

Environmental Economics Lunch Seminar September 26, 2013

Carbon Taxation and Social Progress

Emmanuel COMBET
CIRED

A gap between theory and practice

Large theoretical consensus among economists

Carbon tax = the **most efficient instrument** for reducing CO_2 emissions

VS

A frequent blocking of the implementation

- Higher energy prices will harm activity, competitiveness and employment
- It will affect the most vulnerable (households and industries)
- And it will risk to jeopardize other objectives (debt reduction...)

Key lessons from economic literature

- No exemption for environmental efficiency
- A key question: how to use the carbon tax revenue?
- The most efficient recycling option: lower social contributions
- The net impacts on activity and employment are uncertain
- The equity objective may justify other recycling options
- Very few links with other long term policies (pensions, debt)

Outline: Questions and Analyses

- 1. Net macroeconomic impact. Lessons from a stylized model
- 2. Consistency with future goals. Lessons from a CGE model (2020)
- 3. Equity-efficiency dilemma. Lessons from a CGE model (2004)

A simplified model of second best economy

- All the energy consumed is imported
- One domestic product, in competition with foreign products
- Two factors of production : energy and labour
- Fix technical coefficients + households' energy consumption
- Existing tax on energy (quantity) and on labour (ad valorem)
- Nominal net wage adjusts to unemployment
- Net exports adjust to domestic production cost/price

Conditions for a net employment gain

The net impact depends on 2 controversial parameters

Sensitivity of net exports to domestic price

Conditions for a net employment gain

Domaines	Unemployment	Production	Wages	Price	Consumption	Exports
1	_	+	+	-	+	+
11	_	+	+	+	+	-
III	+	-	-	-	-	+

I: The positive impact on real trade dominates

 $oldsymbol{H}$: The positive impact on wage growth dominates

III: The negative impact on energy bills dominates

The state of the economy

Domain III (activity and employment losses) is narrow when:

- 1. Unemployment is initially high
- 2. Net nominal wage is initially low
- 3. Energy consumption by households is initially high and higher than the energy consumption by productive systems

To deepen the analysis

- 1. Empirical information on the initial state
- 2. Empirical information on the future context
- 3. Energy-saving potentials & structural change possibilities
- 4. Behaviour of public administrations (other reforms, targets)
- 5. Heterogeneity of agents & redistribution

The hybridization of economic and energy data

Assumptions about future constraints (2020)

- 1. Higher competition on resources and markets
 - IMACLIM-R: a barrel of oil at 60€ (optimist, 77€ in 2011)
 - IMACLIM-R: lower wages /production costs in emerging economies
- 2. Consequences of the demographic transition
 - COR: funding needs for pensions 41-48 billions (11 en 2008)
 - CEPII: important decrease in the households' saving rate
- 3. Growth and employment potentials after the crisis
 - COR: productivity and unemployment from the DGT

The simulation platform IMACLIM-S.2.4

Interaction of three mechanisms

Reconnecting climate, pensions and deficits issues

Consider: 1) A 2020 France

'COR compatible'

2) an objective: funding pensions over 2004-2020

Three structural reforms

Higher legal retirement age (>3 yrs)

Higher social contributions (+7 pts)

200/tCO₂ - Lower SSC& Higher Income Tax (+2 pts)

The mechanism of a potential virtuous cycle

Reform schemes	Higher social contributions (CS)	200€/tC02 - Lower CS + Higher Income Tax (2pts)
Oil bill to GDP ratio	-1,1%	-17,5%
Labour intensity	-0,3%	+0,9%
Production price	+2,3%	+0,5%
Net nominal wage	-4,7%	+5,6%
Households' consumption	-1,7%	+1,9%
Exports (volume)	-1,2%	-0,3%

The 2 reform schemes are compared to a higher legal retirement age (> 3 yrs.)

And the argument of fairness?

A Trade-off Between Equity and Efficiency

But there is room for compromises

But energy vulnerability is ill-explained by 'income'

A variety of technical, geographic and socioeconomic factors

Conclusion

Three crucial 'parameters' to find the best compromises

- 1. Balance between wage progression and control of costs
- 2. Coherence between policies (general reform of public finance)
- 3. Targeted support towards the most vulnerable to energy prices

Environmental Economics Lunch Seminar September 26, 2013

Carbon Taxation and Social Progress

Emmanuel COMBET CIRED

-

 $\underline{combet@centre-cired.fr}$

Papers available here: http://www.imaclim.centre-cired.fr/spip.php?article23