Closing Gender Gaps within LMICs: Subsidies are necessary but not enough

Pascaline Dupas

PSE/CEPR Policy Forum, June 2023

<ロ><部</p>
<日><部</p>
<1/44</p>

With Universal Free Primary Education, the gender gap in primary education completion has closed

Even in countries with strong gender norms

Can the same success be repeated in health with subsidies for health care?

Today's focus

 "Women Left Behind: Gender Disparities in Utilization of Government Health Insurance in India"

Paper coauthored with with Radhika Jain (UCL)

Exploits data from Rajasthan, but data from Tamil Nadu, Haryana and Andhra Pradesh suggest Rajasthan findings reflect a strong pattern across the whole of India

Motivation

- India is among bottom 5 countries for female health & survival
- \blacktriangleright Gender bias in health inputs \rightarrow worse female health outcomes
- Serious welfare impacts: 63 million missing women, majority adults

Motivation

- India is among bottom 5 countries for female health & survival
- \blacktriangleright Gender bias in health inputs \rightarrow worse female health outcomes
- Serious welfare impacts: 63 million missing women, majority adults
- Subsidies have been key policy to reduce health inequality
- Government health insurance is major UHC policy in India
 - Free care for poor households at public and private hospitals
 - 2019 national program covers poorest 40% Indians
 - Ensuring universal, equitable access is key goal

Motivation

- India is among bottom 5 countries for female health & survival
- \blacktriangleright Gender bias in health inputs \rightarrow worse female health outcomes
- Serious welfare impacts: 63 million missing women, majority adults
- Subsidies have been key policy to reduce health inequality
- Government health insurance is major UHC policy in India
 - Free care for poor households at public and private hospitals
 - 2019 national program covers poorest 40% Indians
 - Ensuring universal, equitable access is key goal
- Does subsidizing hospital care reduce gender inequality in utilization?

Overview

Setup

- Study public health insurance covering 46M poor indivs in Rajasthan
- Using granular data on 3.3M hospital visits over 3 years

Overview

- Setup
 - Study public health insurance covering 46M poor indivs in Rajasthan
 - Using granular data on 3.3M hospital visits over 3 years
- Results
 - Large gender disparities in likelihood, type of care
 - Care is not free, costs worsen gender inequality
 - Reducing distance costs increases female levels of usage, but does not reduce gender inequality
 - Female political representation reduces inequality by targeting female-specific costs, barriers

Overview

- Setup
 - Study public health insurance covering 46M poor indivs in Rajasthan
 - Using granular data on 3.3M hospital visits over 3 years

Results

- Large gender disparities in likelihood, type of care
- Care is not free, costs worsen gender inequality
- Reducing distance costs increases female levels of usage, but does not reduce gender inequality
- Female political representation reduces inequality by targeting female-specific costs, barriers
- Key insights
 - Gender-neutral subsidies increase female usage of social services but may not reduce disparities if males benefit as much
 - Achieving parity requires gender-targeted interventions to reduce barriers, improve women's position in society

Outline

- 1. Context and data
- 2. Large gender disparities in health care utilization
- 3. What drives gender disparities? A conceptual framework
- 4. Care-seeking costs deter female utilization
- 5. Does reducing care costs reduce gender disparities?
- 6. Targeting demand for female care: The effect of female political reservations
- 7. Conclusion

Section 1

Context and data

BSBY program

- Launched in 2015 in Rajasthan, India (pop ~70M)
- Poor household members auto-enrolled (~46M indivs)
- Free coverage of 1400 services, including tests, medicines, stay; no premium or copay
- Public + empaneled private hospitals (N~1600, 2/3 private)
- Hospitals paid directly by insurer
- Similar to national PMJAY program covering 40% poorest Indians

Larger hospitals in big cities provide specialized services

<ロト < 部 ト < 注 ト < 注 ト 三 の Q (~ 13/44)

Quality is typically higher in private than public hospitals

Kotputli (municipality between Jaipur and Delhi)

Figure: Private hospital

Figure: Public hospital

イロト イボト イヨト イヨト

14/44

Data

- Insurance claims for every hospital visit Dec2015-Oct2019 (N=6M)
- Patient age, sex, contact; Hospital name, location; Service code, date • 98% gender accuracy
- Exclude 2016, childbirth, and infant claims (N=3.3M)
- ► Geocode hospital, patient locations → calculate travel distance for every hospital visit (1600 hospitals, 2.3M visits)
- Link patient locations to population censuses; village electoral histories
- Household, village leader surveys: BSBY awareness, gender attitudes, village health activities

Section 2

Large gender disparities in health care utilization

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへぐ

16/44

Large gender gap in hospital visits

▶ Females account for 45% of visits, 33% for children, 43% for elderly

Gaps larger in private, high-value care

Large gender gap in hospital visits

Gap unexplained by sex-difference in illness prevalence

- Females often *more* likely to be sick than males
- Estimate >200K missing female visits across 4 specialties in 3 years

19/44

Gap persists (increases) as total utilization increases

 Public spending is male-biased: 57% of BSBY compared to ~44% in Medicaid, OECD countries

Statewide

Section 3

What drives gender disparities? A conceptual framework

・ロト・西ト・ヨト・ヨー うへぐ

21/44

What drives gender disparities?

