# The Welfare Consequences of Urban Traffic Regulations 

Isis Durrmeyer \& Nicolás Martínez

Toulouse School of Economics

## Motivation



Rise in regulations to reduce road traffic externalities:

- Traffic congestion
- Pollution $\left(\mathrm{CO}_{2}, \mathrm{PM}, \mathrm{NO}_{\mathrm{X}}\right)$

Challenge to analyze policy effects: road traffic is an equilibrium outcome

## This paper

- We build and estimate a structural model to represent individual transportation decisions and traffic conditions inside a city
- Application: Paris metropolitan area ("Île-de-France")
- Quantify the surplus changes and environmental benefits of hypothetical urban traffic policies
- Analyze and compare simple regulations:
- Driving restrictions
- Fixed and per-km tolls
- Confront the performance of simple instruments to a first-best benchmark
- Welfare-maximizing personalized tolls


## Model overview

The model has two components:

- Choice of a transportation mode and departure period
- Trips' origins, destinations and itineraries are fixed
- Congestion technologies for road traffic
- Represent how speeds change with road traffic levels
- Heterogeneous across different areas of the city

Equilibrium outcomes of the model: car speeds and number of drivers in each area of the city, in each period

## Overview of the results

- Policies decrease the aggregate consumer surplus:
- Substitution to other modes/periods decrease individuals' utility
- Gains from speed improvements only partly mitigate the surplus losses
- When we consider welfare (CS + tax revenue + emissions saved), moderate tolls are welfare-improving
- Variable tolls are better than uniform tolls because they target long-distance commuters, but they imply winners and losers
- The variable toll generates $61 \%$ of the welfare gains from first-best personalized tolls


## (selected) Related literature

Structural models of transportation decisions:

- Discrete choice models: McFadden (1974), etc...
- Jia Barwick et. al (2022, WP): Housing location and commute decisions
- Almagro et al. (2023,WP): Optimal congestion charge and public transport service
Reduced-form models of congestion:
- Couture et al. (2018, ReStat): Determinants of speed
- Yang et al. (2020, AEJ), Anderson (2014, AER): Exogenous shocks to identify congestion technology
Structural "bottleneck" models of congestion:
- Arnott et al. (1990 JUE, 1993 AER): Theory
- Hall (2019, JEEA): Distributional effects of road pricing
- Kreindler (2022, Eca): Welfare effects of congestion charges using experimental data
- De Palma et al.: METROPOLIS traffic model


## Outline

(1) Model overview

## (2) Transportation mode choice model

(3) Congestion technology

4 The welfare effects of regulations

## Illustration

Individuals choose mode and departure time based on car trip durations


Traffic levels in different areas \& periods


Speeds in different areas \& periods


Individual car trip durations

Transportation mode choice model

## Outline

## (1) Model overview

(2) Transportation mode choice model
(3) Congestion technology

4 The welfare effects of regulations

## Model in equations

## Discrete choice nested logit model:

1. Transportation mode $\in\{$ car, public transport, walk, bicycle, motorbike $\}$
2. Departure period: peak or off-peak hours

Utility function for individual $n$, mode $j$, period $t$ :

$$
u_{n j t}=\underbrace{\beta_{n} \log \left(d_{n j t}\right.}_{\text {duration }})+\underbrace{\alpha p_{n j}}_{\text {cost }}+\underbrace{\rho_{n}\left(t-t_{n}^{*}\right)}_{\text {schedule constraints }}+\underbrace{X_{n j t} \delta}_{\text {mode charac. }}+\underbrace{\zeta_{n j}+\sigma \tilde{\epsilon}_{n j t}}_{\text {pref. shocks }}
$$

Assumptions:

- $t_{n}^{*}$ : preferred hour of departure, $t_{n}^{*}=$ peak hour $\forall n$
- $\beta_{n}, \rho_{n}$ are functions of demographic characteristics
- $X_{n j t}:$ mode $\times$ period dummies, pub. transit characteristics
- $\zeta_{n j}+\sigma \tilde{\epsilon}_{n j t}$ : iid shocks, independent across modes correlated between periods, assumed to be extreme value
- $\sigma$ : degree of independence between peak \& off-peak hour shocks

Estimation of the preference parameters by maximum likelihood

## Data

- Survey data from 2010-2011: "Enquête Globale Transport"
- Restrict to study and work-related trips (non-avoidable trips), first trip of the day, trips $\geq 700$ meters
$\bullet \Rightarrow 12,975$ choices, representing $\sim 4$ million individuals ( $\sim 1 / 3$ population)
- Demographics: age, socio-professional activity, household composition, and wealth proxy from housing surface area and neighborhood
- Trip cost: information on the type of public transport ticket, some car and motorbike characteristics
- Emissions per km, based on car characteristics
- $\mathrm{CO}_{2}, \mathrm{NO}_{\mathrm{x}}, \mathrm{PM}, \mathrm{HC}$, with social values from OECD 2014


