# **Macroeconomic Expectations and Limited Awareness**

1

Davide Debortoli<sup>1</sup> Luigi Iovino<sup>2</sup> Nicola Pavoni<sup>2</sup> Donghai Zhang<sup>3</sup>

PSE-CEPR Policy Forum

June 2023

<sup>1</sup>ICREA-UPF, CREi and BSE <sup>2</sup>U. Bocconi and IGIER <sup>3</sup>U. Bonn

- Rational Expectations (RE) is a mainstream tool in macroeconomics
- Sizable evidence questioning RE (e.g., forecast errors are predictable)
  - $\Rightarrow \text{ several theories with departures from RE [learning, level-k, diagnostic expectations, limited-memory, etc.]}$
  - $\Rightarrow$  different implications for macro variables and policies

- Rational Expectations (RE) is a mainstream tool in macroeconomics
- Sizable evidence questioning RE (e.g., forecast errors are predictable)
  - $\Rightarrow$  several theories with departures from RE [learning, level-k, diagnostic expectations, limited-memory, etc.]
  - $\Rightarrow$  different implications for macro variables and policies
- Most evidence about expectations of different variables considered in isolation

Question: What about coherence of expectations across macro variables?  $\Rightarrow$  important to discipline alternative theories

- 1. Do agents understand the "trade-off" between these two variables?
- 2. If not, what are the potential sources of their "mistake"?
- 3. What are the implications for monetary policy? (in progress)

1. Do agents understand the "trade-off" between these two variables?

we document two facts on expectations

- "over-reaction" for inflation, but "under-reaction" for unemployment
- A misperceived Phillips Curve: downward bias in perceived slope
- 2. If not, what are the potential sources of their "mistake"?
- 3. What are the implications for monetary policy? (in progress)

- 1. Do agents understand the "trade-off" between these two variables?
- 2. If not, what are the potential sources of their "mistake"?

a simple model with "limited awareness": agents ignore (some) supply shocks

3. What are the implications for monetary policy? (in progress)

- 1. Do agents understand the "trade-off" between these two variables?
- 2. If not, what are the potential sources of their "mistake"?

a simple model with "limited awareness": agents ignore (some) supply shocks

- $\bullet$  "excessive" weight on demand shocks  $\Rightarrow$  over-reaction of inflation
- $\bullet\,$  downplayed persistence of shock  $\Rightarrow$  under-reaction of output
- $\bullet\,$  omitted variable problem  $\Rightarrow$  downward bias on perceived slope of Phillips curve
- 3. What are the implications for monetary policy? (in progress)

### **Related Literature**

#### • Subjective expectations in macroeconomics

Carroll (2003); Mankiw-Reis-Wolfers (2003); Pesaran-Weale (2006); Coibion-Gorodnichenko (2012, 2015); Bordalo et al. (2020); D'Acunto-Malmendier-Weber (2022)

 $\Rightarrow$  look at relationship across variables

#### • Subjective expectations across macroeconomic variables

Carvalho and Necchio (2014); Drager-Lamla-Pfajar (2016); Link-Peichl-Roth-Wohlfart (2021); Hou (2022)  $\Rightarrow$  incoherence between inflation and unemployment forecasts errors

#### • Macroeconomic models with departures from RE

Marcet and Sargent (1989); Branch and Evans (2003); Adam and Marcet (2011); Garcia-Schmidt and Woodford (2015); Gabaix (2016); Farhi and Werning (2017); Iovino and Sergeyev (2022); Molavi (2019); Angeletos, Huo and Sastry (2020); Molavi, Tahbaz-Salehi and Vedolin (2022); Hansen-Sargent (2022); da Silveira-Sung-Woodford (2023), etc.