Households get lower returns to female health

Low FLFP, old-age support etc

Households place lower value on female health

Taste-based discrimination

Care-seeking costs/barriers are higher for females

- Women require escort, special transport
- Hospitals mistreat women, not enough female doctors
- Women under-report illness

Differential demand for male and female healthcare

Household utility depends on returns to male & female health, preference for male health:

$$U(X, x_m, x_f) = \alpha X + \left[R_m(x_m) + R_f(x_f) \right] + \gamma(x_m)$$

Household budget constraint depends on cost of care (for males & females), additional female-specific costs:

$$X + p(x_m + x_f) + c_f x_{x_f} = I$$

First-order condition:

$$\frac{\partial R_m}{\partial x_m} = \frac{\partial R_f}{\partial x_f} - \gamma - \alpha c_f$$

- \blacktriangleright Lower returns to female health; preference for male health \rightarrow lower demand for female care at every non-zero cost
- ► Female-specific costs → lower demand for female care, even if "common" price is zero

Household demand for female care is lower

- \blacktriangleright Differential returns and bias \rightarrow Qf lower at every non-zero cost
- Female-specific costs \rightarrow Qf lower even at zero (common) price
- All three possible, but female-specific costs cannot explain disparities among children

Household demand for female care is lower...but large enough subsidy induces households to get care for females

But subsidy effects depends on household demand

Overall effect of lowering costs on gender gap depends on marginal household

- Household demand for female care is lower than for males (and more price-sensitive at many points)
- ► Households are heterogeneous in budget constraint, gender norms etc. → affected differently by subsidy
- Overall effect of subsidy increase on gender gaps depends on composition of households it induces to use BSBY
 - Marginal beneficiary may be male despite substantial subsidy

Three testable implications

Female utilization will be lower and decreasing in care costs

- Evidence from unauthorized hospital charges and travel distance
- Reducing costs will increase female usage levels...but may not reduce inequalities if marginal beneficiaries remain male
 - Evidence from hospital empanelments
- Directly targeting factors lowering female demand, alongside subsidies, may reduce gender gaps...and is required to achieve parity
 - Evidence from village female political representation

Section 4

Care-seeking costs deter female utilization

30/44

Care is not free: hospitals charge patients out of pocket

1/3 patients pay, \$30 on average (35% markup over BSBY reimbursement)

Conditional on getting care, no difference in charges by gender

イロト 不得 トイヨト イヨト

Female share of visits decreases in distance to hospital

	(1)	(2)	(3)	(4)	(5)
	Dependent Variable: Female Share of BSBY Visits				
	All	All	Under 15 years old	15-45 years old	46+ years old
Distance to nearest hospital(km/10) $% \left(\frac{1}{2} \right) = 1$	-0.0176 (0.0010) {<0.0001}	-0.0190 (0.0011) {<0.0001}	-0.0108 (0.0029) {0.0002}	-0.0256 (0.0015) {<0.0001}	-0.0134 (0.0015) {<0.0001}
District Fixed Effects Quarter Fixed Effects Population Female Share Full Location Controls	Yes Yes Yes No	Yes Yes Yes Yes	Yes Yes Yes Yes	Yes Yes Yes Yes	Yes Yes Yes Yes
Observations Unique Locations	324,039 43,626	324,039 43,626	88,044 43,626	253,468 43,626	242,140 43,626
Female share Hospital within vill/town	0.511	0.511	0.373	0.569	0.470

▶ 10km distance increase \rightarrow 1.9pp (3.5%) lower female share

Children: 37% visits are female even at distance=0; 3% decrease with each 10km

Cols 2-5 include rich location controls: urban, population, demographics, amenities, literacy, LFP, distance to towns, non-BSBY health facilities...

