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Abstract

This paper analyzes international externalities of a local shock to the global ship-
ping network. The 2016 Panama Canal expansion removed a bottleneck in seaborne
transportation, allowing much larger ships to pass. Using both reduced-form and
structural methods in combination with novel satellite data on the movements of
container ships, we find that trade increased significantly among country-pairs us-
ing the canal. We find that the global real income gains from the canal expansion
were over three times greater than the income gains for Panama itself. A link re-
moval analysis reveals that most shipping links are associated with positive and
quantitatively important positive international externalities.
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1 Introduction

Container ships are the engines of global trade.1 By now, nearly all countries have
container ports, constituting the nodes of the global container shipping network (Rua,
2014). The networked environment implies that a shock to a port, or a link, in the network,
such as improvements in shipping infrastructure, or a sudden blockage of the Suez canal,
may affect shipping costs, trade flows and real incomes for many more locations than
those that are directly affected. Put differently, the network structure of transportation
implies that international externalities are likely to exist. The fragility, or resilience,
of the shipping network, has received renewed attention with the recent supply chain
disruptions during the COVID-19 pandemic. While there is ample anecdotal evidence on
the ripple effects from shipping disrutions, there is scarce systematic empirical evidence
on the existence, and magnitude of these international externalities.

This paper quantifies the sign and magnitude of international externalities by using
novel satellite data on the movements on container ships. We analyze a large shock to
the transportation network: the 2016 Panama Canal expansion. The expansion removed
a major bottleneck in seaborne transportation, allowing much larger ships to pass. Using
both reduced-form and structural methods, this paper analyzes how the expansion led to
ripple effects in terms of trade and transportation costs globally, and provides evidence
of the international externalities associated with the expansion. Positive international
externalities naturally arise in a networked environment because a trip from location a to
cmight pass though location b. Lower transport costs between b and c will not only benefit
b and c, but also a. This stands in sharp contrast to canonical models of international
trade, where a will typically lose when b and c integrate, i.e., a negative international
externality.2

Our empirical analysis of global container ship movements has become possible due
to the rapid advent of the global Automated Identification System (AIS) over the last
years. Using an exhaustive AIS data set of all port calls made by container ships in 2016,
we document novel facts about the container shipping network. First, container ships

1Levinson (2006) and Bernhofen et al. (2016) detail the seismic changes that the worldwide adoption
of container shipping technology has brought about in international trade.

2See Riezman (1979), Baldwin et al. (2003), Behrens et al. (2007), Mossay and Tabuchi (2015) and
Section 7.
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typically operate on fixed routes, i.e. they serve a stable set of ports, akin to buses serving
a fixed number of stops in a city. Second, shipping activity is highly concentrated across
ports, with some nodes (ports) in the network handling almost two orders of magnitude
more ships than the median port. Third, the network is very sparse in the sense that only
few countries have direct shipping routes to their trade partners.

While the AIS data provides unprecedented detail about the movement of ships, one
cannot observe the movement of the cargo itself, i.e. the actual route of a shipment from
country i to country j. To make progress, we propose several methods to infer the route(s)
a container might take from i to j. The simplest method is to use the observed shipping
network along with actual travel times between all direct port-pair links and calculate
the fastest route between any potential port pair. Consider, for example, a shipping
network with direct links between New York-London, New York-Hamburg, London-Oslo
and Hamburg-Oslo. The fastest route between New York and Oslo might then be New
York-London-Oslo if this route minimizes the sum of travel times of each leg of the journey,
including waiting time at intermediate ports. The fastest path calculations reveal that
50% of all country-to-country connections involve stops in more than two other countries
in between.

After computing the optimal shipping routes, we are able to assess which country
pairs were exposed to the 2016 Panama Canal expansion. After 10 years of construction,
the extended Panama Canal opened on June 26th of 2016. The $5.25 billion massive
construction project was a modern engineering marvel: it nearly doubled the capacity of
the canal by adding a wider and deeper third lane, allowing much larger ships to pass.3

We analyze the global trade effects of the expansion, and how countries were differentially
affected by the shock. Using a difference-in-difference approach, we find that country
pairs whose fastest connection passed through the Panama Canal prior to the expansion
traded 11% more after the expansion compared to other country pairs.

Finally, we investigate and quantify the international externalities associated with the
expansion. We develop a spatial model of trade, where we – in contrast to standard trade
models – take into account that goods traveling from one location to another will typically
be traveling indirect rather than directly. We build on, and extend, the work of Allen and

3The project required 5 million cubic meters of high-strength concrete - enough to build a highway
from New York to St. Louis (Business Insider, 2016).
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Arkolakis (2022).
Using the structure of the model, we estimate the impact of the canal expansion on

transportation costs using a difference-in-differences approach, comparing container traffic
before and after the canal expansion. After estimating the impact on transportation costs,
we use the model to quantify the effects of the Panama Canal expansion on global trade
and real income. We find that the global real income gains from the canal expansion were
over three times greater than the income gains for Panama itself. We therefore conclude
that the expansion was associated with positive international externalities.