 $\Rightarrow$  a simple model of misspecification to rationalize our evidence

### Empirical Evidence

- A Model with Limited Aware Agents
- Implications for Monetary Policy

# **Empirical Evidence**

- $\checkmark\,$  Professional forecasters are informed agents
- $\checkmark~$  Quarterly survey of approx. 30-40 professionals on
  - GDP deflator and CPI forecasts
  - Real GDP and unemployment rate forecasts
- $\checkmark$  Run by the Philly-Fed, available since 1968:IV (we end in 2020:I)
- ✓ Forecasting Horizons from h = 1 to h = 4 quarters

#### Question #1: Predictability of Forecast Errors?

based on Cobion and Gorodnichenko (2015) and Bordalo et al. (2020)

• For a generic variable x, and individual i, let's define

$$\begin{aligned} FE_t^i(x_{t+h}) &\equiv x_{t+h} - \mathbb{E}_t^i\{x_{t+h}\} \\ FR_t^i(x_{t+h}) &\equiv \mathbb{E}_t^i\{x_{t+h}\} - \mathbb{E}_{t-1}^i\{x_{t+h}\} \end{aligned} \tag{Forecast Error} \end{aligned}$$
(Forecast Revision)

#### Question #1: Predictability of Forecast Errors?

based on Cobion and Gorodnichenko (2015) and Bordalo et al. (2020)

• For a generic variable x, and individual i, let's define

$$FE_{t}^{i}(x_{t+h}) \equiv x_{t+h} - \mathbb{E}_{t}^{i}\{x_{t+h}\}$$
(Forecast Error)  
$$FR_{t}^{i}(x_{t+h}) \equiv \mathbb{E}_{t}^{i}\{x_{t+h}\} - \mathbb{E}_{t-1}^{i}\{x_{t+h}\}$$
(Forecast Revision)

• Run the following regression:

$$FE_t^i(x_{t+h}) = \alpha^i + d_t + \frac{\beta_x}{\beta_x}FR_t^i(x_{t+h}) + u_t^i$$

#### Question #1: Predictability of Forecast Errors?

based on Cobion and Gorodnichenko (2015) and Bordalo et al. (2020)

• For a generic variable x, and individual i, let's define

$$\begin{aligned} FE_t^i(x_{t+h}) &\equiv x_{t+h} - \mathbb{E}_t^i\{x_{t+h}\} & (\text{Forecast Error}) \\ FR_t^i(x_{t+h}) &\equiv \mathbb{E}_t^i\{x_{t+h}\} - \mathbb{E}_{t-1}^i\{x_{t+h}\} & (\text{Forecast Revision}) \end{aligned}$$

• Run the following regression:

$$FE_t^i(x_{t+h}) = \alpha^i + d_t + \frac{\beta_x}{\beta_x}FR_t^i(x_{t+h}) + u_t^i$$

|               | Interpretation   | Example                                                              |
|---------------|------------------|----------------------------------------------------------------------|
| $\beta_x > 0$ | "under-reaction" | insufficient forecast increase $\rightarrow$ positive forecast error |
| $\beta_x < 0$ | "over-reaction"  | excessive forecast increase $\rightarrow$ negative forecast error    |

|           | (1)      | (2)      | (3)      | (4)      | (5)       |
|-----------|----------|----------|----------|----------|-----------|
|           | $h{=}1$  | h=2      | h=3      | All      | 1981-2008 |
| Inflat    | ion      |          |          |          |           |
| $eta_\pi$ | -0.36*** | -0.36*** | -0.40*** | -0.37*** | -0.45***  |
|           | (0.06)   | (0.06)   | (0.06)   | (0.04)   | (0.02)    |
| obs.      | 4826     | 4054     | 3764     | 12644    | 5753      |

#### Table 1: Predictability of Forecast Errors: Forecaster Level Data

 Table 1: Predictability of Forecast Errors: Forecaster Level Data

|           | (1)      | (2)      | (3)                  | (4)      | (5)       |
|-----------|----------|----------|----------------------|----------|-----------|
|           | $h{=}1$  | h=2      | h=3                  | All      | 1981-2008 |
| Inflation |          |          | <b>OVER-REACTION</b> |          |           |
| $eta_\pi$ | -0.36*** | -0.36*** | -0.40***             | -0.37*** | -0.45***  |
|           | (0.06)   | (0.06)   | (0.06)               | (0.04)   | (0.02)    |
| obs.      | 4826     | 4054     | 3764                 | 12644    | 5753      |

|           | (1)       | (2)      | (3)      | (4)      | (5)       |
|-----------|-----------|----------|----------|----------|-----------|
|           | $h{=}1$   | h=2      | h=3      | All      | 1981-2008 |
| Inflat    | ion       |          |          | OVER-F   | REACTION  |
| $eta_\pi$ | -0.36***  | -0.36*** | -0.40*** | -0.37*** | -0.45***  |
|           | (0.06)    | (0.06)   | (0.06)   | (0.04)   | (0.02)    |
| obs.      | 4826      | 4054     | 3764     | 12644    | 5753      |
| Unem      | nployment |          |          |          |           |
| $\beta_y$ | 0.28*     | 0.34**   | 0.27     | 0.30*    | 0.14      |
|           | (0.14)    | (0.15)   | (0.20)   | (0.16)   | (0.10)    |
| obs.      | 4924      | 4748     | 4427     | 14099    | 6553      |

