)}.
For functions fromR toR there exists a strict connection between convexity and mono-

tonicity. A differentiable function is convex if and only if its derivative is nondecreasing.
More generally a function is convex if its subdifferential is nondecreasing. The following
result due to Rockafellar (1966, 1970b, Theorems A and B) provides a similar characteri-
zation for convex functions on Rd .

Theorem 5.6. If f :Rd →Rd is a lower semicontinuous convex function, then ∂ f is a max-
imal monotonic operator from Rd to Rd .

Let T : Rd → Rd be a multivalued mapping. In order that there exist a lower semicon-
tinuous convex function f : Rd → Rd such that T = ∂ f , it is necessary and sufficient that T
be a maximal cyclically monotonic operator.

As a consequence of Theorem 5.6 we obtain the following characterization of c-comonotonicity.

Theorem 5.7. The following conditions are equivalent:

(a) The vector (X ,Y ) is c-comonotonic,

(b) Y ∈ ∂ f (X ) a.s. for some f ∈C ,

(c) X ∈ ∂ f (Y ) a.s. for some f ∈C ,

Proof. Let (X ,Y ) be c-comonotonic. By Theorem 5.3 this happens if and only if its sup-
port Γ is cyclically monotonic. Using a result in Rockafellar (1966, page 501) or Rockafel-
lar (1970a, page 27) we can actually assume that Γ is maximal cyclically monotonic. The
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multivalued mapping T defined as T (y) = {y : (x , y) ∈ Γ} is therefore maximally cyclically
monotonic. The equivalence between (a) and (b) hence follows by Theorem 5.6 since for
T to be maximally cyclically monotonic it is necessary and sufficient that there exist a
lower semicontinuous function f such that T ∈ ∂ f (x). i.e. Y ∈ ∂ f (X ) a.s.. In the pre-
vious proof, the random vectors X and Y can be interchanged to prove the equivalence
between (a) and (c).

Theorem 5.7 shows a strong analogy with the univariate case. The next result and the
counterexample that follows show that the analogy cannot be taken any further.

Theorem 5.8. If the vector (X ,Y ) is c-comonotonic, then X ∈ ∂ f1(Z ) a.s., Y ∈ ∂ f2(Z ) a.s.
for some f1, f2 ∈C and some random vector Z .

Proof. By Theorem 5.7 (X ,Y ) is c-comonotonic if and only if X ∈ ∂ f (Y ) a.s. for some
f ∈C . Take now Z = Y and f2(x) = ‖x‖2/2. Hence f2 ∈C with ∂ f2 = {Id}.

Remark 5.9. Guillaume Carlier and an anonymous referee kindly pointed out to us that
the converse of Theorem 5.8 does not hold. To show this, take d = 2, Z ∼N (0, I2) a stan-
dard normal random vector. Define

Σ1 =
[

1 a
a 2

]
, Σ2 =

[
1 a
a 1

]
,

with 0 < a < 1. Since the matrices Σ1 and Σ2 are symmetric positive definite, we have that

f1(x) = 1

2
xTΣ−1

1 x and f2(x) = 1

2
xTΣ2x

are both differentiable convex functions with

∇ f1(x) =Σ−1
1 x and ∇ f2(x) =Σ2x .

If we define
X =∇ f1(Z ) and Y =∇ f2(Z ),

then the thesis of Theorem 5.8 holds (since the functions f1, f2 are differentiable their
subdifferential is restricted to their gradient). On the other hand Z =Σ1X , so Y =Σ2Σ1X ,
and

Σ2Σ1 =
[

1+a2 3a
2a 2+a2

]
,

which is not symmetric, so Σ2Σ1X cannot be the gradient of a function. Therefore (b)
cannot hold. This is a very striking departure from the univariate setting, where, by Theo-
rem 2.2, comonotonicity of (X ,Y ) is equivalent to the fact that X and Y are nondecreasing
functions of a common random variable Z .

When the function f is differentiable, Theorem 5.7 (b) gives the representation (X ,T (X ))
with T = ∇ f . This happens for instance when FX vanishes on all Borel subsets of Haus-
dorff dimension d −1; see McCann (1995).
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Corollary 5.10. The vector (X , X ) is always c-comonotonic.

Proof. Choose f (x) = ||x ||2/2. Hence f is convex with ∂ f = {Id}, and the conditions of
Theorem 5.7 (b) are satisfied.