## Data

- The departure period modifies:
- Trip duration for car
- Overcrowding level in the public transport
- Nothing for walking, motorcycle, bicycle
- Public transport overcrowding for metro line $l$, at period $t$ :

$$
\text { overcrowding }_{l, t}=\frac{\# \text { passengers per } \mathrm{hr}_{l, t}}{\text { metro capacity }_{l} \times \# \text { metros per hr }}{ }_{l, t}
$$

- Expected car and public transport durations from TomTom, Google Maps APIs


## Descriptive statistics

- Average trip distance $=12.9 \mathrm{~km}$
- Average trip duration = 31.3 minutes
- $82 \%$ of individuals hold a car, $35.2 \%$ choose to drive
- Peak hours chosen by: $65 \%$ of drivers, $67.6 \%$ of pub. transit users
- Driving at peak hours is on average $30 \%$ slower
- Public transit overcrowding:

| Line | Off-peak | Peak |
| :--- | :---: | :---: |
| 1 | 0.43 | 0.72 |
| 3B | 0.18 | 0.36 |
| 4 | 0.6 | 1.11 |
| 13 | 1.62 | 1.93 |
| A | 2.35 | 4.37 |
| $\vdots$ | $\vdots$ | $\vdots$ |
| Average | 0.89 | 1.43 |

- Average cost $=€ 0.92$, average driving cost $=€ 1.17$, average pub. transit cost $=€ 1.25$


## Estimation results: Summary

- Preferences are such that:
- Average WTP to drive at peak hours instead of off-peak hours = €2.6
- Average $\Delta \%$ duration accepted to drive at peak hours: $+73 \%$
- Average WTP to decrease overcrowding by $10 \%=3.1$ cents
- Value of travel time ( $€ / \mathrm{hr}$ ):

| Min | Q1\% | Mean | Median | Q99\% | Max |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 0.44 | 1.34 | 15.9 | 10.3 | 81.1 | 389 |

Note: weighted by the survey weights.

## Outline

## (1) Model overview

## (2) Transportation mode choice model

(3) Congestion technology

## 44 The welfare effects of regulations

## Congestion technology

$$
v_{t}^{a}=f^{a}\left(\tau_{t}^{a}\right)+\eta_{t}^{a}
$$

- $v_{t}^{a}$ : speed at period $t$ in area $a$ (in $\mathrm{km} / \mathrm{hr}$ )
- $\tau_{t}^{a}$ represents traffic conditions (occupancy rate)
- $f^{a}$ : technology in area $a$, to be estimated
- $\eta_{t}^{a}$ : speed shock, assumed to be independent of $\tau_{t}^{a}$

We approximate $f^{a}$ by polynomials of degree L:

$$
f^{a}(\tau)=\sum_{l=0}^{L} B^{l}(\tau) \theta_{l}^{a}
$$

$B^{l}$ : basis Bernstein polynomials
$\theta^{a}=\left(\theta_{0}^{a}, \ldots, \theta_{L}^{a}\right)$ : parameters to be estimated
We estimate $\theta$ by constrained least squares using hourly traffic data from 1,371 road sensors over 2016-2017

## Definition of the areas



Sources: DRIF (highways) and "Mairie de Paris" (city center and ring roads)

## Estimated congestion technologies



Note: Initial traffic conditions $=$ average speeds from TomTom predicted durations.

## Closing the model

- From individual decisions to traffic conditions:
- Mapping between the occupancy rate $\left(\tau_{t}^{a}\right)$ and number of kilometers driven by area $\left(K_{t}^{a}\right)$ :

$$
\tau_{t}^{a}=\phi^{a} \times K_{t}^{a}+\gamma^{a}
$$

- with $K_{t}^{a}=\sum_{n=1}^{N} \underbrace{\omega_{n}} \times \underbrace{s_{n t}} \times \underbrace{k_{n}^{a}}$

$$
\text { indiv. weight } \quad \text { proba. driving period } t \quad \text { distance in area } a
$$

- $\phi^{a}$ : scale parameter, $\gamma^{a}$ : irreducible traffic (trucks, delivery cars, buses...)
- From speeds to individual trip durations:

$$
\text { duration }_{n}^{t}=\left(\sum_{a} \frac{\operatorname{distance}_{n}^{a}}{\operatorname{speed}_{a}^{t}}\right) \times \varepsilon_{n}^{t}
$$