Finally, we show that our quantitative model can be used to address the more general
question of whether the shipping network generates positive international externalities.
We analyze this question by removing every possible port-pair-link from the network, one
link at a time. This methodology is similar to so-called link removal analyses that have
been used extensively to study real-world networks in different fields of science (Bellingeri
et al., 2020). After running several thousand counterfactuals, we find that the large
majority of port-pair-links are associated with positive international externalities. We
document the distribution of externalities across port-pair-links and show which links are
the most valuable ones for the global economy. For the average link, the global gains are
12 percent higher than the local gains, i.e., the gains enjoyed by the two countries directly
linked.

To highlight the role of the global shipping network, we contrast our results to a model
without a shipping network - where all trading partners are directly linked. In this case,
international externalities are on average negative, i.e. reduced trade barriers between
two trading partners have a negative impact on third countries. Under the special case
of symmetric trade costs, international externalities are always negative.Our quantitative
results point to the interdependences created by the global shipping network, and suggest
that as long as the infrastructure costs are not shared across countries, the presence of
positive externalities implies that the world invests too little in global transportation net-
works. We leave it to future research to quantify the socially optimal level of investment,
given our findings.

The paper makes three main contributions to the literature. First, we document salient
features of the world container shipping network based on unique novel data covering the
worldwide movements of all container ships. Second, we develop a new methodology to
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calculate optimal shipping routes from our data, delivering unprecedented detail about
the shipping times to and from all port-pairs worldwide. Third, this paper is the first
to analyze international externalities of the global shipping network, using the Panama
Canal expansion as a case study.

Our paper is related to the broader literature on the effects of containerization. Besides
having spurred global trade as documented by Bernhofen et al. (2016) and Cosar and
Demir (2018), new port technology has been shown to have significantly altered countries’
economic geography (Brooks et al., 2021 and Ducruet et al., 2022). We also relate to the
literature that studies the impact of canal openings, expansions and closings. Maurer and
Rauch (2019) analyze how the Panama Canal changed U.S. population patterns, Feyrer
(2021) studies the relationship between trade and the closing and opening of the Suez
Canal, whereas Miller and Hyodo (2021) investigate the impact of the Panama Canal
expansion on Latin America and Caribbean container port throughput.

Our results from contrasting international externalities of transportation cost changes
and classical bilateral trade cost changes generalize the finding of Behrens et al. (2007),
who show that transportation cost reductions in a network of routes can be globally Pareto
improving, while bilateral non-transportation cost reductions may harm third countries.

This paper is also linked to recent work using AIS satellite data within the field of
international trade. Brancaccio et al. (2020) and Brancaccio et al. (2010) study the role
of dry bulk shipping, focusing on optimal policy, search frictions and the endogeneity of
trade costs. They use AIS data for dry bulk ships, which typically carry commodities such
as iron ore, coal, grain and sugar. Our focus is instead on container ships, which typically
carry manufactured goods and account for around two-thirds of world trade based on
values. In recent, and parallel, work, Ganapati et al. (2021) study the role of shipping
hubs for global trade and welfare. Our paper instead focuses on international externalities
of the Panama Canal expansion, using the expansion as a quasi-natural experiment.

The rest of the paper is structured as follow. Section 2 documents the satellite data
and the construction of the global shipping network data set and presents salient features
of the network. Section 3 describes the Panama Canal expansion and explains how to
compute the measure of exposure to the canal expansion. Section 4 analyzes the global
impact of the Panama Canal expansion on trade. Section 5 presents a spatial model of
trade with a transportation network, while Sections 6 and 7 use the model to quantify
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network externalities. Section 8 concludes.

2 Data and Descriptives

2.1 Data

AIS data. Our point of departure is containerized trade. Containerized seaborne trade
captures the majority of merchandise world trade (see UNCTAD, 2016), and is respon-
sible for approximately 60 percent of the value of all seaborne trade in 2016 (Rajkovic
et al., 2014). We build a comprehensive data set for the global container shipping network
based on satellite data for ships. The satellite data comes from AIS (Automatic identi-
fication System) data and is provided by Marine Traffic. AIS is an automatic tracking
system used on ships and by vessel traffic services (VTS). Vessels send out AIS signals
identifying themselves to other vessels or coastal authorities, and the International Mar-
itime Organization (IMO) requires all international voyaging vessels with above 300 Gross
Tonnage and all passenger vessels to be equipped with an AIS transmitter. This require-
ment ensures a nearly universal coverage of container ships in our data, as over 99% of
container-shipments around the world are made by containerships that are above 500
tonnage.

Our data set is based on a ship’s port calls, i.e. the signal sent by a ship when it enters
and leaves the geo boundary of a port. For each observation, we observe the ship’s ID,
its time stamp, and current draught (i.e., maximum depth of any part of the vessel under
water), as well as port information (name, country, and geographic coordinates). We also
observe whether the ship is in transit, or if it is lading or unlading cargos. We use data
on all port calls tracked by the AIS satellite system during the calendar year 2016. We
merge the data with container ships’ technical information provided by Clarkson World
Fleet Register. After adjusting for some reporting errors, we were able match 93% of
global container ships sailing in 2016.