#### Table 1: Predictability of Forecast Errors: Forecaster Level Data

|           | (1)       | (2)      | (3)      | (4)      | (5)       |
|-----------|-----------|----------|----------|----------|-----------|
|           | h=1       | h=2      | h=3      | All      | 1981-2008 |
| Inflat    | ion       |          |          | OVER-    | REACTION  |
| $eta_\pi$ | -0.36***  | -0.36*** | -0.40*** | -0.37*** | -0.45***  |
|           | (0.06)    | (0.06)   | (0.06)   | (0.04)   | (0.02)    |
| obs.      | 4826      | 4054     | 3764     | 12644    | 5753      |
| Unem      | nployment |          |          | UNDER-   | REACTION  |
| $\beta_y$ | 0.28*     | 0.34**   | 0.27     | 0.30*    | 0.14      |
|           | (0.14)    | (0.15)   | (0.20)   | (0.16)   | (0.10)    |
| obs.      | 4924      | 4748     | 4427     | 14099    | 6553      |

#### Table 1: Predictability of Forecast Errors: Forecaster Level Data

## **Question #2: A Missperceived Phillips Curve?**

• Suppose that inflation  $(\pi_t)$  and unemployment  $(u_t)$  are linked by the following relationship

$$\pi_t = -\kappa u_t + \text{controls}_t + \eta_t \tag{PC}$$

where controls $_t$  may include expectations, lagged variables, etc.

### **Question #2: A Missperceived Phillips Curve?**

• Suppose that inflation  $(\pi_t)$  and unemployment  $(u_t)$  are linked by the following relationship

$$\pi_t = -\kappa u_t + \text{controls}_t + \eta_t \tag{PC}$$

where controls $_t$  may include expectations, lagged variables, etc.

• Consider now a "perceived" Phillips curve

$$\mathbb{E}_{t-1}^{i}\{\pi_t\} = -\widetilde{\kappa}\mathbb{E}_{t-1}^{i}\{u_t\} + \mathbb{E}_{t-1}^{i}\{\text{controls}_t\} + \mathbb{E}_{t-1}^{i}\{\eta_t\}$$
 (perceived PC)

#### Question #2: A Missperceived Phillips Curve?

• Suppose that inflation  $(\pi_t)$  and unemployment  $(u_t)$  are linked by the following relationship

$$\pi_t = -\kappa u_t + \text{controls}_t + \eta_t \tag{PC}$$

where controls $_t$  may include expectations, lagged variables, etc.

• Consider now a "perceived" Phillips curve

$$\mathbb{E}_{t-1}^{i}\{\pi_t\} = -\widetilde{\kappa}\mathbb{E}_{t-1}^{i}\{u_t\} + \mathbb{E}_{t-1}^{i}\{\text{controls}_t\} + \mathbb{E}_{t-1}^{i}\{\eta_t\}$$
(perceived PC)

Empirical Specification: Taking the difference between (PC) and (perceived PC)

$$\pi_t - \mathbb{E}_{t-1}^i \{\pi_t\} = -\kappa \left[ u_t - \mathbb{E}_{t-1}^i \{u_t\} \right] - \frac{\gamma \mathbb{E}_{t-1}^i \{u_t\} + \widetilde{\text{controls}}_t + \varepsilon_t$$

where  $\operatorname{controls}_{t} \equiv \operatorname{controls}_{t} - \mathbb{E}_{t-1}^{i} \{\operatorname{controls}_{t}\}.$ 

