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Abstract

This paper investigates the connection between grade repetition and school dropout. Household
data is matched against a panel of academic test scores and the school career of each child inferred
from the combined dataset. The potential endogeneity of grade repetition is corrected for using the
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show a negative effect of the grade repetition decision on the probability of being enrolled at school
the next year.
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1 Introduction

Primary education in Senegal is characterized by particularly high repetition rates: some 12% of
the pupils enrolled in Senegalese primary schools in 2004 were repeating their grades in 2005.1 This
widespread practice is very expensive for the state and households alike since both private and public
costs of schooling increase with the duration of schooling.

Whether the costs of grade repetition are compatible with universal primary education in devel-
oping countries is seriously debated in multilateral institutions. The World Bank’s publication Bruns,
Mingat, and Rakotomalala (2003) observes that the developing countries with high primary comple-
tion rates faces relatively low repetition rates. On the basis of cross county OLS, the authors conclude
that average repetition rate has a strong negative effect on primary completion rate, suspecting it is
due to the state’s budget constraint. The average repetition rate is included in the “Education For
All indicative framework”, which is the benchmark for getting EFA Fast Track Initiative fincancing
for primary education.

However, the cost of grade repetition has to be compared with its potential consequences: positive
if it improves learning achievement, negative if it causes dropout. Indeed, dropout before completion
of final (sixth) grade is very frequent in Senegal: some 40% of Senegalese children enrolled in first
grade drop out before reaching sixth grade1. This paper inquires whether frequent school dropout is
not in part a consequence of high repetition rates.

Grade repetition affects schooling decisions through a variety of mechanisms. On the one hand,
it has an effect on the acquisition of knowledge. If grade repetition is pedagogically effective, it may
prevent dropout. On the other hand, grade repetition may be discouraging.

Grade repetition modifies the learning achievement at a given date. When children repeat grades
they may consolidate the skills expected at those grades. However, it is unclear whether this offsets
their failure to acquire the skills taught at the next grade. The net effect of grade repetition on the
acquisition of knowledge is ambiguous, then. Empirical evaluations of the net effect of grade repetition
on learning achievement have serious shortcomings. Most studies try to control for test scores as a
proxy for school ability and initial learning achievement (see Holmes (1989) for a meta analysis of
many of those studies). However, teachers probably use their private information on pupils to decide
whether they will repeat. If low motivation at school causes grade repetition, these studies probably
suffer from an endogeneity bias: low motivation at school deters future acquisition of knowledge. Jacob
and Lefgren (2004) control for this potential bias using a discontinuity in school policy in Chicago.
Pupils there took standardized tests at the end of grades 3, 6 and 8. They were promoted if their
test score was higher than a minimum score. Regression-discontinuity analysis revealed a small and
positive effect of grade repetition on academic achievement at a given date.

Grade repetition may be discouraging for a least two reasons. First, it extends the time needed
to achieve a given final grade and get the benefits from education. So grade repetition may increase
the cost of schooling: for a given last grade attended, the opportunity costs increase by one year
when a child has to repeat once, and the job market benefits of schooling are postponed by one year.
Second, grade repetition may be a negative signal about a child’s ability. If the parents observe their
children’s ability noisily, then grade repetition diminishes parents’ belief in their children’s ability.
Grade repetition possibly causes school dropout for these two reasons.

Overall, the sign of the effect of these mechanisms is ambiguous.

Very few studies have tried to estimate this effect in developing countries. King, Orazem, and
Paterno (1999) report that grade repetition causes school dropout in Pakistan. Yet, their identification
strategy does not include any control either for the acquisition of knowledge or for parental preferences

1Ministry of Education, Senegal (2005)
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for schooling. The two are certainly correlated and low parental preferences for schooling possibly cause
grade repetition. Consequently, the effect of grade repetition on school dropout certainly suffers from
an endogeneity bias. PASEC (2004) uses a unique panel of test scores in Senegal and finds that grade
repetition in the early years of the panel is correlated with attrition at the end of the panel. Many
covariates are controlled for and test scores used as a proxy for the acquisition of knowledge and for
ability. However, it is not certain that the remaining unobservable variables causing grade repetition
are uncorrelated with future school dropout. Furthermore, attrition in the last years of the panel
may be a poor proxy for school dropout. Children may still be enrolled but not have taken the tests
because of illness or because they changed schools.

This paper combines PASEC 2 data with fresh survey information to evaluate the effect of grade
repetition on school dropout. An original instrumental variables strategy is used to control for the
potential correlation between the children’s unobservable characteristics and grade repetition.

These instruments are based on teacher attitude to repetition: grade repetition is based on the
teacher’s decision, and controlling for the learning achievement, those decisions are partly based on
teacher’s idiosyncrasies. These are unobservable so, for each child, grade repetition by peers is used
to proxy for teacher attitude.

The results reveal a negative and significant effect of grade repetition on the probability of enrol-
ment at school the next year. The estimated effect is fairly high: the estimations show that grade
repetition increases the probability of school dropout by approximately 5 percentage points on average,
whereas the average dropout rate in the sample is 2%.

Section 2 presents the dataset used to identify the causal effect of grade repetition on school
dropout. Section 3 presents the strategy used here for identifying this effect while section 4 gives the
benchmark results. Section 5 provides some specification checks. Finally, brief remarks are made by
way of conclusion.

2 The data

PASEC and EBMS datasets both contain detailed information about schooling and are combined
here to estimate the effect of grade repetition.

2.1 The PASEC panel

The PASEC conducted a panel survey in 98 Senegalese primary schools between 1995 and 2001.
Twenty second grade students were chosen at random in randomly chosen second grade classes in
each school at the beginning of the 1995-1996 school year. They passed learning achievement tests
at the end of each school year,3 and were monitored throughout their school careers (including grade
repetitions) until the first of them finished primary school (sixth grade) in 2000. Although children
were randomly selected among the second grade pupils of the schools in 1995, attrition and grade
repetition meant that the children in the same grade-year were increasingly selected as time elapsed.

There were two causes for attrition in this panel. First, dropouts did not take the PASEC tests.
Second, the PASEC team organized the tests and collected the data in each of the schools on a given
day in each school year. Children missing school that day or no longer attending the surveyed school
were not tested.

2Programme d’analyse des systèmes éducatifs set up by CONFEMEN Conférence des ministres de l’éducation des
pays ayant le français en partage.

3The tests were marked by the PASEC team. Consequently, test scores could not be influenced by teachers.
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Table 1: Test attendance in the panel

214 Sixth grade
(CM2)

357 236 Fifth grade
(CM1)

412 204 86 Fourth grade
(CE2)

594 154 53 15 Third grade
(CE1)

789 817 102 no test Second grade
(CP)

789 817 696 566 614 551 Total atten-
dance

Initial tests
(1995)

school year
1995 - 1996

school year
1996 - 1997

school year
1997 - 1998

school year
1998 - 1999

school year
1999 - 2000

2.2 EBMS Survey4

The EBMS survey provides additional information about certain PASEC pupils in 2003. It includes
59 of the schools surveyed between 1995 and 2000. The objective was to resurvey households in each
community (village or urban districts) with children who had been in the PASEC panel. Information
was collected about the living conditions (wealth, health) and educational levels of the household
members. Retrospective data about the school careers of the children surveyed by PASEC meant
dropout could be differentiated from other causes of attrition. Consequently, school-leaving dates are
known for almost every child re-surveyed (if they had left in 2003). Of the 1177 pupils attending the
59 schools surveyed by PASEC, 921 are in EBMS data after deletion of questionable matches.

2.3 Aggregate dataset

Both datasets provide reliable retrospective information about enrollment. Together they give
enough information to reconstruct most instances of grade repetition.5 This information is necessary
for evaluating the impact of repetition on drop out. Another advantage of the aggregate dataset is
that it evaluates the individual learning achievement (test scores), which is a crucial determinant of
grade repetition. Table 1 shows the number of children attending each test in the sample and reveals
children often missed a test even though still enrolled. All 921 children were enrolled in school year
1995-1996 although only 817 attended the test. Definition of all the variables used in this paper can
be found in appendix A.

3 The Empirical strategy

This paper seeks to identify the effect of grade repetition, denoted Rik, on school dropout (enrol-
ment during the next school year is denoted Eik,t+1), which is the coefficient γ in the equation (1)
below. The other determinants of dropout are test score Sik, and a vector of covariates Xik.6

4Education et Bien-être des Ménages au Sénégal. This survey was designed by a team composed of Peter Glick, David
Sahn, and Léopold Sarr (Cornell University, USA), and Christelle Dumas and Sylvie Lambert (LEA-INRA, France), and
implemented in association with the Centre de Recherche en Economie Appliquée (Dakar, Senegal).

5The details are explained in appendix A
6This vector includes grade-year dummies, household wealth parents’ education, and group mean test score7 when

not included in the model.
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Eik,t+1 = 1l [βe1Sik + Xikβe2 + γRik + uik > 0] (1)

The main difficulty in identifying γ is to control for the potential endogeneity of grade repetition.
In Senegal, teachers decide whether pupils pass to the next grade or repeat. They probably use
their private information about their pupils’ school ability. First, teachers’ beliefs about learning
achievement may be correlated with the parents’ beliefs conditionally on test scores. If in addition
parents’ beliefs about learning achievement affect the schooling decision, then grade repetition is
probably endogenous. Second, parental preferences for schooling may affect knowledge acquisition.
Teachers may think children whose parents have strong preferences for schooling are more likely to
improve their learning achievement in the next years, and need not repeat grades. Again, this would
generate endogeneity of grade repetition. In both cases, for a given learning achievement at the end
of the current school year as measured by the test score, children with a higher dropout probability
are more likely to repeat their grades.

3.1 Modeling grade repetition determinants

Equation (2) below models the determinants of grade repetition. Learning achievement is compared
to tk, which is the learning achievement required to pass in group k.