The Clarkson data provides information on each ships’ scantling draught (i.e., draught
when fully loaded) and deadweight tonnage (i.e. the maximum tonnes of goods that a
ship can carry). Combining the two with a ship’s actual draught at any time, we can back
out how much cargo a ship was carrying using formulas from the marine traffic literature
(see Appendix Section B for details). Appendix Section A reports in detail our variables
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and how we have cleaned the data. Our final dataset includes 4,941 container ships and
514 ports for the year 2016.

Other data sets. The analysis in Section 4 requires data on trade flows, which we
obtain from COMTRADE for the years 2013-2019. We aggregate monthly bilateral trade
data to the quarterly level to reduce volatility that is due to seasonal effects or to lagged
reporting. The analysis also requires variables such as distance and contiguity, which we
obtain from the gravity database of CEPII. Data on free trade agreements come from
the WTO’s RTA databases. The analysis in Section 6 requires additional information
about expenditure along with a few other variables, which we obtain mainly from the
Eora Global Supply Chain Database and supplement with data from the Worldbank’s
World Development Indicators and from INSEE; we gather data for 149 countries for the
2015 cross-section. Appendix G provides additional details.

2.2 Stylized Facts on the Global Shipping Network

We start by documenting four salient features of the global shipping network that will
guide the subsequent analysis.

Fact 1: Container ships typically operate on fixed routes. Table 1 provides descriptive
statistics on the number of ports passed per ship as well the number of ships that arrive
and depart per port. A key feature of container ships is that they typically visit the same
port many times. The table shows that the average number of distinct ports passed per
ship is roughly one sixth of the total number of ports passed per ship (12 versus 68).

Fact 2: Shipping activity is highly concentrated in space. A few ports act as major
hubs in the shipping network. While the median port only serves around 200 ships per
year, the top ports serve close to 14,500 ships per year. The same pattern is observed at
the port-pair level, i.e. there are a few links in the network that account for a large share
of total shipping activity.

Fact 3: Only 6 percent of all country pairs have a direct shipping connection. We
calculate the in-degree as the number of ports to which a port is directly connected based
on incoming ships, and the out-degree as the number of ports to which a port is directly
connected based on outgoing ships. Table 2 shows that most ports are connected to rather
few other ports. However, there is great variation between ports in how well connected
they are. Nevertheless, even the best connected ports are only directly connected to

7



Table 1: Ships and Ports

Variable: Obs Median Mean Sd Min Max

Ships:

# ports passed 4,941 64 67.81 40.16 1 312

# distinct ports passed 4,941 12 12.48 6.94 2 48

Ports:

# incoming ships 514 206 651.82 1,457.89 5 14,486

# outgoing ships 514 201 651.82 1,454.97 5 14,421

Port pairs:

# ships 4,158 38 80.58 168.86 5 2,779

deadweight tonnes (in millions) 4,158 0.70 2.08 4.98 9.66×10−3 95.95

Note: Summary statistics are based on the port calls made by container ships in 2016.

around one sixth of the total number of ports. The 514 ports in our data are allocated
across 154 countries. Only 6 percent of all country pairs have a direct shipping connection.
Trade between these countries accounts for only 54 percent of world trade. This implies
that a large share of global trade does not travel on direct routes, but on routes with
multiple hops.

2.3 Calculation of Fastest Routes

This paper investigates the impact of the Panama canal expansion on trade by ex-
ploiting information on the underlying shipping routes. While the AIS data provides
unprecedented detail about the movement of ships, one cannot observe the movement of
the cargo itself, i.e. the actual route of a shipment from country i to country j. Therefore,
we need a methodology to infer the optimal shipping route between departure country
i and arrival country j. This information enables us to determine to what extent trade
between two countries is exposed to the Panama canal expansion.

We develop two complementary methods for inferring trade routes. The first method is
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Table 2: Port Networks

Obs Mean Sd Min p50 p90 p95 p99 Max

Indegree 514 8.09 10.26 1 4.5 18 31 50 84

Outdegree 514 8.09 9.85 1 5 19 27 46 82

Note: Summary statistics are based on the port calls made by container ships in
2016.

to build a model-independent, brute-force route planner and find the route that minimizes
travel time between two ports. The second method also relies on minimizing travel time,
but infers routes by using the structure of a general equilibrium model. We present the
brute-force method here, while the model-based approach is described in Section 5.

Based on the schedule of departure and arrival times, we compute the fastest route
from any port i to any port j at a any start time h during the year 2016 using a simple
algorithm described in Appendix C. Among the set of optimal routes connecting two
ports at different points in time, we select the route – the sequence of intermediate ports
– that is used most frequently.4

Figure 1 visualizes the fastest routes for U.S. exports to all other countries based on
our calculation.5 The figure shows that the routes typically go through hubs, e.g., U.S.
shipping to Europe tends to pass through Germany and the Netherlands, whereas U.S.
shipping to Africa goes through a hub in Spain. Figure 2 plots the fastest travel times
between all port pairs against geodetic distance. Distance is strongly correlated with
direct travel time, represented by the light blue dots in the figure. However, we observe
that for indirect routes, represented by the dark blue dots, geodetic distance is much less
informative for travel times. To understand further the role of shipping hubs and indirect
routes in the global shipping network, we examine the number of hops on the fastest
shipping routes between all ports in the network. Figure 3 shows the frequency of hops
after aggregating ports by country. Most country pairs are connected by routes involving

4In those cases where more than one route occurs with the same highest frequency, we average over
the characteristics of these routes when producing summary statistics.