Null Hypothesis (RE):  $\gamma \equiv (\kappa - \widetilde{\kappa}) = 0$ 

## Question #2: A Missperceived Phillips Curve? (cont'd)

**Empirical Specification**:

$$\pi_t - \mathbb{E}_{t-1}^i \{\pi_t\} = -\kappa \left[ u_t - \mathbb{E}_{t-1}^i \{u_t\} \right] - \frac{\gamma \mathbb{E}_{t-1}^i \{u_t\} + \widetilde{\text{controls}}_t + \varepsilon_t$$

• Baseline: no controls, simple test of RE (OLS valid under RE)

### Question #2: A Missperceived Phillips Curve? (cont'd)

**Empirical Specification**:

$$\pi_t - \mathbb{E}_{t-1}^i \{\pi_t\} = -\kappa \left[ u_t - \mathbb{E}_{t-1}^i \{u_t\} \right] - \gamma \mathbb{E}_{t-1}^i \{u_t\} + \widetilde{\text{controls}}_t + \varepsilon_t$$

- Baseline: no controls, simple test of RE (OLS valid under RE)
- Alternative:
  - (1) **NKPC**: control for individual forecast revisions  $\mathbb{E}_{t}^{i}\{\pi_{t+1}\} \mathbb{E}_{t-1}^{i}\{\pi_{t+1}\}$
  - (2) NKPC on subsample 1981-2008
  - (3) **Hybrid**: NKPC + control for lagged inflation:  $\pi_{t-1} \mathbb{E}_{t-1}^{i} \{\pi_{t-1}\}$
  - (4) IV: use high-frequency monetary shocks as instruments

Table 2: OLS Regressions

|                             | Baseline | (1)     | (2)       | (3)    |
|-----------------------------|----------|---------|-----------|--------|
|                             |          | NKPC    | 1981-2008 | Hybrid |
| One-period $(h = 1)$        |          |         |           |        |
| γ                           | 0.22**   | 0.15*** | 0.12**    | 0.13** |
|                             | (0.07)   | (0.05)  | (0.06)    | (0.05) |
| obs.                        | 5972     | 4807    | 2211      | 4799   |
| All periods $(h = 1, 2, 3)$ |          |         |           |        |
| γ                           | 0.21**   | 0.12**  | 0.15**    | 0.11** |
|                             | (0.06)   | (0.05)  | (0.05)    | (0.05) |
| obs.                        | 13808    | 11332   | 5174      | 11034  |

#### Table 3: Instrumental Variables Regressions

|                      | (1)    | (2)                    | (3)                   |
|----------------------|--------|------------------------|-----------------------|
|                      | Unemp. | y <sup>gap</sup> (CBO) | y <sup>gap</sup> (HP) |
| One-period $(h = 1)$ |        |                        |                       |
| γ                    | 0.15** | 0.04***                | 0.05**                |
|                      | (0.06) | (0.01)                 | (0.02)                |
| obs.                 | 1069   | 1067                   | 1067                  |
| First-stage F-stat   | 13.40  | 207.64                 | 367.89                |

- We find evidence of
  - I. over-reaction of inflation forecasts, under-reaction of unemployment forecasts
  - II. downward bias in the perceived slope of the Phillips curve
- $\Rightarrow\,$  Suggest form of misspecification of relationship among variables
- Inconsistent with (most) existing theories. Examples:
  - Rational inattention: no over-/under-reaction (individual expectations)
  - Diagnostic expectations and limited-memory: over-reactions for all variables
- $\Rightarrow$  **Next:** propose a simple model to rationalize our evidence

The Model

- A simple macro model ( $\rightarrow$  provide microfoundation later)
  - 2 variables: inflation  $\pi_t$  and output  $y_t$
  - 2 exogenous (AR1) shocks: demand (monetary policy)  $d_t$  and supply (cost-push)  $s_t$

- A simple macro model ( $\rightarrow$  provide microfoundation later)
  - 2 variables: inflation  $\pi_t$  and output  $y_t$
  - 2 exogenous (AR1) shocks: demand (monetary policy)  $d_t$  and supply (cost-push)  $s_t$

#### • Limited Aware Agents:

- do not observe and are unaware of cost-push shocks
- do not observe monetary shocks (but are aware of them)

- A simple macro model ( $\rightarrow$  provide microfoundation later)
  - 2 variables: inflation  $\pi_t$  and output  $y_t$
  - 2 exogenous (AR1) shocks: demand (monetary policy)  $d_t$  and supply (cost-push)  $s_t$