Cuesta-Albertos et al. (1993, Proposition 3.17) consider the following example of c-
comonotonic vector, which, in our notation, is neitherπ−comonotonic nor w-comonotonic.

Example 5.11. Let X = (X1, X2) be a bivariate random vector having continuous marginal
distributions FX1 ,FX2 and copula C (u1,u2) = u1u2. The univariate marginals of X are
therefore assumed to be independent. Now choose the operator T : R2 → R2, defined
as

T (x1, x2) =
(

ex1

ex1 +ex2
,

ex2

ex1 +ex2

)
.

Since T is the gradient of the convex function f :R2 →R, f (x1, x2) = ln(ex1+ex2 ), the vector
(X ,T (X )) is c-comonotonic. Note that the support of T (X ) is included in the decreasing
curve {(t ,1− t ), t ∈ [0,1]} in R2. By Theorem 2.5.5 in Nelsen (2006), the copula of T (X ) is
C− and therefore the vector (X ,T (X )) cannot be π−comonotonic. Moreover, (X ,T (X )) is
not w-comonotonic, since no pair of vectors in supp(T (X )) is ≤-comparable while there
exist such pairs in supp(X ).

Theorem 5.7 gives an extension only of point (d) of Theorem 2.2. In general, it seems
very difficult to find the law of a c-comonotonic vector (point (b) of Theorem 2.2 ), or
the explicit form of the implied d−dimensional rearrangement (point (c)). The following
theorem provides the extension of point (e) of Theorem 2.2.

Theorem 5.12. If (X ,Y ) is c-comonotonic, then both (X , X + Y ) and (Y , X + Y ) are c-
comonotonic.

Proof. We show that the support of (X , X +Y ) is cyclically monotonic (the proof for (Y , X +
Y ) is analogous). Choose an integer m > 2 and arbitrary vectors (x i , x i +y i ) ∈ supp(X , X +
Y ), i = 1, . . . ,m, xm+1 := x1. Since the set supp(X , X ) (see Remark 5.10) and supp(X ,Y ) (by
assumption) are c-comonotonic, we have that

m∑
i=1

〈(x i+1 −x i ), x i + y i 〉 =
m∑

i=1
〈(x i+1 −x i ), x i 〉+

m∑
i=1

〈(x i+1 −x i ), y i 〉 ≤ 0,

i.e. (X , X +Y ) is c-comonotonic.

Using the concept of cyclical monotonicity, it is easy to show that the converse of The-
orem 5.12 holds when d = 1, coherently with point (e) in Theorem 2.2. Unfortunately, this
is no more true when d > 1, as the next counterexample shows.

Example 5.13. Let (X ,Y ) in R2 ×R2 be the random vector uniformly distributed on the
two points (x1, y 1) = ((0,1), (2,1)) and (x2, y 2) = ((1,0), (0,0)). The vector (X +Y ) on R2
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is then uniformly distributed on the two points z 1 = (2,2) and z 2 = (1,0). To prove that
(X , X +Y ) is c-comonotonic, it is sufficient to note that

〈(x2 −x1), z 1〉+〈(x1 −x2), z 2〉 = 〈(1,−1), (2,2)〉+〈(−1,1), (1,0)〉 =−1 ≤ 0.

Analogously, we have

〈(y 2 − y 1), z 1〉+〈(y 1 − y 2), z 2〉 = 〈(−2,1), (2,2)〉+〈(2,1), (1,0)〉 =−4 ≤ 0,

hence also (Y , X +Y ) is c-comonotonic. For (X ,Y ), we find

〈(x2 −x1), y 1〉+〈(x1 −x2), y 2〉 = 〈(1,−1), (2,1)〉+〈(−1,1), (0,0)〉 = 1 > 0,

hence (X ,Y ) is not c-comonotonic.

Even if in general c-comonotonic vectors are not unique, in the special case of equal
marginals uniqueness holds.

Proposition 5.14. If (X ,Y ) is c-comonotonic and FX = FY , then X = Y with probability
one.

Proof. Let FX = FY , and let (X ,Y ) be c-comonotonic with X 6= Y . Then for all integer
m > 1 and all (x i , y i ), i = 1, . . . ,m, xm+1 := x1, in the support of (X ,Y ) (5.3) holds.