5The figure displays only one route per country pair, namely the fastest one among the routes con-
necting all U.S. ports to the port(s) in the partner country.
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Figure 1: Fastest Travel Times.

Note: The figure plots the fastest routes from the U.S. to other countries. The
plotted route is the fastest one among the routes connecting any U.S. port and any
port in the destination country.

at least one to four hops.
Our calculation of routes relies on the assumption that the fastest route will be the cost

minimizing route, while the actual route chosen might be determined by other factors than
speed, such as port costs. However, it is widely recognized that the overall cost efficiency
of a ship depends on the total time it takes the ship to complete a voyage, see e.g.
Cullinane and Khanna (2000). Therefore, the calculated fastest route is an approximation
to the actual unobserved route. Appendix Section D.1 provides empirical evidence on the
correlation between freight costs and travel time that supports this assumption. We
also provide evidence that our calculated fastest routes captures the actual routes taken.
Appendix Section D.2 compares our computed routes with the actual routes for Chinese
trade, based on detailed Chinese customs data. The comparison shows that there is a high
degree of overlap between the fastest-time routes and the actual routes in the Chinese
data.
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Figure 2: Travel time and distance across port-pairs.

Note: The figure plots travel times on the fastest route between two ports against
their geodetic distance.

Figure 3: The distribution of the number of hops across country-pairs.

Note: The figure shows the distribution of the number of hops (intermediate countries)
along the fastest route between all country pairs in the sample. The average (median)
is 2.6. (3). For countries with multiple ports, the number of hops refers to the route
with the lowest number of hops.
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3 The Panama Canal Expansion

As background for our analysis, we first describe the Panama Canal and the 2016
expansion project. We then present the Panama Canal exposure measure, which is key
to the empirical analysis.

3.1 The Panama Canal Expansion: Background

The Panama Canal, with its unique location at the narrowest point between the At-
lantic and Pacific oceans, is one of the most important links of worldwide maritime trade.
It reduces the time for ships to travel between the Atlantic and Pacific oceans, enabling
them to avoid the lengthy, hazardous Cape Horn route around the southernmost tip of
South America (Figure 4). The motivation for the Panama Canal expansion project was
twofold. First, because of the rapid increase in global trade, the Panama Canal started to
reach its capacity constraint. In 1914, its builders estimated that the maximum capacity
of the canal would be around 80 million tons per year (Gerstle, 1944); however, the canal
traffic had already reached 278.5 million tons in 2005.6 The Panama Canal Authority
(ACP) estimated that the canal would reach its maximum sustainable capacity between
2009 and 2012. Second, container ships were getting larger thanks to the advancement of
marine engineering, and many of them were too big to use the canal. The size of ships
that could transit the original canal, called Panamax, was constrained by the size of the
locks. By the turn of the millennium, only 41 percent of container ships and 52 percent
of dry bulk ships were able to pass through the original canal (Wilson and Ho, 2018). We
provide more details about the container shipping market in Appendix E.

Therefore, the ACP decided in 2006 to expand the canal by adding a new, deeper
and wider lane of traffic. The expansion project was approved in April 2006, and the
construction began in 2007 with an estimated total cost of US$5.25 billion (Panama
Canal Authority, 2006). The ACP initially announced that the Canal expansion would
be completed by August 2014. But various setbacks, including strikes and disputes with
the construction consortium over cost overruns, pushed the completion date back several
times. There was, therefore, substantial uncertainty about exactly when the expanded

6The 2005 statistic stems from the US bureau of transportation and statistics, Panama Canal traffic
by type 2005-2007.
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canal would open. The expanded canal began commercial operation on 26 June 2016.
The enlarged canal was a formidable feat of modern engineering: it doubled the ship-

ping capacity of the canal, allowing for around 90 percent of the world’s containerships to
pass. In particular, the expanded canal allowed for the passage of so-called Neo-Panamax
ships, which carry almost three times as much cargo compared to Panamax ships.7 From
June to December 2016, the share of Neo-Panamax ships passing through the canal in-
creased from 0 to 15 percent. In 2017, the canal container tonnage increased by 22%
(Bowen, 2017).

Overall, the Panama Canal expansion is a good case for our study for several reasons.
First, the canal is one of the most important links in the global shipping network. There-
fore, the expansion was likely to have large aggregate and distributional impacts. Second,
the old canal continued to operate both during and after the construction period, facil-
itating clean identification of the effects of the canal expansion on global trade. Third,
uncertainty about the exact opening date of the expanded canal suggests that anticipa-
tion effects around the opening time were limited. Fourth, because of its unique location,
traveling through the Panama Canal is substantially more time- and cost-efficient than
alternative routes. This makes it possible to calculate the set of port-pairs that rely on
shipping through the canal using our fastest route algorithms, and thereby to compute a
suitable measure of exposure to the expansion.