#### • Limited Aware Agents:

- do not observe and are **unaware** of cost-push shocks
- do not observe monetary shocks (but are aware of them)
- perfectly observe output (easy to relax)  $\Rightarrow$  use it to infer current monetary shock
- observe inflation with measurement error  $(e_t)$

- A simple macro model ( $\rightarrow$  provide microfoundation later)
  - 2 variables: inflation  $\pi_t$  and output  $y_t$
  - 2 exogenous (AR1) shocks: demand (monetary policy)  $d_t$  and supply (cost-push)  $s_t$

#### • Limited Aware Agents:

- do not observe and are unaware of cost-push shocks
- do not observe monetary shocks (but are aware of them)
- perfectly observe output (easy to relax)  $\Rightarrow$  use it to infer current monetary shock
- observe inflation with measurement error  $(e_t)$
- have access to an infinite amount of data (no "learning")

 $\Rightarrow$  used to estimate unknown model parameters, using selected moments

#### • True data generating process

$$y_t = \psi_{yd} d_t + \psi_{ys} s_t$$
(DGP)  
$$\pi_t = \psi_{\pi d} d_t - \psi_{\pi s} s_t$$

where  $d_t = \rho_d d_{t-1} + \varepsilon_t^d$  and  $s_t = \rho_s s_{t-1} + \varepsilon_t^s$ , and where  $\rho_s > \rho_d$ .

#### • True data generating process

$$y_t = \psi_{yd} d_t + \psi_{ys} s_t$$
(DGP)  
$$\pi_t = \psi_{\pi d} d_t - \psi_{\pi s} s_t$$

where  $d_t = \rho_d d_{t-1} + \varepsilon_t^d$  and  $s_t = \rho_s s_{t-1} + \varepsilon_t^s$ , and where  $\rho_s > \rho_d$ .

• Perceived data generating process

$$egin{aligned} y_t &= \widetilde{\psi}_{yd} \widetilde{d}_t \ ( extsf{PDGP}) \ \pi_t &= \widetilde{\psi}_{\pi d} \widetilde{d}_t + e_t \end{aligned}$$

where  $e_t$  is an i.i.d. measurement error.

# Agents' Forecasts

• Since agents observe  $y_t$ , inferred demand shock is

$$\widetilde{d}_t = (\widetilde{\psi}_{yd})^{-1} \underbrace{[\psi_{yd} d_t + \psi_{ys} s_t]}^{y_t}$$

### **Agents' Forecasts**

• Since agents observe  $y_t$ , inferred demand shock is

$$\widetilde{d}_t = (\widetilde{\psi}_{yd})^{-1} \underbrace{[\psi_{yd}d_t + \psi_{ys}s_t]}^{y_t}$$

• One-period ahead forecasts are given by

$$\mathbb{E}_{t}\{y_{t+1}\} = \widetilde{\rho}_{d}\left[\psi_{yd}d_{t} + \psi_{ys}s_{t}\right]$$
$$\mathbb{E}_{t}\{\pi_{t+1}\} = \widetilde{\rho}_{d}\widetilde{\kappa}\left[\psi_{yd}d_{t} + \psi_{ys}s_{t}\right]$$

where  $\tilde{\kappa} \equiv \tilde{\psi}_{\pi d} / \tilde{\psi}_{yd}$  can be interpreted as the "perceived" slope of the Phillips curve.

•  $\widetilde{\kappa}$  can be obtained from

$$\widetilde{\kappa} = \frac{Cov(\pi_t, y_t)}{Var(y_t)}$$

Proposition (Downward Bias in the Slope of the Phillips Curve)

Due to an omitted variable problem, agents get a biased estimate  $\tilde{\kappa} < \kappa$ 

Proof.

$$\begin{split} \widetilde{\kappa} &\equiv \frac{\widetilde{\psi}_{\pi d}}{\widetilde{\psi}_{yd}} = \frac{Cov(\pi_t, y_t)}{Var(y_t)} = \frac{\psi_{\pi d}\psi_{yd}\sigma_d^2 - \psi_{\pi s}\psi_{ys}\sigma_s^2}{\psi_{yd}^2\sigma_d^2 + \psi_{ys}^2\sigma_s^2} \\ &< \frac{\psi_{\pi d}\psi_{yd}\sigma_d^2}{\psi_{yd}^2\sigma_d^2} = \frac{\psi_{\pi d}}{\psi_{yd}} \equiv \kappa \end{split}$$
For simplicity, suppose  $ho_d = \tilde{
ho}_d$  (without loss of generality)