- $\varepsilon_{n}^{t}$ : multiplicative speed shocks that shift individuals' trip durations


## Equilibrium uniqueness

Multiple areas: no general result about uniqueness

- We provide a method to check uniqueness
- Propose an algorithm to compute speeds that depends on a parameter $\kappa$

$$
\left(v_{t}^{a}\right)^{m+1}=g\left(\boldsymbol{v}^{m}\right)=(1-\kappa) \times\left(v_{t}^{a}\right)^{m}+\kappa \times f^{a}\left(\phi^{a} \times K_{t}^{a}\left(\boldsymbol{v}^{m}\right)+\gamma^{a}\right)
$$

- Algorithm is a contraction for $\kappa \in] 0,1]$ if the Lipschitz coefficient of $g($.$) is strictly lower than 1$


## Outline

## (1) Model overview

## (2) Transportation mode choice model

## (3) Congestion technology

4 The welfare effects of regulations

## Policy instruments

Compare the effects of three simple policies:

- Driving restrictions
- Uniform tolls
- Variable tolls

We compare these simple instruments with a first-best benchmark:

- Personalized tolls
- Set to maximize welfare, for a given traffic reduction objective
- Tolls must be $\in[0, € 50]$


## Comparison between policies: welfare

$\Delta$ Welfare $=\Delta C S+$ Tax revenue $-\Delta$ Emissions


Optimal uniform toll: $€ 1.4$, traffic reduction $=18.2 \%$ Optimal variable toll: 8 cents $/ \mathrm{km}$, traffic reduction $=28.2 \%$ Optimal personalized tolls: traffic reduction $=27 \%$

## Comparison between policies: surplus and tax revenue


(a) Consumer surplus losses.

(b) Tax revenues.

## Targeting of the policy instruments

Policy stringency at a benchmark level: traffic reduction = 34\%


## Summary: performance of the simple tolls

Policy stringency at a benchmark level: traffic reduction $=34 \%$

|  | $\Delta$ Welfare <br> (in million $€$ ) | $\% \Delta W$ w.r.t <br> personalized tolls |
| :--- | :---: | :---: |
| Personalized | 0.347 | $100 \%$ |
| Fixed and variable | 0.24 | $69.3 \%$ |
| Variable | 0.212 | $61.2 \%$ |
| Area-specific | 0.127 | $36.7 \%$ |
| Uniform | 0.064 | $18.3 \%$ |
| Note: $\Delta$ Welfare for one trip. For annual figures, multiply by $\sim 500$. |  |  |

## Conclusion

- We develop a new structural model for individual transportation decisions with endogenous car trip durations
- We measure the welfare changes from driving restrictions and road tolls
- Moderate tolls can be welfare improving under redistribution of the tax revenue
- The variable toll generates $61 \%$ of the potential welfare gains
- Model is general, fairly simple and estimated from publicly available data


## Appendix: queries

Car trip durations (TomTom):

- Queries done in July 2021
- Predictions for Thursday September $16^{\text {th }}, 2021$
- Peak hours: departure time $=8.30$ a.m
- Off-peak hours: departure time $=6.30$ a.m

Public transport duration and itinerary (Google Maps):

- Queries done on June $2^{\text {nd }}, 2019$
- Queries for Tuesday June $4^{\text {th }}, 2019$
- Departure time $=9.30$ a.m


## Appendix: cost estimation

Table: Summary statistics: Cost estimates

| Variable | Mean | Median | Std. dev. | Min | Max |
| :--- | ---: | ---: | ---: | ---: | ---: |
| Bike | 0.64 | 0 | 0.82 | 0 | 1.7 |
| Public transport | 1.25 | 1.24 | 1.27 | 0 | 10.55 |
| Motorbike | 1.21 | 0.72 | 1.39 | 0 | 13.72 |
| Car | 1.17 | 0.76 | 1.25 | 0 | 14.24 |

Note: Cost is expressed in euros.