3.2 Measuring Exposure to the Panama Canal Expansion

To measure the impact of the canal expansion on bilateral trade, we construct two
main exposure variables, which reflect the extent to which the trade between two countries
relies on using a shipping route that passes through the Panama Canal. Our first exposure
variable, PanExp1

ij, relies on the model-independent route planner described in Section
2.3 above: if a route passes through the Panama Canal in the pre-expansion period
according to our fastest travel-time algorithm, we assign its exposure value equal to one,

7Panamax and Neo-Panamax ships refer to the size limits for ships traveling though the original and
expanded canal, respectively. Panamax ships can carry roughly 5,000 twenty-foot containers (TEUs),
while Neo-Panamax ships can carry roughly 13,000 TEUs. As the new lane opened, a new toll structure
was introduced that differentiated across ship size. It implied higher rates for bigger ships on a per-ship
basis, but lower rates for bigger ships on a per-container basis (see Wilson and Ho, 2018).
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and zero otherwise. For country pairs with multiple port-to-port connections, we average
the exposure of all port pairs using the source and destination port size as weights, where
port size is measured in terms of total incoming (outgoing) tonnes in 2016.

The relevance of our exposure measure depends on whether the fastest time algo-
rithm correctly predicts port-to-port connections that actually use the canal. Section 2.3
presents evidence supporting the assumption that ships travel the fastest route. We note
that this assumption is more likely to hold if travel time on alternative routes is much
higher. We test this for the Panama Canal by calculating, for port-pairs that use the
Panama Canal, how many additional days it would take if they were to travel without
passing through the canal. The results are presented in Figure 15 in the Appendix. We
find that on average, travel time would increase by 14 days, or by 67%, for these port
pairs. For 97.6% of the affected routes, travel time would increase by 3 days or more. As
travel time is closely related to the major drivers of shipping costs, such as cost of fuel,
labor compensation, and cost of running capital, it is likely to dominate the decision on
whether or not to use the canal.

The relevance of our measures also depends on routes being stable over time. To
address this, we compute the Panama Canal exposure measure for the post-expansion
period using data for the second half of 2016, and find that the correlation between the
pre- and post-period exposure measure is as high as 0.95. Specifically, 95.3% of port-pairs
experience zero change, while 2.5% (2.2%) increase (decrease) their exposure, suggesting
the shipping network is stable over time.

Table 3 presents summary statistics for the Panama Canal exposure measure in 2016.
At the country-pair level, there are 3,623 country pairs (14% of 25,025 pairs with positive
trade flows) which are to some extent connected via the Panama Canal according to our
fastest route calculation. The value shipped between these countries accounts for 12% of
global trade. At the country level, the majority of countries are in some way exposed to
the Panama Canal: 66% of all importers have at least one fastest connection to a trade
partner that passes through the canal. Across all importers, the average share of imports
exposed to the Panama Canal is 7%. Figure 5 shows the share of imports passing through
the Panama Canal by country. In line with our expectations, the canal is particularly
important for Asian and American trade.

The second measure of exposure, PanExp2
ij, is computed based on the general equi-
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Figure 4: International Shipping Routes with vs. without the Panama Canal

Source: https://www.ajot.com/news/panama-canal-inauguration-a-strategic-route-for-world-trade-
and-cma-cgm-gro.

Table 3: Panama Canal Exposure: Summary Statistics for 2016.

Country pairs Global trade Importers

with exposure exposed with exposure

(1) (2) (3) (4) (5) (6)

# pairs % of total value in trn $ % of total # importers % of total

3,623 14 % 1.8 12 % 144 66 %

Note: The table shows in column (1) ((2)) the number (share) of country pairs with a fastest
and most frequent connection passing the Panama Canal; in column (3) ((4)) the value of
(share of global) trade between country pairs whose fastest and most frequent connection
passes the Panama Canal; in columns (5) and (6), respectively, the number of importers
with at least one fastest connection passing the Panama Canal and their share in the total
number of importers.
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Figure 5: Panama Canal Exposure by Country.

Note: The figure shows the share of imports passing through the Panama Canal in total imports
by country.

librium model presented in Section 5, and represents the likelihood that trade between
the port pair i and j travels through the canal. We provide more details about the second
exposure measure in Appendix I.

4 The Impact of the Panama Canal Expansion on
Global Trade

In this section, we estimate the impact of the Panama Canal expansion on global trade.
Section 4.1 specifies our empirical strategy and Section 4.2 presents the main estimation
results. In Section 4.3, we perform a set of robustness checks.

4.1 Empirical Strategy

To analyze the effect of the canal expansion on global trade, we use the quarterly
Comtrade data from the time period 2013Q1 to 2019Q4. Table 12 in the Appendix
Section G summarizes the estimation sample. We employ a simple difference-in-differences
specification:
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yijt = βPostt × PanExpkij + ηPostt × Zij + δij + δit + δjt + εikt, (1)

where yijt is log of imports from country i to country j in quarter t.8 The dummy
variable Postt equals 1 for quarters after June 2016 and 0 otherwise. Panama Canal
exposure is captured by the variable PanExpkij, with k = 1, 2. Our hypothesis is that the
canal expansion has a benign impact on trade. We would therefore expect the sign of
PanExp1

ij and PanExp2
ij to be positive and of similar magnitude.