Rik = 1l [Sik − tk + Xikβr + εik < 0] (2)

However, grade repetition in the model is not determined solely by whether or not Sik is greater
than tk. Equation (2) takes this into account by including other factors (Xik), such as household wealth
or parents’ education, which may affect grade repetition. We suspect Xik to affect grade repetition
only if Sik is close to tk, since very high or very low learning achievements will drive grade repetition
whatever the individual characteristics are. In that case, the coefficient βr will be small (|βr| << 1).

In the model, the teacher attitude to repetition affects grade repetition through tk. However, we
have to keep in mind that tk may be determined by the group average learning achievement7 (Sk),
and by teacher attitude to repetition (νk):

tk = λSk + νk (3)

Proxies for tk and νk are used here as instruments for grade repetition. Teacher attitude to repe-
tition depends on teachers, not pupils. Accordingly these instruments control for the main potential
source of endogeneity: the correlation between the children’s unobservables and grade repetition deci-
sions. Of course, teacher attitude to repetition is not observable and proxies are required. This paper
uses two different strategies to proxy for it, both using peer repetition.

Repetition rate in the group The first proxy is repetition rate in the group, written as:

R̃ik =
1

nk − 1
Σj 6=iRjk (4)

Rearranging (2) and (3) gives :

Rik = 1l
[
Sik − λSk − νk + Xikβr + εik < 0

]
(5)

7A group is composed of all the observations from the same school, the same year and the same grade. This is an
approximation of a class, since in some schools, there are several classes per grade.
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In equation (5), grade repetition probability depends on Sik − λSk. If λ = 1, the probability of
a child repeating his current grade depends on the difference between his test scores and the group’s
average test score. Grade repetition is relative, then: for a given νk, children do not repeat grades
because their learning achievements are low but because their learning achievements are lower than
those of their peers. We will see farther that λ is probably close to 1.

If λ = 1, the repetition rate in the group does not depend on the group average learning achievement
but on teacher attitude to repetition and the distribution of learning achievement in the group. The
repetition rate in the group depends on the variance of test-scores. In this case, the group repetition
rate R̃ik proxies for νk. If λ 6= 1, it is necessary to control for Sk for the group repetition rate to
appropriately proxy for νk. Replacing R̃ik as a proxy for νk gives:

Rik = 1l
[
Sik − λSk + αR̃ik + Xikβr + εik < 0

]
(6)

Last passer’s test score This paper uses a second proxy for teacher attitude to repetition. “Passers”
are those peers of a given pupil in a given year who are admitted to the next grade. Among the passers,
the pupil with the lowest test score is called the last passer. His test score, LPik, is used as a proxy
for tk:

LPik = min{j 6=i|Rjk=0}(Sjk) (7)

Rik = 1l [Sik − λLPik + Xikβr + εik < 0] (8)

In the benchmark specification of this paper presented in section 4, (1) is estimated jointly with
(8). Because of the potential relationship between tk and Sk in (3), Sk is controlled for. 2 instruments,
LPik and the non-linear function 1l(Sik > LPik) (see section 3.2 below), are used to control for the
potential endogeneity of grade repetition.

3.2 Estimating the grade repetition model

The previous section sets out the theoretical framework for identifying the proxies for teacher
attitude to repetition used here. Before discussing the exogeneity of these proxies, the model of the
determinants of grade repetition is estimated. Two crucial predictions of the model are tested:

• Grade repetition probability depends on learning achievement. The learning achievement re-
quired to pass depends strongly on peer learning achievement.

• Peer repetitions provide relevant information for predicting a given pupil’s repetitions.

Table 2 shows various specifications of a probit model estimating the determinants of grade repeti-
tion. The data are pooled for the various grades and years. The standard errors of the estimators are
corrected for the correlation of the residuals between different observations of the same child. Each
specification includes grade-year dummies. The χ2 statistics for their joint significance are reported.

Grade repetition is inferred from each child’s school career. Accordingly, even conditionally on
enrolment at the end of the school year (and attendance the day of the test), grade repetition suffers
potentially from selection bias. Children must be re-observed to infer whether they repeated grades.
However, it shall be seen that correcting from this bias barely affects the coefficients.

Column 1 of Table 2 regresses the grade repetition decision on the observables of equation (5) and
on household characteristics. The test scores and group mean test scores strongly affect the grade
repetition probability. The coefficients have opposite signs as predicted by equation (5). Absolute
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Table 2: Estimation of the determinants of grade repetition
equation (5) equation (6) equation (8)

(1) (2) (3)
Test score -.898 -.985 -.670

(.068)∗∗∗ (.077)∗∗∗ (.097)∗∗∗

Group mean test score .912 1.045 .385
(.096)∗∗∗ (.105)∗∗∗ (.109)∗∗∗

Household wealth -.034 -.026 -.043
(.022) (.022) (.022)∗

Parents’ education -.025 -.020 -.014
(.030) (.031) (.032)

Repetition rate in group 1.941
(.229)∗∗∗

Last passer’s test score .297
(.080)∗∗∗

Test score higher than last passer’s score -.309
(.131)∗∗

Test score higher than first repeater’s score -.446
(.093)∗∗∗

Obs. 1785 1768 1768
log-likelihood -678.618 -629.282 -625.584
χ2 grade year dummies 36.875 10.815 13.476
corresponding p value < 10−5 .029 .009
χ2 teacher attitude 71.896 82.822
corresponding p value < 10−15 < 10−15

Additional covariates in each specification: grade-year dummies.
Note: ***, ** and * mean respectively that the coefficient is significantly different from 0 at the 1%, 5% and 10%
level. The standard errors of the estimators are corrected for the correlation of the residuals between different
observations of the same child.



8

values of both coefficients are similar, and the difference between them is not significantly different
from 0. In the model, λ is the ratio between the two absolute values, so λ = 1 cannot be rejected.
Conditionally on pupils’ present learning achievement, household education levels and wealth do not
seem to be correlated with their probability of repetition.

Columns 2 and 3 include the proxies for grade repetition of equations (6) and (8). In column 2,
the coefficient of grade repetition rate among peers is positive and undoubtedly different from 0. It
increases the log-likelihood of the model by nearly 50.

In column 3, the last passer’s test score is a proxy for tk. Its coefficient has the expected sign
(positive) and is significant. The coefficient for Sk decreases and is half the absolute value of the
coefficient for Sik, but is still significant. This is coherent with the model: once controlled for tk, Sk

is not a determinant of grade repetition.
Specification 3 includes a dummy taking value 1 if the child’s test score is higher than the last

passer’s score (1l(Sik > LPik)). The latent variable for Rik is suspected to be non-linear, and in
particular to be discontinuous when Sik = tk. 1l(Sik > LPik) proxies for this discontinuity, and in this
estimation the coefficient for this discontinuity is significant. It has the expected sign: the probability
of grade repetition is lower when Sik > LPik.

“Repeaters” are a child’s peers who are not admitted to the next grade. The repeater with the
highest test score is the “first repeater”. The specifications here do not include the first repeater’s test
score as a proxy for tk: repeaters are not observed in each group. However, a dummy taking value 1
if the test score is higher than the first repeater’s score is included. Where no repeater is observed in
the group, the dummy takes value 1. The coefficient for this dummy is negative and significant.

Equation (8) (column 3) is the first stage in the benchmark of this paper because the discontinuity
of the probability of grade repetition when Sik = tk can be identified in this equation. However,
equation (6) (column 2) is required as a first stage in one of the specification checks (see section 5).

So far, the model has proved consistent with the determinants of grade repetition. For this grade
repetition model to be a relevant first stage in estimating equation (1), it has to be ascertained that
the impact of peer repetition on a child’s school career is attributable exclusively to teacher attitude
to repetition, and that such attitudes are exogenous. The next sections address these two issues.

3.3 Are these reliable proxies for teacher attitude to repetition ?

This section examines whether the connexion between a child’s repetition and the proxies used
here can be ascribed exclusively to teacher attitude to repetition. The proxies are based on peer
repetition and peer test scores. If either or both of these are related to the child’s unobservables, then
the proxies may be endogenous.

For each child i in group k, one of his peers is denoted j. Both proxies can be written in the form
Φ({Rjk, Sjk}j 6=i), meaning that they are a function of peer repetitions and of peer test scores. The
potential correlation between Φ({Rjk, Sjk}j 6=i) and εik needs to be eliminated once the observables
have been controlled for. Child i’s test score and his group average test score are controlled for, and
the assumption that this controls for the correlation between child i’s unobservables and his peer’s
(child j’s) test score Sjk is made. For that reason, let us focus on the potential correlation between
child i’s unobservables and his peers’ repetition Rjk, and rewrite the determinants of repetition of
peer j of equation (5):

Rjk = 1l
[
Sjk − λSk − νk + Xjkβ + εjk < 0

]
In equation (5), it is still assumed the correlation between child i’s unobservables and the test score

Sjk is controlled for. However, the unobservables εjk could be correlated with child i’s unobsevables:
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εjk and εik are correlated if different observations of ε in the same group are correlated, conditionally
on observable variables. In the model, correlation between the unobservables of children from the
same group could cause an endogenous measurement error of teacher attitude to repetition.

Such correlation is theoretically plausible. For example, lack of motivation at school might cause
grade repetition. Lack of motivation at school causes dropout. If motivation differs among schools and
if motivation causes grade repetition then εjk is probably correlated with εik, in which case εjk is cor-
related with child i dropout. Hence R̃ik would be correlated with uik, the error term in the enrollment
equation (equation (1)), and there would be endogeneity. This paper gives two empirical arguments
for rejecting this spurious correlation between child i’s unobservables and peer j’s unobservables.

The first argument is that any unobservable having different distributions between groups can be
expected to be correlated with the school’s observables. For example, motivation is expected to be
higher in wealthy communities or in communities where average education is high. If lack of motivation
causes grade repetition and if motivation is higher in wealthy communities, then the repetition rate
will be lower in wealthy communities.