## Estimation results: mean coefficients

| Variable | Est. | Std. err. |
| :--- | :---: | :---: |
| Log(duration) | $-1.92^{* *}$ | 0.065 |
| Cost | $-0.407^{* *}$ | 0.019 |
| Bicycle | $-3.48^{* *}$ | 0.082 |
| Public transport, peak | $-4.88^{* *}$ | 0.2 |
| Public transport, off-peak | $-5.51^{* *}$ | 0.403 |
| Motorcycle | $-7.35^{* *}$ | 0.226 |
| Car, peak | $-6.22^{* *}$ | 0.211 |
| Car, non peak | $-7.27^{* *}$ | 0.214 |
| No. layovers in public transport | $-0.346^{* *}$ | 0.036 |
| Railway only | 0.052 | 0.057 |
| Public transport overcrowding | $-0.064^{* *}$ | 0.024 |
| $\sigma$ | $0.788^{* *}$ | 0.063 |
| Significance level: **1\%. Duration in minutes, cost in $€$. Standard errors computed |  |  |
| using the delta-method. |  |  |

## Estimation results: heterogeneity of preferences

| Variable | Est. | Std. err. |
| :---: | :---: | :---: |
| $\log$ (duration) $\times$ wealth $\in$ q2 | -0.05 | 0.08 |
| $\log$ (duration) $\times$ wealth $\in$ q3 | -0.01 | 0.08 |
| $\log$ (duration) $\times$ wealth $\in \mathrm{q} 4$ | -0.11 | 0.08 |
| $\log$ (duration) $\times$ wealth $\in \mathrm{q} 5$ | $0.15{ }^{\dagger}$ | 0.09 |
| Log(duration) $\times$ Age $\in$ ]18-25] | -0.4** | 0.1 |
| Log(duration) $\times$ Age $\in$ ]25-35] | -1.59** | 0.09 |
| Log(duration) $\times$ Age $\in$ ]35-45] | -1.7** | 0.08 |
| Log(duration) $\times$ Age $\in$ ]45-60] | $-1.45 * *$ | 0.08 |
| $\log$ (duration) $\times$ Age $>60$ | -2.03** | 0.2 |
| Log(duration) $\times$ Effort | -1.66** | 0.06 |
| Off-peak hours $\times$ white collar | -0.57** | 0.09 |
| Off-peak hours $\times$ blue collar | $0.16{ }^{\dagger}$ | 0.08 |
| Off-peak hours $\times$ below high school | -0.98** | 0.12 |
| Off-peak hours $\times$ higher education | 0.01 | 0.1 |
| Off-peak hours $\times$ family | -0.08 ${ }^{\dagger}$ | 0.04 |

Significance level: ${ }^{* *} 1 \%,{ }^{*} 5 \%,{ }^{\dagger} 10 \%$. Reference category is Age $<18$, wealth $\in q 1$, independent worker, single.

Estimation results: Value of travel time

- $\mathrm{VOT}_{n j t}=\frac{\partial U_{n j t}}{\partial \text { duration } n_{n j t}} / \frac{\partial U_{n j t}}{\partial \operatorname{cost}_{n j t}}=\frac{\beta_{n}^{\text {duration }}}{\beta^{\text {cost }}} \times \frac{1}{\text { duration } n_{n j t}}$


Note: Wealth in €100,000 per consumption unit.

## Elasticities to trip duration



## Robustness analysis of congestion technologies

Exclude observations with extreme weather (low/high temperature, snow, rain, wind)
GMM estimation with instrumental variables:

- Hour, day-of-the-week dummies
- Low public transport traffic dummy (strikes)
- Dummy for an accident in a donut of 5 km , distance to the accident
- Dummy for an accident the previous hour in a radius of 5 km , distance to the accident
- Dummies if hourly temperature $\in(4-9)$ or $(19-25)^{\circ} \mathrm{C}$,
- Dummies for school holidays, banks holidays, driving restrictions

(a) Highways.

(b) City center.

(c) Ring roads.


## Fit of the model

Shares of transportation modes (in \%):

|  | Observed | Predicted <br> shares |
| :--- | :---: | :---: |
| Bicycle | 2.1 | 2.09 |
| Public transport | 30.32 | 30.28 |
| Motorbike | 2.08 | 2.08 |
| Walking | 15.8 | 15.8 |
| Car, peak | 22.88 | 22.92 |
| Car, off-peak | 12.3 | 12.27 |
| PT, off-peak | 14.52 | 14.57 |

Speeds (in km/hr):

| Area | Peak hour |  | Off-peak hour |  |
| :---: | :---: | :---: | :---: | :---: |
|  | Traffic | TomTom | Traffic | TomTom |
| Highway | 44.9 | 65.2 | 67 | 85.4 |
| City center | 22.4 | 13.7 | 31.7 | 18.3 |
| Ring roads | 30.4 | 28.8 | 57.9 | 44.2 |
| Close suburb |  | 15.8 |  | 20.2 |
| Far suburb |  | 25.5 |  | 29.2 |