The expansion may be correlated with unobservable country characteristics. To ad-
dress this, we include a large set of fixed effects: origin-time δit and destination-time
fixed effects δjt, which control for country-specific exporting and importing trends, and
source-destination fixed effects δij, which control for all time-invariant country-pair char-
acteristics. To account for time trends related to bilateral trading relationships, we also
include a set of bilateral controls (Zij), a dummy for joint membership in a free trade
agreement (FTA), bilateral geographical variables (distance, contiguity and common lan-
guage) and the share of deadweight tonnes traveling on Neopanamax ships on the route
connecting i and j prior to the expansion, all of which are interacted with the Postt
dummy.

4.2 Empirical Results

We present the estimation results in Table 4. Columns (1) and (2) use the baseline
PanExp1

ij measure, with the full set of fixed effects. Column (2) further includes the con-
trol variables Zijt. The point estimates are similar in both cases: for country pairs whose
fastest routes are fully exposed to the Panama Canal, trade increased by around 10 percent
after the expansion. On average, a one standard deviation increase in PanExp1

ij (0.21)
implies about a 2.27 percent increase in trade. Columns (3) and (4) use the PanExp2

ij

measure. We note that the model-derived exposure measure produces results that are in
line with our baseline results.

Pre-trends. Figure 6 shows the estimated coefficient β by quarter, when using the
PanExp1

ij treatment. We find no significant difference in the pre-trends for the country

8We use imports by country of consignment, rather than country of origin. Country of consignment
is the country where the last ownership change occurred before goods arrive in the importing country.
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Table 4: The Impact of the Panama Canal Expansion on Trade

(1) (2) (3) (4)

Postt × PanExp1
ij .105*** .108***

(.038) (.040)

Postt × PanExp2
ij .156*** .151**

(.055) (.060)

Controls No Yes No Yes

FEs ij, it, jt ij, it, jt ij, it, jt ij, it, jt

Observations 199,177 199,177 199,177 199,177

Exporters/Importers 140/105 140/105 140/105 140/105

adj. R2 .937 .937 .937 .937

Note: Dependent variable is the log of imports from country i to country j in quarter t over the period
2013Q1−2019Q4. The control variables are: an FTA indicator and geographical variables (distance,
contiguity and common language), all interacted with Postt, and the share of deadweight tonnes
traveling on Neopanamax ships on the route connecting i and j in the pre period interacted with
Postt. Standard errors are clustered by i, j. Significance levels: ∗p < 0.1, ∗ ∗ p < 0.05, ∗ ∗ ∗p < 0.01.

18



Figure 6: Panama Canal Exposure Coefficient by Quarter.

Note: Graph illustrates regression equation: yikt = β
∑2019:q4

q=2013:q1 I[t = q]×PanExp1
ij + δ·Zijt +

δij + δit + δjt + εijt where Zijt further includes lnDist interacted with quarter dummies. Solid
lines indicate 90% confidence intervals.

pairs with high and low Panama Canal exposure, indicating that the identifying assump-
tion holds. The treatment effects in the post-expansion period are positive and centered
around 0.10, although not individually significant, but the sum of them, which corresponds
to the regression in Column (2) in Table 4, is strongly significant.

4.3 Robustness

To check the robustness of our results, we re-estimate the model using alternative
measures of bilateral trade and alternative Panama exposure measures. The results are
reported in Table 5. Overall, we find that the results are relatively insensitive to various
perturbations of the data and the exposure measure, underscoring the robustness of the
baseline results.

Column (1) of Table 5 estimate the model using a shorter time span, and shows that
the estimated magnitude is not driven by the disproportionately large effect in Q4 of
2019 visible in Figure 6. Column (2) complements our quarterly baseline analysis with
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Table 5: Robustness

(1) (2) (3) (4) (5) (6)
2019Q4 Monthly Simple Weighted No raw Hours

dropped data average average materials saved

Postt × PanExp1
ij .102** .082** .098** .103** .082***

(.040) (.040) (.048) (.048) (.027)

Postt × PanExp3
ij .023***

(.008)

Controls Yes Yes Yes Yes Yes Yes

FEs ij, it, jt ij, it, jt ij, it, jt ij, it, jt ij, it, jt ij, it, jt

Observations 193,450 600,884 199,177 199,177 198,696 199,177

Exporters/Importers 140/105 140/107 140/105 140/105 140/105 140/105

adj. R2 .937 .900 .937 .937 .939 .937

Note: Columns (1) and (2) use the baseline PanExp1
ij variable. In column (1) the last quarter of 2019 is dropped.