	(1)	(2)	(3)	(4)	
Dependent Variable		Coefficient on Female			
Distance to hospital visited (km)	-8.9087	-7.4339	-5.1155	-8.0815	
	(0.0742)	(0.0701)	(0.1061)	(0.0909)	
	$\{<0.001\}$	$\{<0.001\}$	$\{<0.001\}$	$\{<0.001\}$	
Visited hospital nearest patient residence	0.0623	0.0428	0.0293	0.0732	
	(0.0005)	(0.0005)	(0.0007)	(0.0007)	
	$\{<0.001\}$	$\{<0.001\}$	$\{<0.001\}$	$\{<0.001\}$	
Visited hospital in different district from residence	-0.07	-0.06	-0.04	-0.06	
	(0.00)	(0.00)	(0.00)	(0.00)	
	$\{<0.001\}$	$\{<0.001\}$	$\{<0.001\}$	$\{<0.001\}$	
Age Group Fixed Effects	Yes	Yes	Yes	Yes	
Month Fixed Effects	Yes	Yes	Yes	Yes	
District Fixed Effects	Yes	No	No	Yes	
Residence Location Fixed Effects	No	Yes	No	No	
Household Fixed Effects	No	No	Yes	No	
Household Fixed Effects Sample			Yes	Yes	
Observations	2,262,729	2,261,194	1,415,801	1,415,801	
Unique Locations	37,986	37,986	37,986	37,986	
Distance to hospital visited (km) Male	53.733	53.733	51.240	51.240	
Visited hospital nearest patient residence Male	0.838	0.838	0.819	0.819	
Visited hospital in different district Male	0.361	0.361	0.350	0.350	

Households travel further for male care

Households travel 7.5Km less for females (15% <males)</p>

Effects hold in specifications with HH fixed effects

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Section 5

Does reducing care costs reduce gender disparities?

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへで

34/44

Effect of private hospital empanelment

- Administrative push to increase access, empanel more hospitals in 2018Q1
- Lowered distance to nearest hospital for many villages
- Event-study analysis of effect of empanelment on male, female visits
- Identify villages with nearest private hospital 25-30km in 2017
 - Treatment: Locations that got hospital within 20km in 2018Q1
 - Control: Locations that did not through 2018Q4
 - Entropy balancing on location characteristics (demographics, SES, amenities, access)
- Additional analysis
 - Long-run effects: Control = those untreated through 2019Q3
 - Heterogeneity by cost reduction: Split sample by whether got hospital within 10-20km or within 0-10km

Lowering distance cost increases female usage

Distance to private hospital decreased 20km (~60%)

▶ ~15.5% increase in quarterly female visits

...as well as male usage

Distance to private hospital decreased 20km (~60%)

 $\blacktriangleright~\sim\!15.5\%$ increase in quarterly female visits...19% for males

э

イロト イヨト イヨト イヨト

Section 6

Targeting demand for female care: The effect of female political reservations

Context

- Gram panchayats (GPs): village elected councils responsible for local public goods & services
- ▶ 1/3 of Sarpanch (head) seats randomly reserved for females \rightarrow induces 90pp↑ in female Sarpanch
- Use 3 terms of reservations \rightarrow up to 15yrs of exposure
- Prior studies show effects on gender attitudes, investments in girls

Context

- Gram panchayats (GPs): village elected councils responsible for local public goods & services
- ▶ 1/3 of Sarpanch (head) seats randomly reserved for females \rightarrow induces 90pp↑ in female Sarpanch
- Use 3 terms of reservations \rightarrow up to 15yrs of exposure
- Prior studies show effects on gender attitudes, investments in girls

Effects:

- Female share of BSBY visits increases among children, adults
- But effects are small, take 10+ years exposure, not among elderly
- \blacktriangleright Mechanisms: maternal/child health investments, female agency \rightarrow factors that lower female demand

	(1)	(2)	(3)	(4)	
	Dependent Variable: Patient is Female				
	All Claims	Under 15 years old	15-45 years old	46+ years old	
Number of times GP reserved	0.0031 (0.0021) {0.129}	0.0103 (0.0029) {0.000}	0.0089 (0.0031) {0.004}	-0.0044 (0.0028) {0.117}	
Age Group Fixed Effects Month Fixed Effects Patient District Fixed Effects Specialty Fixed Effects	Yes Yes Yes Yes	Yes Yes Yes Yes	Yes Yes Yes Yes	Yes Yes Yes Yes	
Observations	1,969,980	149,553	970,391	850,036	
Female share Never reserved	0.492	0.326	0.549	0.445	

- Implications:
 - Policies to strengthen position of women can have complementary effects on how much females benefit from other programs
 - But changing attitudes is slow, incremental process

Main take-aways

- Large gender disparities persist within a UHC program
- In presence of gender bias, costs of using social programs exacerbate disparities
 - Hospital charges, distance worsen gender gap
- Gender-neutral subsidies increase female utilization levels but may not decrease disparities because males benefit as much
- Reducing disparities in use of social programs requires gender-targeted interventions to lower female-specific costs directly
 - Female political reservations reduce gap by targeting female-specific barriers

Thank you!