For simplicity, suppose  $ho_d = ilde
ho_d$  (without loss of generality)

$$FE_{t+1}^{\pi} = \rho_d(\kappa - \widetilde{\kappa})\psi_{yd}d_t - \left[\rho_s(\psi_{\pi s}/\psi_{ys}) + \rho_d\widetilde{\kappa}\right]\psi_{ys}s_t + \text{shocks}_{t+1}$$
$$FR_t^{\pi} = \rho_d\widetilde{\kappa}\left[(\rho_s - \rho_d)\psi_{ys}s_{t-1} + \psi_{yd}\varepsilon_t^d + \psi_{yd}\varepsilon_t^s\right]$$

conditional on demand shocks  $\stackrel{\kappa \geq \widetilde{\kappa}}{\Rightarrow}$  positive correlation o under-reaction

For simplicity, suppose  $ho_d = ilde
ho_d$  (without loss of generality)

$$FE_{t+1}^{\pi} = \rho_d(\kappa - \widetilde{\kappa})\psi_{yd}d_t - \left[\rho_s(\psi_{\pi s}/\psi_{ys}) + \rho_d\widetilde{\kappa}\right]\psi_{ys}s_t + \text{shocks}_{t+1}$$
$$FR_t^{\pi} = \rho_d\widetilde{\kappa}\left[(\rho_s - \rho_d)\psi_{ys}s_{t-1} + \psi_{yd}\varepsilon_t^d + \psi_{yd}\varepsilon_t^s\right]$$

conditional on demand shocks  $\stackrel{\kappa \geq \widetilde{\kappa}}{\Rightarrow}$  positive correlation  $\rightarrow$  under-reaction conditional on supply shocks  $\Rightarrow$  negative correlation  $\rightarrow$  over-reaction

For simplicity, suppose  $ho_d = ilde
ho_d$  (without loss of generality)

$$FE_{t+1}^{\pi} = \rho_d(\kappa - \widetilde{\kappa})\psi_{yd}d_t - \left[\rho_s(\psi_{\pi s}/\psi_{ys}) + \rho_d\widetilde{\kappa}\right]\psi_{ys}s_t + \text{shocks}_{t+1}$$
$$FR_t^{\pi} = \rho_d\widetilde{\kappa}\left[(\rho_s - \rho_d)\psi_{ys}s_{t-1} + \psi_{yd}\varepsilon_t^d + \psi_{yd}\varepsilon_t^s\right]$$

conditional on demand shocks  $\stackrel{\kappa \geq \widetilde{\kappa}}{\Rightarrow}$  positive correlation o under-reaction

conditional on supply shocks  $\Rightarrow$  negative correlation  $\rightarrow$  over-reaction

Proposition (Over-reaction of Inflation Forecasts)

Inflation forecasts display over-reaction if the relative variance of supply shocks is large enough

# Result #3: Under-reaction of Output

$$FE_{t+1}^{y} = (\rho_{s} - \rho_{d})\psi_{ys}s_{t} + \text{shocks}_{t+1}$$
$$FR_{t}^{y} = \rho_{d}\left[(\rho_{s} - \rho_{d})\psi_{ys}s_{t-1} + \psi_{yd}\varepsilon_{t}^{d} + \psi_{yd}\varepsilon_{t}^{s}\right]$$

conditional on demand shocks  $\Rightarrow$  no correlation

## **Result #3: Under-reaction of Output**

$$FE_{t+1}^{y} = (\rho_{s} - \rho_{d})\psi_{ys}s_{t} + \text{shocks}_{t+1}$$
$$FR_{t}^{y} = \rho_{d}\left[(\rho_{s} - \rho_{d})\psi_{ys}s_{t-1} + \psi_{yd}\varepsilon_{t}^{d} + \psi_{yd}\varepsilon_{t}^{s}\right]$$

conditional on demand shocks  $\Rightarrow$  no correlation

conditional on supply shocks  $\stackrel{
ho_s > 
ho_d}{\Rightarrow}$  positive correlation ightarrow under-reaction