Column (2) is based on monthly data for the full sample period. Columns (3) and (4) are based on a PanExp1
ij

measure computed as a simple (column (3)) and weighted (column (4)) average across the exposure of all paths
between two ports in i and j, rather than the exposure of the most frequent route. Weights in column (4) are given
by the amount of time for a which a certain path was optimal, that is, the number of hours between the start date
of the path and the start date of the previous optimal path relative to the length of the pre period.Column (5)
excludes raw materials when calculating the LHS variable. Column (6) use a RHS variable based on the estimated
time saved by using the Panama Canal. Standard errors are clustered by i and j. Significance levels: ∗p < 0.1, ∗∗p <
0.05, ∗ ∗ ∗p < 0.01.

monthly-level trade data and finds a similar result: a one standard deviation increase in
PanExp1

ij (0.21) implies about a 1.72 percent increase in monthly trade. The slightly
smaller coefficient estimate in the monthly regression (.082 vs. .108 in the baseline) is
consistent with the fact that there is more measurement error in monthly flows, which is
smoothed out by aggregating to quarters.

In columns (3) and (4) of Table 5, we use all the optimal routes found by our brute-
force algorithm, instead of relying on the most frequent routes, to construct two alternative
Panama exposure measures. In column (3), the exposure measure at the port-to-port level
is the simple average across the binary exposure measure of all the optimal routes that
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appeared at least once in the first half of 2016. In column (4), the routes are weighted
by the length of the time periods during which they were optimal. Aggregation from the
port-to-port level to the country-pair level is done the same way as the baseline. The
estimation results remain quantitatively similar in both cases, suggesting our results are
not sensitive to the particular way we constructed the Panama Canal exposure.

An hypothesis is that country pairs for which avoiding the Panama Canal takes more
time would be relatively more positively affected by the canal expansion. To test this
hypothesis, we propose an additional exposure measure, PanExp3

ij, based on the relative
attractiveness of the first-best versus the second-best route. Specifically, for port pairs
that use the Panama Canal in their fastest route, we set PanExp3

ij equal to the log
travel-hour difference between the fastest route and the fastest alternative which does
not use the canal. For port pairs that do not use the Panama Canal in their fastest
route, PanExp3

ij is set equal to zero.9 We then aggregate the variable to the country-pair
level in the same way as for the baseline exposure measure. The results are presented
in column (6): country pairs that would save more time by passing through the Panama
Canal experienced a relative increase in trade after the expansion, consistent with our
baseline findings.

Finally, we aim to limit the analysis to trade that is typically carried by container
ships. We do this by excluding raw materials from the measure of bilateral trade.10 As
raw materials are rarely transported in containers, we do not expect that the fastest route
algorithm (and therefore the Panama Canal exposure measure) to correctly identify their
dependence on the Panama Canal. Column (5) presents the results. As expected, we find
a significantly positive treatment effect for trade excluding raw materials. Overall, these
results strengthen the baseline findings that the results are indeed driven by the role of
the Panama Canal expansion in facilitating more efficient container shipping.

4.4 Re-routing of Ships

We end this section by discussing the interpretation of the results above. As is well
known in differences-in-differences analyses, the coefficient estimate can only identify the
impact on the treatment group relative to the control group. In our context, this means

9The time difference variable is computed using the same data as in Figure 15.
10Raw materials comprise all products classified under the HS two-digit levels 25-27 and 72-81.
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that we can only identify the increase in trade for the treatment country-pairs relative
to the control country-pairs. For example, if larger container ships are re-routed from
control to treatment pairs, one might observe more trade between treatment pairs, but
also less trade between control pairs.

We investigate this question by analyzing the movements of Post-Panamax ships, i.e.
ships that are beyond the size limits for traveling through the old canal, before and after
the canal expansion. Specifically, we analyze Post-Panamax ships’ weekly activities by
classifying them into three mutually exclusive categories: (i) ships that are traveling on
segments of the shipping network passing through the canal, (ii) on other segments, (iii)
or staying idle. The results are presented in Figure 7. First, the figure shows that, even
though the number of large ships serving Panama Canal segments increased after the
canal expansion, they account for a small fraction of the fleet of Post-Panamax ships.11

This finding suggests that large containerships had already been widely adopted globally.
Second, the figure shows that there was a significant number of idle containerships in every
given week, suggesting that the shipping industry had free capacity during this period.
All in all, this suggests that re-routing was relatively limited, and as such that the control
group was not much affected by the canal expansion. Appendix E provides more details
about the container shipping industry and demonstrates that our findings are consistent
with the industry’s general development since 2006.

5 Theoretical Framework

Our empirical analysis provides evidence of the impact of the Panama Canal expansion
on global trade. In order to assess the international externalities associated with the
shipping network, we introduce a parsimonious quantitative model of world container
traffic and trade. The model differs from standard trade models in how the transportation
of goods is modeled: goods are not only shipped between two trading partners, but pass
through a shipping network when departing from an origin and arriving in a destination
port. Agents choose the optimal route endogenously in order to minimize transport costs.

We build on and extend the work of Allen and Arkolakis (2022): while their application

11Vessels that are slightly above the Panamax size limit could still pass if they were not fully loaded,
therefore the number of Post-Panamax ships passing through the canal before expansion is not zero.
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Figure 7: Number of Post-Panamax Ships by activity type (2016).