Table 3 regresses repetition rate and last passer’s test score on community-level characteristics.
Proxies for teacher attitude to repetition are not correlated with any community-level variables.8

Columns 1, 2 and 3 run OLS regressions of the last passer’s test scores of each group on certain
characteristics of groups and schools. Obviously the last passer’s score is correlated with group mean
test score. The coefficient is approximately 1, which is compatible with λ = 1.9 A high standard
deviation in the group is associated with a lower last passer’s score. Suppose that the 15% of children
with the lowest test scores in each group repeat their grades. Then for a given group mean test score,
the higher the standard deviation of the test scores in the group is, the lower the last passer’s test
score is expected to be. The previous year’s mean test score is not significantly linked with the last
passer’s score.

In column 2, the specification includes a large set of community variables. None of them is
significantly different from 0 at the 5% level. The F-test for their joint significance does not indicate
that any of them is significantly correlated with the last passer’s score. Yet, the community variables
in the specification are correlated, which generates multicollinearity. Some of these variables, chosen to
decrease multicollinearity, are maintained in column 3. Again, nothing indicates that the last passer’s
score is correlated with the remaining community variables.

Table 3 columns 4, 5 and 6 runs OLS regressions of group repetition rate on the same covariates.
The repetition rate is negatively correlated with the group mean test score and with the previous
year’s group mean test score. Even if Table 2 shows that λ is probably close to 1, the repetition rate
is lower when the group learning achievement is higher. This indicates that λ is probably slightly less
than 1. The standard deviation of test scores is not correlated with group repetition rate.

Columns 5 and 6 provide no evidence that the group repetition rate is correlated with community
characteristics. However, the F-tests in Table 3 might not be powerful enough to detect a correlation
between the community’s observables and repetition rates. For example, the estimated differences of
2.2% in repetition rate between agricultural and commercial communities in Table 3, column 6 are
not significantly different from 0. But it might be that the estimation is not powerful enough.

A second empirical argument rejects the spurious correlation between child i’s unobservables and
those of his peers. In fact, I expect that the correlation between the ε of different peers could be caused
by endogenous placement in schools. Chamberlain (1980) explains how it is possible to control for

8An additionnal regression indicates grade repetition rate is not significantly correlated with household wealth or
parents’ education, once school fixed effects, grade-year fixed effects and test scores are controlled for. This rules out an
endogenous placement of pupils correlated with teacher attitude to repetition within schools.

9LPik is a proxy for tk. If λ = 1, then tk = Sk + νk
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Table 3: Determinants of teacher specific attitude to repetition
last passer’s score Repetition rate

(1) (2) (3) (4) (5) (6)
Mean test score .983 .977 .975 -.049 -.072 -.051

(.093)∗∗∗ (.111)∗∗∗ (.101)∗∗∗ (.036) (.038)∗ (.036)

Standard deviation of test scores -.555 -.519 -.579 -.043 -.038 -.061
(.204)∗∗∗ (.226)∗∗ (.215)∗∗∗ (.063) (.073) (.068)

Mean previous year’s test score -.066 -.082 -.094 -.052 -.037 -.053
(.069) (.067) (.070) (.028)∗ (.029) (.028)∗

Community mean wealth -.120 -.052
(.091) (.029)∗

Community mean education .005 .053
(.121) (.040)

log (city or village population) .027 .009
(.035) (.012)

Electricity in community .181 -.030 .074 .005
(.198) (.109) (.063) (.041)

Rural community .120 .041
(.207) (.066)

Distance to health center -.112 -.155 -.048 -.053
(.162) (.137) (.047) (.043)

Distance to hospital -.065 -.028 -.0006 .009
(.041) (.037) (.014) (.013)

Agricultural community

Commercial community .223 .062 .009 -.023
(.117)∗ (.108) (.047) (.035)

Obs. 280 267 280 298 283 298
R2 .506 .518 .51 .358 .372 .366
F-test grade-year dummies 7.366 8.638 6.621 5.170 6.206 5.290
corresponding p-value < 10−5 < 10−5 .00002 .0006 .0001 .0005
F-test community variables .893 .780 .553 .659
corresponding p-value .529 .543 .811 .623
OLS corrected for clustering by school. Additional covariates in each equation: grade-year dummies.
Note: ***, ** and * mean respectively that the coefficient is significantly different from 0 at the 1%, 5% and 10%
level. The standard errors of the estimators are corrected for the correlation of the residuals between different
observations of the same child.
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fixed effects in a probit regression. This method is adopted in section 5.1 and the results are similar
to the benchmark.

3.4 Is teacher attitude to repetition exogenous?

There are two reasons why νk could be correlated with the error term. First, teacher placement
could be endogenous. Second, teacher attitude to repetition may be random, but correlated with
another characteristic causing dropout.

If teacher placement is endogenous and reasons for their placement (teacher qualification, experi-
ence...) are correlated with νk, then νk may be correlated with the unobservables causing dropout uik.
For example, if older teachers are appointed to urban schools and νk is correlated with teacher age,
then νk may be correlated with parental preferences for schooling. Hence νk would be endogenous and
the proxies LPik and R̃ik would not control for the endogeneity of Rik. However, higher repetition
rates would be expected in urban schools, which is not the case in Table 3.

Schools’ observable characteristics are likely to be the main determinants of teacher placement.10

As a result, if the repetition rate is not correlated with these, which is the case in Table 3, endogenous
placement may not generate the endogeneity of νk.

Once controlled for grades, the characteristics of the schools are probably what determines of
teacher placement. So modifying the identification hypotheses to control for school fixed effects à la
Chamberlain (1980) in section 5.1 controls for this potential endogeneity bias.

If teacher attitude to repetition is correlated with some other characteristic causing dropout, then
the proxies fail to control for the endogeneity of grade repetition. In section 5.2 the non-linearity
of the function f is used to assess whether this effect is plausible. The theoretical model takes into
account a potential effect of νk on Eik,t+1:{

Eik,t+1 = 1l [βe1Sik + βe2tk + Xikβe3 + γRik + uik > 0]
Rik = 1l [Sik − tk + δ1l(Sik > tk) + Xikβr + εik < 0]

(9)

The identification in equation (9) relies on the probability of grade repetition being discontinuous
when Sik = tk. However, tk is measured noisily, so that it is pointless estimating the effect of grade
repetition on dropouts with a regression discontinuity design.

In section 5.2 the estimation of this model reveals a correlation between teacher attitude to repeti-
tion and the average dropout rate. However, the estimated effect of grade repetition on school dropout
remains negative and significant. Depending on the specification the marginal effect may be greater
and very imprecisely estimated or close to the benchmark and significantly different from 0.

3.5 Selection on grade repetition

As stated in section 2, not all grade repetition decisions can be observed. If a child dropped out
before a test there is no way of knowing what the repetition decision was the year before this test.
The structure of the data is summarized in Table 4.

The selection problem makes it difficult to identify the effect of grade repetition decisions on school
dropout. If grade repetition causes dropout, then it causes its own selection. However, it is possible
to control for the selection and hence to identify the determinants of grade repetition in model (10):{

Rik = 1l[Sik −λLPik +Xikβr +εik < 0]
selection = 1l[βs1Sik +βs2Zs +Xikβs3 +γsRik +vik > 0]

(10)

10Teacher placement is centralized in Senegal, so observable information is probably the most important determinant
of teacher placement.
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Table 4: Observation of grade repetition decision
date t date t + 1

Enrolled

Enrolled } Grade repetition decision
is observed

Enrolled } Grade repetition decision
is not observedDrops out

Appendix C.1 shows that model (10) can in theory be semiparametrically identified. This is based
on a simple intuition: there is an instrument for grade repetition and an instrument for selection. In
this case the system of all the probability function derivatives has a single solution. γs is not identified
by this system, since Rik is binary. However, Vytlacil and Yildiz (2006) show the coefficient for the
endogenous variable is identified.

Column 1 in Table 5 reports the determinants of grade repetition with a probit specification, with
no control for selection. In columns 2 and 3, model (10) is estimated using a maximum likelihood
method. Accordingly, this estimation controls for the selection on Rik. The error terms are assumed
to follow a bivariate normal distribution. The data are pooled for the various grades and years.
The standard errors of the estimators are corrected for the correlation of residuals between different
observations of the same child. Each specification includes grade-year dummies in each equation. The
χ2 statistics for their joint significance is reported.

The determinants of grade repetition Column 1 in Table 5 lists the determinants of grade
repetition. The coefficients in columns 1 and 2 are similar, which means they are not really affected
by the correction for selection. Most of the coefficients are similar to the coefficients of Table 2 and
require no further comment here. A coefficient is slightly affected by the correction for selection: the
coefficient of the dummy variable for a test score higher than the first repeater’s score diminishes by
a third in absolute value. A high previous year’s test score is associated with a lower likelihood of
grade repetition, and the coefficient for the test score is closer to 0 than in Table 2. If test score is a
noisy proxy for current learning achievement, then previous year’s test score is expected to be another
proxy for current learning achievement.11

The determinants of selection The estimation of selection in model (10) is intended to control
for selection bias in the estimation of Rik. The determinants of selection may be the determinants of
moving or missing school the day of the tests in addition to the determinants of dropout. Accordingly
there is no particular interpretation of these coefficients.

Nevertheless, it is necessary to focus on the effect of the negative shocks on harvests, since this
variable is the exclusion restriction in the equation for Rik. These shocks are not expected to be a
determinant of grade repetition because the rainfall season in Senegal is from July to September, during
the school vacations. Accordingly, repetition is known when the rainfall season begins. Theoretically,
then, it can be ruled out that teachers might use this information for grade repetitions.

These shocks positively affect selection: when there is a negative shock, the child is more likely to
take the test the next year. Negative shocks on harvests may decrease opportunity costs, so children
may be more likely to take the tests when there is a shock. The F-test for the significance of this
instrument is 7.5.