# **Result #3: Under-reaction of Output**

$$FE_{t+1}^{y} = (\rho_{s} - \rho_{d})\psi_{ys}s_{t} + \text{shocks}_{t+1}$$
$$FR_{t}^{y} = \rho_{d}\left[(\rho_{s} - \rho_{d})\psi_{ys}s_{t-1} + \psi_{yd}\varepsilon_{t}^{d} + \psi_{yd}\varepsilon_{t}^{s}\right]$$

conditional on demand shocks  $\Rightarrow$  no correlation

conditional on supply shocks  $\stackrel{\rho_s > \rho_d}{\Rightarrow}$  positive correlation  $\rightarrow$  under-reaction

#### Proposition (Under-reaction of Output Forecasts)

Output forecasts display under-reaction if supply shocks are more persistent than demand shocks



# Microfoundation

# Microfoundation: NK Model

#### Household *i*:

• operates firm *i*, consumes/works with preferences

$$\mathbb{E}_0 \sum_{t=0}^{\infty} \beta^t \left( \frac{C_t^{1-\sigma} - 1}{1-\sigma} - \frac{N_t^{1+\varphi}}{1+\varphi} \right), \qquad C_t \equiv \left( \int (C_t^i)^{\frac{e_t^i - 1}{e_t^i}} di \right)^{\frac{e_t^i}{e_t^i - 1}}$$

• trades nominal bonds (zero net supply)

Firm *i*:

- produces  $Y_t^i = N_t^i$ , monopolistic competitor, demand  $Y_t^i = (P_t / P_t^i)^{\varepsilon_t^i} Y_t$
- $arepsilon_t^i$  is an aggregate elasticity shock, with mean arepsilon
- hires labor, sets price  $P_t^i$  subject to (Calvo) nominal rigidities

#### Central Bank:

• follows Taylor rule with monetary-policy shocks

Agent *i*:

- observes (only) its own Calvo parameter  $heta^i$  and shocks  $(arepsilon_t^i)_t$
- knows that all firms are identical

#### Agent *i*:

- observes (only) its own Calvo parameter  $heta^i$  and shocks  $(arepsilon_t^i)_t$
- knows that all firms are identical

#### Proposition (Phillips Curve)

In the log-linearized equilibrium, all firms set the same price and the following Phillips curve holds:

$$\pi_t = \beta \mathbb{E}_t \pi_{t+1} + \kappa y_t + s_t,$$

where  $\kappa \equiv (\sigma + \phi) \frac{(1+\theta)(1-\beta\theta)}{\theta}$  and where the "cost-push" shock  $s_t$  is a function of  $\varepsilon_t$ .

# The Perceived Phillips Curve

Agent *i*:

• observes (only) its own  $\theta^i$  and shocks  $(\varepsilon_t^j)_t$ , assumes that all other firms are identical  $\theta^j = \tilde{\theta}, j \neq i$ 

# The Perceived Phillips Curve

Agent *i*:

- observes (only) its own  $\theta^i$  and shocks  $(\varepsilon_t^i)_t$ , assumes that all other firms are identical  $\theta^j = \tilde{\theta}, j \neq i$
- (wrongly) assumes that  $\theta^i$  is unrelated to  $\tilde{\theta}$
- (wrongly) assumes that shocks across firms  $(\varepsilon_t^j)_j$  are i.i.d.
  - $\Rightarrow$  thinks aggregate variables only driven by demand shocks and measurement error

### The Perceived Phillips Curve

Agent *i*:

- observes (only) its own  $\theta^i$  and shocks  $(\varepsilon_t^i)_t$ , assumes that all other firms are identical  $\theta^j = \tilde{\theta}, j \neq i$
- (wrongly) assumes that  $\theta^i$  is unrelated to  $\tilde{\theta}$
- (wrongly) assumes that shocks across firms  $(\varepsilon_t^j)_j$  are i.i.d.