Since FX = FY , we can always choose the xi so that y i = x i+1. Therefore, given (5.3),
we have

0 ≥
m∑

i=1
〈(x i+1 −x i ), y i 〉

=
m∑

i=1
〈(x i+1 −x i ), x i+1〉

=
m∑

i=1

d∑
j=1

(
x j

i+1 −x j
i

)
x j

i+1

=
d∑

j=1

m∑
i=1

(
x j

i+1 −x j
i

)
x j

i+1

=
d∑

j=1

[
m∑

i=1
x j

i+1x j
i+1 −

m∑
i=1

x j
i+1x j

i

]
.

By Hardy et al. (1952, Theorem 368), the expression in square brackets is nonnegative,
hence for all j = 1, . . . ,d we have

m∑
i=1

x j
i+1x j

i+1 =
m∑

i=1
x j

i+1x j
i .

This is possible if and only if (x j
1 , . . . , x j

m) and (x j
2 , . . . , x j

m+1) are equally arranged. Since

x j
m+1 = x j

1 , this is a contradiction.
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Remark 5.15. The following properties hold:

(i) Given a pair of marginals FX ,FY there exists a c-comonotonic random vector having
these marginals.

(ii) The distribution of a c-comonotonic random vector with fixed marginals is unique
if at least one of the marginals is continuous.

(iii) The concept of inner product is necessary to define c-comonotonic random vectors.
The definition could be given for random variables with values in any Hilbert space.

(iv) Given a random vector X , the vector (X , X ) is c-comonotonic.

(v) If (X ,Y ) is c-comonotonic and FX = FY , then X = Y with probability one.

5.2 µ-comonotonicity

Galichon and Henry (2008a,b) have recently proposed a variational concept of multivari-
ate comonotonicity, called µ-comonotonicity. Related ideas will be considered in Sec-
tion 4.

In this subsection, for the sake of simplicity, we identify a probability measure on(
Rd ,Bor(Rd )

)
with its distribution function.

Definition 5.16. Let µ be a probability measure on Rd that vanishes on Borel subsets of
Hausdorff dimension d −1. The vector (X ,Y ) ∈ L∞ is called µ-comonotonic if for some
random vector V distributed according to µ we have

V ∈ argmax
Ṽ

{
E[〈X ,Ṽ 〉],Ṽ ∼µ}

,

V ∈ argmax
Ṽ

{
E[〈Y ,Ṽ 〉],Ṽ ∼µ}

.

The vector (X ,Y ) is µ-comonotonic if and only if there exists a random vector Z ∼ µ

and two lower semi-continuous convex functions f and g such that X = ∇ f (Z ) and Y =
∇g (Z ) almost surely. This idea is related to the concept of Pseudo-Wasserstein distance
induced by µ, elaborated by Ambrosio et al. (2008, Section 3).

This definition generalizes the univariate definition of comonotonicity since when d =
1 a vector (X ,Y ) is comonotonic if and only if there exists a random variable Z∗ having a
nonatomic distribution µ such that

Z∗ ∈ argmax
Z

{
E[Z X ], Z ∼µ}

,

Z∗ ∈ argmax
Z

{
E[Z Y ], Z ∼µ}

,

which happens if and only if there exists a random variable U∗ ∼U [0,1] such that

U∗ ∈ argmax
U

{E[U X ],U ∼U [0,1]} ,

U∗ ∈ argmax
U

{E[U Y ],U ∼U [0,1]} .
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wx
s −−−−→ π −−−−→ µy

c

Table 5.1: Relationships between multivariate comonotonic concepts. Converse implica-
tions do not hold.

The main difference between the univariate and the multivariate case is that for d = 1
the choice of µ is irrelevant (for instance it can always be chosen to be uniform), for d > 1
it is not.

Theorem 5.17. Let (X ,Y ) beπ-comonotonic, and let the marginal distributions FX and FY

be of the form (3.3). Then (X ,Y ) is µ-comonotonic for µ=C .

Proof. Let U ∼C . If we define for i ∈ D

Xi = F−1
Xi

(Ui ), Yi = F−1
Yi

(Ui )

by Theorem 3.7 the vector (X ,Y ) is π-comonotonic and has marginals FX and FY .
Furthermore, for i ∈ D

Ui ∈ argmax
V

{E[V X ],V ∼U [0,1]} ,

Ui ∈ argmax
V

{E[V Y ],V ∼U [0,1]} .

By summing over i ∈ D we obtain

U ∈ argmax
V

{E[〈X ,V 〉],V ∼C } ,

U ∈ argmax
V

{E[〈Y ,V 〉],V ∼C } ,

i.e., (X ,Y ) is µ-comonotonic with µ=C .

TABLE 5.1 ABOUT HERE
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