It has been seen that the control for selection barely affects the coefficients of grade repetition
determinants. Accordingly selection bias is not controlled for in the benchmark specification. However,

11For that reason, previous year’s test score is omitted from Table 2. Table 2 tests for λ = 1.
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Table 5: Joint estimation of the determinants of grade repetition and selection (model (10))
probit model joint estimation

repetition repetition selection
Test score -.452 -.489 .143

(.121)∗∗∗ (.109)∗∗∗ (.110)

Class mean test score .306 .262 .010
(.124)∗∗ (.122)∗∗ (.147)

Previous year’s test score -.312 -.293 -.038
(.066)∗∗∗ (.061)∗∗∗ (.078)

Household’s wealth -.019 -.029 .057
(.024) (.023) (.026)∗∗

Parental mean education -.023 .002 -.082
(.036) (.034) (.034)∗∗

Last passer’s test score .339 .340
(.098)∗∗∗ (.092)∗∗∗

The test score is higher than the last passer’s score -.406 -.454
(.148)∗∗∗ (.138)∗∗∗

The test score is higher than the first repeater’s score -.479 -.348
(.107)∗∗∗ (.112)∗∗∗

Negative shock on harvests this calendar year or the next .473
(.173)∗∗∗

Grade repetition -.988
(.424)∗∗

Obs. 1580 1818
log-likelihood -521.523 -1175.590
χ2 grade year dummies 4.881 5.661 11.554
corresponding p value .300 .226 .021
χ2 instruments 97.610 89.962 7.455
corresponding p value 5.07e-21 2.23e-19 .006
Additional covariates in each equation: grade-year dummies.
Note: ***, ** and * mean respectively that the coefficient is significantly different from 0 at the 1%, 5% and 10%
level. The standard errors of the estimators are corrected for the correlation of the residuals between different
observations of the same child.
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evidence will be shown that controlling for the selection would not alter the effect of grade repetition
on dropouts.

4 The effect of grade repetition on school dropout

Section 3, investigated the instrumental strategy. This section uses that strategy to identify the
effect of grade repetition on school dropout.{

Eik,t+1 = 1l[βe1Sik +Xikβe3 +γRik +uik > 0]
Rik = 1l[Sik −λ2LPik +Xikβr +εik < 0]

(11)

Model (11) addresses the endogeneity problem. From the results of the previous section the
selection issue can be ignored in the benchmark empirical specification. In addition, appendix C.2
proves that the sign of the effect of grade repetition on school dropout can be semiparametrically
identified without taking into account the selection on Rik.

The idea behind this is very simple: the sign of the derivatives of the probability of Rik with respect
to the instruments are identified. If an increase in LPik is associated with an increase of IP(Rik = 1),
this is because of the effect of LPik on Rik and not because of selection (if the instrument is valid,
and because of the exclusion restriction). Because of the exclusion restriction, if the derivative of
IP(Eik,t+1 = 1) with respect to the instruments is different from 0, this is because of the effect of grade
repetition on school dropout. The sign of the effect of LPik on Rik and the sign of the reduced form
effect of LPik on Eik,t+1 = 1 are both identified, so the sign of the effect of LPik on Eik,t+1 = 1 is
identified.

Equation (11) is estimated by the maximum likelihood method. If the information about repetition
is missing, the likelihood is IP(Rik = 1, Eik,t+1|Sik, Sk, LPik, Xik;β, δ, γ, λ) +
IP(Rik = 0, Eik,t+1|Sik, Sk, LPik, Xik;β, δ, γ, λ).

Model (11) is estimated in Table 6. The two columns of Table 6 correspond to the model’s two
equations. Again the data are pooled for the various grades and years. Each specification includes
grade-year dummies in each equation and the χ2 statistics for their joint significance is reported.
Column 1 is identical to column 1 in Table 5, and needs no further comments.

The effect of grade repetition on dropout In this specification of model (11), the estimated
effect of grade repetition on school dropout is negative and significant. The coefficient is different from
0 at the 1% level. It corresponds to an average marginal effect of 5.3%. The mean dropout rate being
2% in the sample, the magnitude of the estimated effect is fairly high: grade repetition apparently
increases the probability of dropout approximately threefold.

Suppose that repeaters are 12% of the pupils, that the dropout rate of repeaters is 7% (5% due
to grade repetition, 2% due to other reasons), and that the dropout rate of other pupils is 2%. Then
repeaters make up 30% of dropouts and grade repetition accounts for 21% of all dropouts.

This back-of-the-envelope calculation suggests grade repetition is an important determinant of
dropout. Although dropout is obviously caused by other factors, it can be estimated that the propor-
tion (partly) due to grade repetition is not negligible.

The IV coefficient for the effect of grade repetition on dropout cannot be compared with the
coefficient for a simple probit model. In fact, there is no information on grade repetition for the pupils
who drop out, so that model (1) cannot be estimated using probit regression.

Other determinants of school dropout Unsurprisingly, household wealth is positively associated
with continuing schooling. Test scores or parental education are not correlated with dropout.
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Table 6: Joint estimation of the determinants of grade repetition and school dropout (model (11))
repetition enrolledt+1

(1) (2)
Test score -.456 .099

(.124)∗∗∗ (.157)

Group mean test score .298 .036
(.121)∗∗ (.217)

Previous year’s test score -.303 -.088
(.063)∗∗∗ (.136)

Household wealth -.031 .150
(.024) (.055)∗∗∗

Parents’ education -.028 .060
(.035) (.074)

Last passer’s test score .326
(.103)∗∗∗

Test score higher than last passer’s score -.401
(.148)∗∗∗

Test score higher than first repeater’s score -.473
(.104)∗∗∗

Grade repetition -1.126
(.330)∗∗∗

(Average marginal effect of grade repetition) -.053
(.026)∗∗

Obs. 1818
log-likelihood -677.162
χ2 grade year dummies 7.765 14.920
corresponding p value .101 .005
χ2 instruments 97.100
corresponding p value 6.53e-21
Additional covariates in each equation: grade-year dummies.
Note: ***, ** and * mean respectively that the coefficient is significantly different from 0 at the 1%, 5% and 10%
level. The standard errors of the estimators are corrected for the correlation of the residuals between different
observations of the same child.
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Controlling for selection Model (12) below adresses both the selection problem and the endo-
geneity of grade repetition:

Eik,t+1 = 1l[βe1Sik +βe2Zs +Xikβe3 +γRik +uik > 0]

Rik = 1l[Sik −λLPik +Xikβr +εik < 0]
selection = 1l[βs1Sik +βs2Zs +Xikβs3 +γsRik +vik > 0]

(12)

Appendix C.1 proves that in model (12):

• If (εik, uik, vik) is independent of (Sik, Sk, LPik, Zs, Xik)

• If λ2 6= 0 and βs3 6= 0

• Under certain technical assumptions12

all the coefficients of model (12) are identified without any parametric assumption about the distri-
bution of (εik, uik, vik).

The 3-equation model (12) is estimated in Table B.11. This is not the benchmark specification for
convergence reasons. However, it is reassuring that the results of Tables 6 and B.11 are very similar:
the effect of grade repetition on school dropout is quantitatively similar (−4.9%) and significant.

5 Specification checks

5.1 Does the effect of grade repetition on dropout persist when school fixed-effects
are taken into account?

Crucially here, this paper assumes grade repetition rate is independent of the unobservables of the
community. If not, pupils’ unobservables may be correlated within each school, or endogenous teacher
placement may generate endogeneity of teacher attitude to repetition. Table 3 shows the proxies for
teacher attitude to repetition are not correlated with school observables. This is reassuring because
most community unobservables are expected to be correlated with observable characteristics, but the
power of this test is questionable.

Accordingly, the identification hypotheses can be modified in order to control for school fixed
effects à la Chamberlain (1980). The model is then identified on the differences in teacher attitude to

repetition within schools. Let us rewrite equations (6) and (1) and control for R̃iks, the school average
repetition rate: Eik,t+1 = 1l

[
βe1Sik + βe2Sk + βe3R̃iks + Xikβe4 + γRik + uik > 0

]
Rik = 1l

[
Sik − λSk + γR̃iks + αR̃ik + Xikβ + εik < 0

] (13)

The 2 equations of (13) are estimated to control for R̃iks. For the sake of consistency group
repetition rate is used as a proxy for teacher attitude to repetition. The effect of the grade repetition
decision is identified on the differences within schools in teacher attitude to repetition. This controls
for potential correlation between ε values from the same school.

Model (13) is estimated in Table 7. The coefficients of the new covariates, of the instruments and
of the effect of grade repetition are reported in this table. The other covariates in the estimation

12Hypotheses about points where the distribution of (εik, uik, vik) should be positive and finite, and about the support
of the distribution of the observables.
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Table 7: Joint estimation of the determinants of grade repetition and school dropout (model (13))
repetition enrolledt+1

(1) (2)
School mean of grade repetition rates among peers 1.456 .701

(.487)∗∗∗ (.751)

Repetition rate in group 1.854
(.302)∗∗∗

Grade repetition -.908
(.331)∗∗∗

(Average marginal effect of grade repetition) -.045
(.023)∗∗

Obs. 1823
log-likelihood -675.133
χ2 grade year dummies 8.752 16.639
corresponding p value .068 .002
χ2 instruments 37.819
corresponding p value 7.76e-10
Additional covariates in each equation: test score, group mean test score previous year’s test score, household
wealth, parents’ education, grade-year dummies.
Note: ***, ** and * mean respectively that the coefficient is significantly different from 0 at the 1%, 5% and 10%
level. The standard errors of the estimators are corrected for the correlation of the residuals between different
observations of the same child.

are the same as in Table 6. In this specification, the effect of grade repetition is identified by the
differences in teacher attitude to repetition within schools. In schools with higher repetition rates, the
probability of repetition is higher even conditionally on the group repetition rate.

The effect of grade repetition on school dropout is still negative and significant. Its marginal effect
is nearly the same (here −4.5%). Table B.12 in Appendix B shows the corresponding specification of
model (12), and gives the same results (the average marginal effect is −4.9%).