 $\Rightarrow$  thinks aggregate variables only driven by demand shocks and measurement error

Firms estimate the common mean  $\, \widetilde{ heta} \, (= f(\widetilde{\kappa})) \,$  from

$$\pi_t - \beta \mathbb{E}_t \pi_{t+1} = \tilde{\kappa} y_t + e_t$$

where  $e_t$  is (wrongly) interpreted as a pure measurement error

Proposition (Downward Bias in the Slope of the Phillips Curve)

Due to an omitted variable problem, agents obtain a biased estimate

$$ilde{\kappa} = rac{ extsf{Cov}\left(\pi_t - eta \mathbb{E}_t \pi_{t+1}, y_t
ight)}{ extsf{Var}\left(y_t
ight)} < \kappa$$

Simple NK model with limited aware agents (in log deviations from SS):

$$y_t = \mathbb{E}_t y_{t+1} - \frac{1}{\sigma} (\phi_\pi \pi_t + d_t - \mathbb{E}_t \pi_{t+1})$$
(AD)  
$$\pi_t = \beta \mathbb{E}_t \pi_{t+1} + \kappa y_t + s_t$$
(AS)

- Under RE: expectations consistent with above equations
- In our model:  $\mathbb{E}_t \pi_{t+1} = \beta \mathbb{E}_t \pi_{t+2} + \widetilde{\kappa} \mathbb{E}_t y_{t+1}$ 
  - assume all parameters but  $\kappa$  are known (for simplicity)
  - expectations based on perceived demand shock, given observed  $y_t$

# **Monetary Policy Implications**

# The Effects of Monetary Shocks

We compare our model with the benchmark NK under RE

# The Effects of Monetary Shocks

We compare our model with the benchmark NK under RE

Proposition (Effects of Monetary Shocks)

Suppose  $\phi_{\pi} \in (1, 1 + \beta \sigma (1 - 
ho) / \kappa)$ . Then,

(i)  $\frac{\partial y_t}{\partial d_t}$  is **larger** in absolute value than in the standard NK

(ii)  $\frac{\partial \pi_t}{\partial d_t}$  is smaller in absolute value than in the standard NK

# The Effects of Monetary Shocks

We compare our model with the benchmark NK under RE

Proposition (Effects of Monetary Shocks)

Suppose  $\phi_{\pi} \in (1, 1 + \beta \sigma (1 - 
ho) / \kappa)$ . Then,

(i)  $\frac{\partial y_t}{\partial d_t}$  is **larger** in absolute value than in the standard NK

(ii)  $\frac{\partial \pi_t}{\partial d_t}$  is smaller in absolute value than in the standard NK

- LA may contribute to the inflation disconnect puzzle
- More costly to control inflation

• To get an intuition, suppose the central banks controls the real interest rate

$$r_t = i_t - \mathbb{E}_t \{ \pi_{t+1} \} = d_t \tag{1}$$

• This means that output is entirely determined by monetary policy (vertical AD equation)

$$y_t = -\frac{1}{\sigma} \sum_{j=0}^{\infty} \mathbb{E}_t \{ d_{t+j} \}$$
<sup>(2)</sup>









#### Contractionary Monetary Shock: Real rate rule



#### Graphical Intuition II: Contractionary, Taylor Rule



#### Graphical Intuition II: Contractionary, Taylor Rule



#### **Contractionary Monetary Shock: Taylor rule**

Parameters:  $\beta = .99; \sigma = 2; \kappa = .05; \kappa^e = .02; \phi_{\pi} = 1.5; \rho = .9$ 



### **Output Cost of Reducing Inflation**



### Monetary Policy and the Perceived Slope of the PC



# Conclusion

- Empirical evidence suggests agents misperceive relationship between inflation and output
- A model with Limited Awareness rationalizes evidence
  - Agents are unaware of cost-push shocks
  - Higher cost to lower inflation
  - (Strict) inflation targeting exacerbates the problem
- Future research: Policy communication (e.g., FG) under LA

# Intuition: Effects of Negative and Persistent Supply Shock

#### True Data Generating Process



# Intuition: Effects of Negative and Persistent Supply Shock

#### True Data Generating Process



### Intuition: Effects of Negative and Persistent Supply Shock

Perceived Data Generating Process: Supply shocks perceived as a (not very persistent) demand shock



Perceived Data Generating Process: Supply shocks perceived as a (not very persistent) demand shock


## Intuition: Effects of Negative and Persistent Supply Shock

Perceived Data Generating Process: Supply shocks perceived as a (not very persistent) demand shock