5.2 Does teacher attitude to repetition affect non-repeaters?

Let us suppose teacher attitude to repetition is random. Teacher placement is independent of
attitude to repetition. Attitude may still be correlated with other educational methods, in which case
school dropout may be spuriously correlated with grade repetition. The correlation between grade
repetition and teacher attitude to repetition can be controlled for using the discontinuity of P (Rik = 1)
when Sik = tk. In this case, the instrument for grade repetition is the rank relative to first repeater
and last passer, and the empirical model is model (14): Eik,t+1 = 1l

[
βe1Sik + βe3aLPik + βe3bR̃ik + Xikβe4 + γRik + uik > 0

]
Rik = 1l

[
Sik − λLPik + αR̃ik + δ1l(Sik > LPik) + Xikβr + εik < 0

] (14)

Table 8 shows the estimation of model (14), which is the empirical counterpart of model (9). This
model controls for a potential correlation between teacher attitude to repetition and school dropout.
This correction relies on the assumption that the coefficient of teacher attitude to repetition in the
dropout equation is the same for all children. This estimation is highly parametric, since it relies
strongly on the non-linearity of the effect of tk on grade repetition.

The proxies for teacher attitude to repetition are positively correlated with the probability of
being enrolled at school the next year. Two explanations can be given for this coefficient. First
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Table 8: Joint estimation of the determinants of grade repetition and school dropout (model (14))
repetition enrolledt+1

(1) (2)
Repetition rate in group 1.292 1.628

(.362)∗∗∗ (.566)∗∗∗

Last passer’s test score .154 .096
(.116) (.172)

Test score higher than first repeater’s score -.245
(.124)∗∗

Test score higher than last passer’s score -.397
(.153)∗∗∗

Grade repetition -2.344
(.796)∗∗∗

(Average marginal effect of grade repetition) -.217
(.138)

Obs. 1818
log-likelihood -665.079
χ2 grade year dummies 4.745 14.485
corresponding p value .314 .006
χ2 instruments 10.416
corresponding p value .005
Additional covariates in each equation: test score, group mean test score previous year’s test score, household
wealth, parents’ education, grade-year dummies.
Note: ***, ** and * mean respectively that the coefficient is significantly different from 0 at the 1%, 5% and 10%
level. The standard errors of the estimators are corrected for the correlation of the residuals between different
observations of the same child.
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teacher attitude to repetition may be correlated with some other educational method causing dropouts.
Second, teacher attitude to repetition has other repercussions than repetitions, and those repercussions
affect the school dropouts of passers. In both cases, the effect of grade repetition on school dropouts
in Tables 6 and 7 is potentially biased.

However, the coefficient for grade repetition is still negative and significant in this specification.
The estimated marginal effect (−22%) is much smaller but imprecisely estimated and not significantly
different from 0. The marginal effect increases whereas the probit coefficient is multiplied by 2, because
of the non-linearity in the probit model. Yet, the marginal effect is very imprecisely estimated.

Table B.13 in Appendix B identifies the corresponding specification of model (12). The direct
effect of νk on dropout is smaller (in terms of probit coefficient) and only significant at the 10% level
(the p-value is less than 6%). The effect of grade repetition on school dropout is again negative and
significant. The marginal effect is −6.2% in Table B.13. By contrast to Table 8, the marginal effect is
significantly negative and close to the other specifications.

This difference between Table 8 and Table B.13 is certainly explained by the correction for selection.
The coefficient for test score higher than the first repeater’s score was affected by the correction for
selection in Table 2. In model (14), this instrument is crucial, since there are only two dummies as
instruments in this model whereas our benchmark, model (11), included a third continuous instrument.
Accordingly the correction for selection alters the effect of grade repetition on dropout here and not in
the benchmark. Hence this correction for selection is probably necessary here. Overall, the results in
Table B.13 are probably more reliable, and they seemingly confirm that grade repetition has a negative
effect on schooling, this result being robust to the potential causal link between teacher attitude to
repetition and dropout.

This section checks whether a correlation between teacher attitude to repetition and dropout is
likely to bias the result. Table 8 shows such a correlation is probable. However, the existence of this
correlation does not change the sign and significance of the effect of grade repetition on dropout. The
magnitude of the effect of grade repetition on school dropout is strongly affected by this correction in
Table 8, but not so in Table B.13, which controls for the selection.

6 Conclusion

Proxies for the differences between teacher attitude to repetition are used here as instruments for
identifying the effect of grade repetition on dropout. With these instruments, a negative effect of
grade repetition on school dropout is estimated.

The differences in the proxies are not correlated with observable characteristics of school geographic
location, ruling out potential endogeneity from teacher placement or from the correlation between
unobserved characteristics of peers. In addition, the main estimation is modified to allow for school
fixed effects. With this specification the results are very similar to the benchmark. Both empirical
tests indicate that the result is not biased by school unobservable characteristics.

In both specifications a causal effect of teacher attitude to repetition on school dropout is a potential
source of bias. To control for this, the procedure uses the fact that the effect of teacher attitude to
repetition on children’s grade repetition depends on children’s ranking in their class. In this third
specification, the causal effect of grade repetition on school dropout is negative and slightly stronger
than in the benchmark specification.

This paper focuses on the effect of grade repetition on short-term dropout but grade repetition
may have other consequences. First, it has a direct effect on the acquisition of knowledge. However,
as long as grade repetition causes school dropout, evaluation of this effect raises a serious selection
problem. In addition, schooling decisions and knowledge acquisition are closely interlinked, and it is
doubtful any conceptually acceptable instrument can be found for this selection.
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Second, grade repetition may have long-term consequences. It is possible a priori to evaluate the
long term effect from the same data, but this is not addressed here.

Finally, teacher attitude to grade repetition is likely to have a direct effect on school dropout. As
shown in the last specification check on this paper, conditionally on grade repetition, the probability of
children dropping out is lower when teacher attitude favors grade repetition. In fact, it is credible that
teacher attitude to repetition directly affects dropout: it may increase motivation for pupils willing
to avoid grade repetition, or may decrease the standard deviation of test scores in the class. In both
cases, grade repetition may encourage the acquisition of knowledge so it may discourage dropout.
Further, it is also credible that teacher attitude to repetition is perceived by the parents as a signal
for the school quality. In that case teacher favoring grade repetition face lower dropout rates because
their pupils are selected and have a higher demand for schooling, not because the grade repetition of
their peers has any positive impact on their acquisition of knowledge. Finally, a grade repetition may
be less discouraging when grade repetition rates are low.
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Table A.9: Descriptive statistics for the variables of this paper
N mean standard deviation min. max.

Grade repetition 2176 0.173 0.379 0 1
Enrolled next year 2820 0.976 0.152 0 1
Test score 2380 -0.066 0.983 -3.20 3.34
Previous year’s test score 2286 0.009 1.00 -2.34 3.81
Group mean test score 2513 -0.065 0.590 -1.63 1.91
Negative shocks on harvests 2818 0.101 0.328 0 2
Repetition rate in the group 2503 0.172 0.180 0 1
Last passer’s test score 2466 -0.754 0.901 -3.20 4.69
Test score higher than last passer’s score 2393 0.730 0.444 0 1
Test score higher than first repeater’s score 2393 0.717 0.451 0 1
Parent’s education 839 1.93 1.42 1 8
Household wealth 823 -0.88 2.01 -3.12 4.38

Notes: The last school year of the panel is dropped because repetition is not observed. Once attrition is taken into

account, 2825 observations for time-variant variables remain, and 921 individuals for time-constant variables

Table A.10: Grade attended during the PASEC panel for six imaginary cases
case 1 case 2 case 3 case 4 case 5 case 6

2 2 2 2 2 2
school year
1995 - 1996

2 2,3 drop. 3 3 3
school year
1996 - 1997

3 3 3,4 4 3
school year
1997 - 1998

4 4 3,4,5 5 3
school year
1998 - 1999

5 5 3,4,5,6 6 4
school year
1999 - 2000

(When the child did not take the tests, the possible grades are in grey)

A The variables

Repetition is a dummy taking value 1 if the child repeated the grade, and 0 otherwise. Information
is from the PASEC panel. In each case, I tried to infer each year whether the child passed at the end
of the school year. Table A.10 sums up the various possible cases in the PASEC data and specifies
whether anything can be learned about the child’s progression. Case 1 is the basic case: the child took
all the tests. He repeated after school year 1995 - 1996, and has passed all the subsequent grades. In
case 2, the child did not take the tests in 1996 - 1997. The reason why he did not take the test is
not reported. Consequently, whether he repeated the second or the third grade is unknown. In case
3, the child dropped out in 1996. Consequently whether he was admitted to third grade after school
year 1995 - 1996 is unknown. In case 4, the child is not in the sample after 1997 - 1998, so whether
he repeated during the subsequent grades remains unknown. In cases 5 and 6, grade repetitions are
not ambiguous: we know the child repeated twice (case 6) or passed twice (case 5) when he was not
observed.

Enrolled is the fact that the child is still enrolled at school in a given year. The information is
inferred from the EBMS dataset so as to distinguish attrition in the panel from school dropout.
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Test scores are a proxy for learning achievement at the end of the current school year. In fact the
PASEC panel contains school tests at the end of each academic year until the end of the survey.13 The
tests were marked by the PASEC team. Consequently, test scores could not be influenced by teachers.
Table 1 reports the number of children taking each test.

The tests were designed to ensure easy comparisons within grade-years. They nevertheless differed
between different grades and years of the panel. The test scores have a mean of 0 and a standard
deviation of 1 within each grade-year.

Previous year’s test scores are a proxy for learning achievement prior to the current school year.
During the panel, the children took tests at the end of each school year. In each grade-year of the
panel, most of the children had been in the preceding grade the year before. The others had been
in the same grade the year before, and were currently repeating their grade. The tests for currently
repeating children and others had been different. Yet, some items had been common to both, and
those items are used to compare the knowledge of the pupils prior to the current school year. Again,
this variable has a mean of 0 and a standard deviation of 1 within each grade-year. This comparison
relies exclusively on skills acquired in the preceding grade, since the tests never included items about
the skills supposed to be acquired in the following grades.

Parents’ education is the mean of both parents’ education. The education of an individual is 1 if
the individual never went to school, 2 if the person began but did not finish primary school, 3 if he
finished primary school but did not begin secondary school, etc. It takes the highest value, 8, if the
individual attended to higher education. If information about the father’s education or the mother’s
education was missing, it is replaced by the mean education of the other adults (aged more than 25
in 1995) in the household.

Household wealth is a composite indicator for possession of durable goods, obtained by a principal
component analysis. It is based on children’s declarations in 1995, and so avoids reverse causality due
to the children’s education.

Negative shocks on harvests is a dummy taking value 1 if the head of the household reports a
negative shock on harvests. These shocks are taken into account if the child or his parents were still
in the household visited by EBMS in 2003. Otherwise this dummy equals 0, because the child was not
really affected by these shocks. (140 cases out of 1823) However, for all the specifications presented,
including a dummy for those cases did not change the effect of grade repetition on school dropouts.

Repetition rate in the group is a proxy for teacher attitude to repetition. A group is defined
by all the children being in the same school and the same grade in a given school year.14 Among the
peers of a given child a given year, “passers” are those admitted to the next grade. Others must repeat
their grade if they do not drop out and are called “repeaters”. The repetition rate in the group is the
proportion of “repeaters” among the peers. It is calculated among the peers that are unambiguously
passers or repeaters.
Among the passers, the “last passer” is the passer with the lowest test score.

13The second grade classes were not surveyed from 1997 - 1998, so pupils still in this grade at that time were not
surveyed until they passed the third grade.

14A group is an approximation of a class: there may be several classes per group in some cases. In fact, there may be
several classes per grade in some schools. In that case, although all the pupils are in the same class in the first year of
the panel, in the following years they may be in the same grade and in different classes.
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Last passer’s test score is another proxy for the teacher specific attitude to repetition. In fact, if
the last passer’s score is high, a given child is expected to repeat more frequently.

Test score higher than last passer’s score is a dummy taking value 1 if the child’s test score is
higher than the last passer’s score, and 0 otherwise. The idea that a child has to repeat if his learning
achievement is below a certain threshold level is widespread. If there are differences among teachers
in their attitudes to repetition, this level of learning achievement may change among teachers. That
is why the test score of the last passer is used as a proxy for it. Accordingly, the dummy is a proxy
for the fact that the child’s achievement is above the threshold.

Among those not admitted to the next grade, the one with the highest test score is the “first repeater”.

Test score higher than first repeater’s score is a dummy taking value 1 if the child’s test score
is higher than the last passer’s score, and 0 otherwise. If there is no repeater in the group, the dummy
for the “test score higher than first repeater’s score” equals 1 for every child.

B Results with model(12)

In table B.11, model (12) is estimated parametrically. This is not the benchmark specification for
convergence reasons. The error terms (εik, uik, vik) follow a trivariate normal distribution, approxi-
mated with a GHK simulator, with 25 iterations in Table B.11. The maximum likelihood does not
converge with more iterations in the simulator.

When maximization fails, the coefficient vector generates P̂ (selection = 1) > P̂ (Eik,t+1 = 1) for
many observations. It would consequently be expected that for some of these observations, selection =
1 and Eik,t+1 = 0. The data are constrained to selection = 0 if Eik,t+1 = 0, and I suspect that this
incoherence between the data and the predictions of the model causes the failure of the maximization
process.



24

Table B.11: Joint estimation of the determinants of grade repetition, selection, and school dropout
(model (12))

repetition selection enrolledt+1

(1) (2) (3)
Test score -.513 -.104 .202

(.101)∗∗∗ (.120) (.141)

Group mean test score .230 .257 .097
(.114)∗∗ (.145)∗ (.199)

Previous year’s test score -.233 -.133 -.203
(.064)∗∗∗ (.087) (.138)

Household wealth -.032 .053 .170
(.022) (.031)∗ (.055)∗∗∗

Parent’s education .019 -.100 .095
(.031) (.040)∗∗ (.085)

Negative shock on harvests this calendar year or next .478 .143
(.202)∗∗ (.261)

Last passer’s test score .323
(.094)∗∗∗

Test score higher than last passer’s score -.503
(.129)∗∗∗

Grade repetition -2.244 -1.595
(.652)∗∗∗ (.549)∗∗∗

(Average marginal effect of grade repetition) -.049
(.015)∗∗∗

Obs. 1818 1818 1818
χ2 grade year dummies 7.249 8.729 22.574
corresponding p value .123 .068 .0002
χ2 instruments 84.981 5.607
corresponding p value < 10−15 .018
Note: Additional covariates in each equation: grade-year dummies.
***, ** and * mean respectively that the coefficient is significantly different from 0 at the 1%, 5% and 10% level.
The standard deviations of the estimators are corrected for the correlation of the residuals between different
observations of the same child.
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Table B.12: Joint estimation of the determinants of grade repetition, selection, and school dropout
with Chamberlain (1980) fixed effects

repetition selection enrolledt+1

(1) (2) (3)
School mean of grade repetition rates among peers .866 1.267 .974

(.453)∗ (.572)∗∗ (.713)

Negative shock on harvests this calendar year or next .465 .193
(.181)∗∗ (.265)

Repetition rate in group 1.646
(.291)∗∗∗

Grade repetition -.978 -1.425
(.556)∗ (.599)∗∗

(Average marginal effect of grade repetition) -.049
(-.016)∗∗∗

Obs. 1823 1823 1823
χ2 grade year dummies 9.585 10.999 19.887
corresponding p value .048 .027 .0005
χ2 instruments 32.046 6.598
corresponding p value < 10−5 .010
Additional covariates in each equation: test score, group mean test score previous year’s test score, household
wealth, parents’ education, grade-year dummies.
Note: ***, ** and * mean respectively that the coefficient is significantly different from 0 at the 1%, 5% and
10% level. The standard deviations of the estimators are corrected for the correlation of the residuals between
different observations of the same child.
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Table B.13: Joint estimation of the determinants of grade repetition, selection and school dropouts
corresponding to the model (14)

repetition selection enrolledt+1

(1) (2) (3)
Repetition rate in the group .837 1.094 .950

(.502)∗ (.622)∗ (.501)∗

Last passer’s test score .279 -.115 .073
(.092)∗∗∗ (.160) (.149)

Negative shock on harvests this calendar year or next .492 .161
(.192)∗∗ (.268)

Rank relative to first passer and last repeater -.551
(.185)∗∗∗

Grade repetition -1.627 -1.607
(1.670) (.820)∗∗

(Average marginal effect of grade repetition) -.062
(.029)∗∗

Obs. 1818 1818 1818
χ2 grade year dummies 3.829 7.985 19.843
corresponding p value .430 .092 .0005
χ2 instruments 8.884 6.526
corresponding p value .003 .011
Additional covariates in each equation: test score, group mean test score previous year’s test score, household
wealth, parents’ education, grade-year dummies.
Note: ***, ** and * mean respectively that the coefficient is significantly different from 0 at the 1%, 5% and
10% level. The standard deviations of the estimators are corrected for the correlation of the residuals between
different observations of the same child.

Rank relative to first passer and last repeater compares a child’s test score with the last
passer’s score and the first repeater’s score. It takes value 2 if the child’s score is higher than both
comparison scores (i.e. the last passer’s score or the first repeater’s score). It takes value 1 if the
child’s score is higher than one of the two comparison scores. It is 0 otherwise.
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C Proofs for the semiparametric identification of model (12)

C.1 model (12)

This section proves that model (12) can be semiparametrically identified. It also proves that model
(10) can be semiparametrically identified: the equation for e is not necessary to identify either the
coefficients of r or the coefficients of s.

The model (12) is : 
r = 1l(Xβr + γrZ1 +εr > 0)
s = 1l(Xβs + γsZ2 +αsr +εs > 0)
e = 1l(Xβe + γeZ2 +αer +εe > 0)

(15)

(For simplicity r is repetition, s is selection, and e is enrolledt+1. For the same reason, the
equations have been written in a simple form Xβ + γZ + ε.)

Let us recall r is observed if and only if s = 1. f(εr, εs, εe) is the distribution function of (εr, εs, εe).
Manski (1988) shows that in the one-dimensional binary model case, the parameters are identified by
the derivatives of the distribution function. This idea is used to show that all the parameters of model
(12) are identified without any parametric assumption on f(εr, εs, εe).

Θ is the support of (X, Z1, Z2). Let us make the following assumptions:

1. The distribution of (εr, εs, εe) is independent of (X, Z1, Z2).

2. γr 6= 0 and γs 6= 0

3. ∀j ∈ {r, s, e}, βj1 = 1

4. ∃(X0, Z10, Z20) ∈ Θ verifying :

(a) In the neighborhood of (X0, Z10, Z20), (X, Z1, Z2) ∈ Θ

(b)

(
dIP(r=1,s=1)

dZ1
(X0, Z10, Z20)

dIP(r=1,s=1)
dZ2

(X0, Z10, Z20)
dIP(r=0,s=1)

dZ1
(X0, Z10, Z20)

dIP(r=0,s=1)
dZ2

(X0, Z10, Z20)

)
has full rank

(c) ∀(X, Z1, Z2) in the neighborhood of (X0, Z10, Z20), 0 < f(−Xβr−γrZ1,−Xβs−γsZ2,−Xβe−
γeZ2) < ∞

5. ∃(a = (Xa, Z1a, Z2a), b = (Xb, Z1b, Z2b)) ∈ Θ2

(a)


Xaβr + γrZ1a = Xbβr + γrZ1b

Xaβs + γsZ2a + αs = Xbβs + γsZ2b

Xaβe + γeZ2a + αe = Xbβe + γeZ2b

(b) In the neighborhood of a and b, (X, Z1, Z2) ∈ Θ and 0 < f(−Xβr − γrZ1,−Xβs −
γsZ2,−Xβe − γeZ2) < ∞

Assumption 1 is necessary in Manski (1988) and is still necessary here. It ensures that the
derivatives of the probability functions with respect to X, Z1 or Z2 are not caused by variations
of f(εr, εs, εe).

Assumption 2 ensures the instruments have a real causal effect on the endogenous variables.
In model (12), only the signs of the latent variables (Xβr + γrZ1 + εr, Xβs + γsZ2 + αsr + εs and

Xβe + γeZ2 +αer + εe) are observed. Accordingly, the parameters are identified up to the scale of the
parameter vector. Assumption 3 easily fixes that scale.



28

Assumption 4a ensures it is possible to compute the derivatives of the probability functions with
the data since the points in the neighborhood of (X0, Z0) are in the support of (X, Z). It is certainly
possible to extend the identification result when X contains some binary variables.

Assumption 4b ensures some of the derivatives of the probability functions are not all zero and
that they are not collinear, so that the systems are fully identified in (X0, Z10, Z20).

Assumption 4c ensures the other derivatives of the probability functions with respect to the co-
variates are not null in (X0, Z10, Z20).

Assumption 5 ensures the support Θ is large enough to contain a pair of points with similar
characteristics for s and e when the former has r = 1 and the latter has r = 0.

This proof has three steps: first, it is shown that the coefficients β and γ of the first two equations
of model (12) are identified, second, it is shown that the coefficients β and γ of the last equation are
identified, and finally, it is shown that the α are identified.

• Identification of the first two equations of the model

Let us compute the derivatives of IP(r = 1, s = 1|X, Z1, Z2). This probability and its derivatives
can be estimated with the data in (X0, Z10, Z20) if assumption 4a is true:

P (11) = IP(r = 1, s = 1|X, Z1, Z2)

=
∫ ∞

−Xβr−γrZ1

∫ ∞

−Xβs−γsZ2−αs

∫
IR

f(εr, εs, εe)dεrdεsdεe

= F (11)(−Xβr − γrZ1,−Xβs − γsZ2 − αs)

We note F
′(11)
1 and F

′(11)
2 the derivatives of F (11) with respect to its two arguments. The

derivatives are:

dP (11)

dX1
= F

′(11)
1 + F

′(11)
2 (16)

dP (11)

dXi
= βriF

′(11)
1 + βsiF

′(11)
2 (∀i ∈ {1..K}) (17)

dP (11)

dZ1
= γrF

′(11)
1 (18)

dP (11)

dZ2
= γsF

′(11)
2 (19)

This is clearly not sufficient to identify β and γ. In fact, these four equations contain six unknown
parameters, since F

′(11)
1 and F

′(11)
2 are unknown. So the derivatives of IP(r = 0, o = 1|X, Z1, Z2)

are necessary to identify γ and β.

P (01) = IP(r = 0, s = 1|X, Z1, Z2)

=
∫ Xβr−γrZ1

−∞

∫ ∞

−Xβs−γsZ2

∫
IR

f(εr, εs, εe)dεrdεsdεe

= F (01)(−Xβr − γrZ1,−Xβs − γsZ2)
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We note F
′(01)
1 and F

′(01)
2 the derivatives of F (01) towards its two arguments.

dP (01)

dX1
= F

′(01)
1 + F

′(01)
2 (20)

dP (01)

dXi
= βriF

′(01)
1 + βsiF

′(01)
2 (21)

dP (01)

dZ1
= γrF

′(01)
1 (22)

dP (01)

dZ2
= γsF

′(01)
2 (23)

From equation (16) rearranged with (18) and (19), and (20) rearranged with (22) and (23), we
get the two equations system:

{
dP (11)

dX1
= 1

γr

dP (11)

dZ1
+ 1

γs

dP (11)

dZ2

dP (01)

dX1
= 1

γr

dP (01)

dZ1
+ 1

γs

dP (01)

dZ2

Under assumptions 4b and 2, this identifies γs and γr. We can then easily compute F
′(11)
1 , F

′(11)
2 ,

F
′(01)
1 and F

′(01)
2 with (18), (19), (22) and (23). The system:

{
dP (11)

dXi
= βriF

′(11)
1 + βsiF

′(11)
2

dP (01)

dXi
= βriF

′(01)
1 + βsiF

′(01)
2

identifies βri and βsi. In fact, assumption 2 ensures that

(
γrF

′(11)
1 γrF

′(01)
1

γsF
′(11)
2 γsF

′(01)
2

)
has full rank,

that

(
F
′(11)
1 F

′(01)
1

F
′(11)
2 F

′(01)
2

)
has full rank.

• Identification of the third equation

We compute the derivatives of IP(e = 1|X, Z1, Z2):

P (1) = IP(e = 1|X, Z1, Z2)

=
∫ ∞

−Xβr−γrZ1

∫
IR

∫ ∞

−Xβe−γeZ2−αe

f(εr, εs, εe)dεrdεsdεe

+
∫ Xβr−γrZ1

−∞

∫
IR

∫ ∞

−Xβe−γeZ2

f(εr, εs, εe)dεrdεsdεe

= F (1)(−Xβr − γrZ1,−Xβe − γeZ2,−αe)

We call F
′(1)
1 , F

′(1)
2 and F

′(1)
3 the derivatives of F (1) with respect to its arguments. We compute

the derivatives of P (1):
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dP (1)

dX1
= F

′(1)
1 + F

′(1)
2 (24)

dP (1)

dXi
= βriF

′(1)
1 + βsiF

′(1)
2 (25)

dP (1)

dZ1
= γrF

′(1)
1 (26)

dP (1)

dZ2
= γeF

′(1)
2 (27)

γr is known, so that F
′(1)
1 can be easily computed with (26). It is then possible to compute F

′(1)
2

with (24). Under assumption 4c, F
′(1)
2 is not null in (X, Z1, Z2) ∈ Θ. That is why γe is identified

by (27). Knowledge of βri, F
′(1)
1 and F

′(1)
2 identifies βsi in (25).

• Identification of αs.

Adapting Vytlacil and Yildiz (2006), it is easy to show that:

If ∃ ((Xa, Z1a, Z2a), (Xb, Z1b, Z2b), (Xc, Z1c, Z2c), (Xd, Z1d, Z2d)) ∈ Θ4 so that15


Xaβr + γrZ1a = Xbβr + γrZ1b = κr1

Xcβr + γrZ1c = Xdβr + γrZ1d = κr2

Xaβs + γsZ2c = Xcβs + γsZ2c = κs1

Xbβs + γsZ2b = Xdβs + γsZ2d = κs2

⇔


IP(r|a) = IP(r|b)
IP(r|c) = IP(r|d)
ÎP(s|a) = ÎP(s|c)
ÎP(s|b) = ÎP(s|d)

(28)

0 < f(εr, εs, εe) < ∞ in the neighborhood of a and of b and κr1 6= κr2.

Then

(
IP(r = 1, s = 1|a)− IP(r = 1, s = 1|c)

= − [IP(r = 0, s = 1|b)− IP(r = 0, s = 1|d)]

)
⇒ κs1 + αs = κs2 (29)

It is obvious that the converse is true. In fact, if κs1 + αs = κs2, then:

IP(r = 1, s = 1|a) + IP(r = 0, s = 1|b) = ÎP(s = 1|b)
IP(r = 1, s = 1|c) + IP(r = 0, s = 1|d) = ÎP(s = 1|d)

because

15ÎP means that the probability is net of the effect of r on o.
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IP(r = 1, s = 1|a) + IP(r = 0, s = 1|b) =
∫ κr1

−∞

∫ ∞

−κs1−αs

∫
IR

f(εr, εs, εe)dεrdεsdεe

+
∫ ∞

−κr1

∫ ∞

−κs2

∫
IR

f(εr, εs, εe)dεrdεsdεe

=
∫

IR

∫ ∞

−κs2

∫
IR

f(εr, εs, εe)dεrdεsdεe

= ÎP(s = 1|b)

(28) ensures that ÎP(s = 1|b) = ÎP(s = 1|d). Finally:

IP(r = 1, s = 1|a) + IP(r = 0, s = 1|b) = IP(r = 1, s = 1|c) + IP(r = 0, s = 1|d)
⇔ IP(r = 1, s = 1|a)− IP(r = 1, s = 1|c) = −[IP(r = 0, s = 1|b)− IP(r = 0, s = 1|d)]

Proof of equation (29):

We write the probabilities:

IP(r = 1, s = 1|κr, κs) =
∫ ∞

−κr

∫ ∞

−κs−αs

∫
IR

f(εr, εs, εe)dεrdεsdεe

IP(r = 0, s = 1|κr, κs) =
∫ −κr

−∞

∫ ∞

−κs

∫
IR

f(εr, εs, εe)dεrdεsdεe

Then we can easily compute the differences of (29):

IP(r = 1, s = 1|a)− IP(r = 1, s = 1|c) =
∫ −κr2

−κr1

∫ ∞

−κs1−αs

∫
IR

f(εr, εs, εe)dεrdεsdεe

IP(r = 0, s = 1|b)− IP(r = 0, s = 1|d) =
∫ −κr1

−κr2

∫ ∞

−κs2

∫
IR

f(εr, εs, εe)dεrdεsdεe

We can now rewrite the first term of (29):

IP(r = 1, s = 1|a)− IP(r = 1, s = 1|c) = −[IP(r = 0, s = 1|b)− IP(r = 0, s = 1|d)]

⇔
∫ −κr2

−κr1

(∫ ∞

−κs1−αs

∫
IR

f(εr, εs, εe)dεsdεe −
∫ ∞

−κs2

∫
IR

f(εr, εs, εe)dεsdεe

)
dεr = 0

⇔
∫ −κr2

−κr1

∫
IR

(∫ −κs2

−κs1−αs

f(εr, εs, εe)dεs

)
dεrdεe = 0

f(εr, εs, εe) > 0 in the neighborhood of a and b. As a consequence, it is strictly positive in a
subset of the integration interval with a strictly positive Lebesgue measure if κs1 + αs 6= κs2. So
κs1 + αs = κs2, QED.
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Assumption 5 ensures that some points verifying (28) and (29) exist in Θ. In fact, points a and b
in assumption 5 verify (28) and the second term of (29). c can be found in the neighborhood of a
and d in the neighborhood of b: the hyperplanes ÎP(s|(X, Z1, Z2) = ÎP(s|a) and ÎP(s|(X, Z1, Z2) =
ÎP(s|b) necessarily contain pairs of points that have the same P (r), since P (r|a) = P (r|b).
These points can be recognized because the validity of (28) and

IP(r = 1, s = 1|a)− IP(r = 1, s = 1|b) = −[IP(r = 0, s = 1|c)− IP(r = 0, s = 1|d)]

can be evaluated with the data and previous results.

• Identification of αe.

If ∃ ((Xa, Z1a, Z2a), (Xb, Z1b, Z2b), (Xc, Z1c, Z2c), (Xd, Z1d, Z2d)) ∈ Θ4 so that



Xaβr + γrZ1a = Xbβr + γrZ1b = κr1

Xcβr + γrZ1c = Xdβr + γrZ1d = κr2

Xaβs + γsZ1a = Xcβs + γsZ1c = κs1

Xbβs + γsZ1b = Xdβs + γsZ1d = κs2

Xaβe + γeZ2a = Xcβe + γeZ2c = κe1

Xbβe + γeZ2b = Xdβe + γeZ2d = κe2

⇔



IP(r|a) = IP(r|b)
IP(r|c) = IP(r|d)
ÎP(s|a) = ÎP(s|c)
ÎP(s|b) = ÎP(s|d)
ÎP(e|a) = ÎP(e|c)
ÎP(e|b) = ÎP(e|d)

(30)

and
{

κr1 6= κr2

κs1 + αs = κr2
and 0 < f(εr, εs, εe) < ∞ in the neighborhood of a and of b.

Then(
IP(r = 1, s = 1, e = 1|a)− IP(r = 1, s = 1, e = 1|c)

= − [IP(r = 0, s = 1, e = 1|b)− IP(r = 0, s = 1, e = 1|d)]

)
⇒ κe1 + αe = κe2 (31)

For the same reason as for the identification of αs, the converse of 31 is true. In fact, if κe1+αe =
κe2, then:

IP(r = 1, s = 1, e = 1|a) + IP(r = 0, s = 1, e = 1|b) = ÎP(s = 1, c = 1|b)
IP(r = 1, s = 1, e = 1|c) + IP(r = 0, s = 1, e = 1|d) = ÎP(s = 1, c = 1|d)

Proof of equation (31):

We write the probabilities:

IP(r = 1, s = 1, e = 1|a) =
∫ ∞

−κr1

∫ ∞

−κs1−αs

∫ ∞

−κe1−αe

f(εr, εs, εe)dεrdεsdεe

IP(r = 1, s = 1, e = 1|c) =
∫ ∞

−κr2

∫ ∞

−κs1−αs

∫ ∞

−κe1−αe

f(εr, εs, εe)dεrdεsdεe

IP(r = 0, s = 1, e = 1|b) =
∫ −κr1

−∞

∫ ∞

−κs2

∫ ∞

−κe2

f(εr, εs, εe)dεrdεsdεe

IP(r = 0, s = 1, e = 1|d) =
∫ −κr2

−∞

∫ ∞

−κs2

∫ ∞

−κe2

f(εr, εs, εe)dεrdεsdεe
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Then we can easily compute the differences of (31):

IP(r = 1, s = 1, e = 1|a)− IP(r = 1, s = 1, e = 1|c)

=
∫ −κr2

−κr1

∫ ∞

−κs1−αs

∫ ∞

−κe1−αe

f(εr, εs, εe)dεrdεsdεe

IP(r = 0, s = 1, e = 1|b)− IP(r = 0, s = 1, e = 1|d)

=
∫ −κr1

−κr2

∫ ∞

−κs2

∫ ∞

−κe2

f(εr, εs, εe)dεrdεsdεe

We can now rewrite the first term of (29):

IP(r = 1, s = 1|a)− IP(r = 1, s = 1|c) = −[IP(r = 0, s = 1|b)− IP(r = 0, s = 1|d)]

⇔
∫ −κr2

−κr1

∫ ∞

−κs2

∫ −κe2

−κe1−αe

f(εr, εs, εe)dεrdεsdεe = 0

f(εr, εs, εe) > 0 in the neighborhood of any point of Θ (assumption 4c). As a consequence, it is
strictly positive in a subset of the integration interval with a strictly positive Lebesgue measure
if κe1 + αe 6= κe2. That is why κe1 + αs = κe2. Assumption 5 ensures that those points exist, so
αe can be identified.

C.2 Model (12) without Z2

This appendix proves that Z2 is unnecessary for identifying the sign of αe. Accordingly, it is
theoretically not necessary to control for selection to identify the sign of αe semiparametrically.
The corresponding model is:

r = 1l(Xβr + γrZ +εr > 0)
s = 1l(Xβs +αsr +εs > 0)
e = 1l(Xβe +αer +εe > 0)

(32)

(For simplicity r is repetition, s is selection, and e is enrolledt+1. For the same reason, the
equations have been written in a simple form Xβ + γZ + ε)

Let us recall that r is observed if and only if s = 1. f(εr, εs, εe) is the distribution function of
(εr, εs, εe). Manski (1988) shows that in the one-dimensional binary model case, the parameters
are identified by the derivatives of the probability function of the dependent variable. This idea
is used to show that the sign of αe is identified in model (32) without any parametric assumption
on f(εr, εs, εe). Θ is the support of (X, Z). We make the following assumptions:

1. The distribution of (εr, εs, εe) is independent of (X, Z).

2. γr 6= 0

3. ∃(X0, Z0) ∈ Θ verifying :

(a) In the neighborhood of (X0, Z0), (X, Z) ∈ Θ
(b)

∫
IR

∫
IR f(−X0βr − γrZ0, εs, εe)dεsdεe < ∞
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(c) f(εr, εs, εe) > 0 in the neighborhood of (−X0βr − γrZ0,−X0βs − αs,−X0βs − αe),
called Γ

Assumption 1 is necessary in Manski (1988) and is still necessary in this case. It ensures that
the derivatives of the probability functions with respect to X or Z are not caused by variations
of f(εr, εs, εe).

Assumption 2 ensures that the instrument has a causal effect on r.

Assumption 3a ensures that it is possible to compute the derivatives of the probability functions
with the data since the points in the neighborhood of (X0, Z0) are in the support of (X, Z). It is
certainly possible to extend the identification result in the case where X contains some binary
variables.

Assumption 3b ensures that the density of εr in −X0βr − γrZ0 is finite, so that the derivatives
of the probabilities with respect to Z are finite.

Assumption 3c ensures that the derivatives of the probability functions with respect to Z are
not null.

– Proof that the sign of γr is identified
We write IP(r = 1, s = 1, e = 1|X, Z), which is identified by the data in (X0, Z0) because
of assumption 3a:

IP(r = 1, s = 1, e = 1|X, Z) =
∫ ∞

−Xβr−γrZ

∫ ∞

−Xβs−αs

∫ ∞

−Xβe−αe

f(εr, εs, εe)dεrdεsdεe

⇒ dIP(r = 1, s = 1, s = 1|X, Z)/dZ = γr

∫ ∞

−Xβs−αs

∫ ∞

−Xβe−αe

f(−Xβr − γrZ, εs, εe)dεsdεe

0 ≤
∫ ∞

−Xβs−αs

∫ ∞

−Xβe−αe

f(−Xβr − γrZ, εs, εe)dεsdεe

Assumption 3b ensures that:

∫ ∞

−X0βs−αs

∫ ∞

−X0βe−αe

f(−X0βr−γrZ0, εs, εe)dεsdεe ≤
∫

IR

∫
IR

f(−X0βr−γrZ0, εs, εe)dεsdεe < ∞

And assumption 3c ensures that:

∫
[−X0βs−αs,∞]×[−X0βe−αe,∞]

f(−X0βr − γrZ0, εs, εe)dεsdεe

≥
∫

([−X0βs−αs,∞]×[−X0βe−αe,∞])∩Γ
f(−X0βr − γrZ0, εs, εe)dεsdεe > 0

That is why

0 <

∫ ∞

−X0βs−αs

∫ ∞

−X0βe−αe

f(−X0βr − γrZ0, εs, εe)dεsdεe < ∞

so that dIP(r=1,s=1,e=1|X,Z)
dZ (X0, Z0) has the same sign as γr.
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– Proof that the sign of αe is identified
Now, let us focus on IP(e = 1|X, Z):

IP(e = 1|X, Z) = IP(e = 1, r = 1|X, Z) + IP(e = 1, r = 0|X, Z)

=
∫ ∞

−Xβr−γrZ

∫
IR

∫ ∞

−Xβe−αe

f(εr, εs, εe)dεrdεsdεe

+
∫ −Xβr−γrZ

−∞

∫
IR

∫ ∞

−Xβe

f(εr, εs, εe)dεrdεsdεe

=
∫

IR

∫
IR

∫ ∞

−Xβe

f(εr, εs, εe)dεrdεsdεe

+
∫ ∞

−Xβr−γrZ

∫
IR

∫ −Xβe

−Xβe−αe

f(εr, εs, εe)dεrdεsdεe

⇒ dIP(e = 1|X, Z)/dZ = γr

∫
IR

∫ −Xβe

−Xβe−αe

f(−Xβr − γrZ, εs, εe)dεsdεe

Again, if αe > 0, then 0 <
∫
IR

∫ −X0βe

−X0βe−αe
f(−X0βr − γrZ0, εs, εe)dεsdεe < ∞, because of

hypotheses 3b and 3c. For the same reasons, if αe < 0, then−∞ <
∫
IR

∫ −X0βe

−X0βe−αe
f(−X0βr−

γrZ0, εs, εe)dεsdεe < 0. This shows that dIP(e = 1|X, Z)/dZ and αeγr have the same sign.
The sign of γr is identified, so the sign of αe is identified.