Note: The total number of Post-Panamax ships refers to the number of Post-Panamax ships built
before 2016 as reported by Clarkson World Fleet Register. Post-Panamax ships are defined as
ships with a maximum carrying capacity of more than 5,500 TEU (or 52,500 deadweight tonnage
(DWT) if TEU is missing).
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is on urban economics, where individuals choose where to live and commute, our focus
is on international trade, where goods move across borders subject to transport costs.
After presenting the model in this section, we apply the model to quantify the network
externalities of the Panama Canal expansion in Section 6. Finally, we quantify the network
externalities of all links in the transportation network, and contrast our finding with a
canonical trade model without a transportation network.

5.1 Model Setup

Consider a world with N locations indexed by i and j, each is endowed with Li units of
labor. There is a continuum of varieties indexed by ν ∈ [0, 1]. Individuals have constant
elasticity of substitution (CES) preferences over varieties with elasticity of substitution
σ ≥ 0. Labor is the only input, and is inelastically supplied for producing and shipping
goods. Shipping from an origin i to a destination j entails taking a route r through the
network, which is subject to multiplicative iceberg transport costs ΠK

k=1trk−1,rk
. Here, K is

the number of links on route r and trk−1,rk
denotes the transport costs of traveling through

the kth link of r. We let Rij denote the set of all possible shipping routes from i to j. The
efficiency of producing and shipping each variety ν from i to j via route r is characterized
by εij,r (ν). We assume that εij,r (ν) is independently and identically Frechet distributed
with level parameter Ai and dispersion parameter θ.

Individuals purchase each variety from the cheapest location-route source. The id-
iosyncratic shocks εij,r (ν) imply that not all varieties are traveling though the same route
even if the source and destination ports are the same, e.g. variety ν1 going from Lisbon
to Oakland may pass through Rotterdam while variety ν2 may pass through Houston. A
possible micro-foundation for the shocks εij,r (ν) is heterogeneity in the preferred time of
shipment, e.g. route planners report multiple routes between Lisbon and Oakland, and
those routes are available on different dates.12 Furthermore, it buys us tractability in
terms of producing analytical expressions for many key objects of interest.

12See e.g. https://www.cma-cgm.com/ebusiness/schedules/routing-finder.
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5.2 General Equilibrium

We now turn to solving the general equilibrium and characterizing global trade and
container traffic.We impose two market clearing conditions, total income Yi equals total
sales, and total expenditure Ei equals total purchases:

Yi =
∑
j

Xij Ei =
∑
j

Xji, (2)

where Xij is the total value of goods shipped from i to j. Using the market clearing
conditions and the properties of the Frechet distribution, it can be shown that Xij equals

Xij = τ−θij
Yi

Π−θi
Ej

P−θj
, (3)

where

τij =
 ∑
r∈Rij

K∏
l=1

t−θrl−1,rl

−1/θ

(4)

is the shipping cost from i and j. The variable Πi is the standard multilateral resistance
term known from gravity models:

Π−θi = (AiLi)−θY θ+1
i , (5)

and Pj is the consumer price index:

P−θj =
∑
i

τ−θij YiΠθ
i . (6)

With balanced trade, Ei = Yi, we now formally define the equilibrium of the model:

Definition 1. Given {Li}, {Ai} and {τij}, an equilibrium is a output vector {Yi} , ex-
penditures {Ei}, bilateral trade flows {Xij}, {Πi} and {Pi} that satisfies equilibrium con-
ditions (2),(3), (5), (6), as well as the balanced trade condition, for all i, j.

At the bilateral level, the model aggregates to a standard Ricardian trade model.
However, the shipping costs τij are no longer “bilateral”; instead, they are an endogenous
outcome of consumers’ optimal routing problem. Its value depends on the number of
routes available linking locations i and j, and the transport cost of each route, which
depends on the shipping costs tkl of all segments on that route.Since wages are the only
source of income, we can solve for nominal wages wi in location i using wi = Yi/Li.
Welfare of individuals is then simply wi/Pi.
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Solving for the Equilibrium

Defining A ≡
[
t−θij
]
, Allen and Arkolakis (2022) show that transport costs τij can be

rewritten as
τij = b

−1/θ
ij , (7)

where bij is the ijth elements of the matrix B and B = (I −A)−1. Using equation (7)
along with the gravity equation and the market clearing conditions (3) and (2), we can
write the equilibrium conditions as

Π−θi = Ei

P−θi
+
∑
j

t−θij Π−θi (8)

P−θi = Yi

Π−θi
+
∑
j

t−θji P
−θ
j , (9)

When trade is balanced, Ei = Yi = Π−θ/(θ+1)
i (AiLi)θ/(θ+1), and given values of tkl, Ai

and Li, the 2N equations (8) and (9) can be solved for the 2N equilibrium outcomes
Πi and Pi. In the quantitative application below, we will write equations (8) and (9) in
changes following the “exact hat algebra” approach by Dekle et al. (2007), to solve for
counterfactual equilibrium changes.

Trade and Traffic

We end this subsection by characterizing traffic flows according to the model. We
define traffic as the the total value of all cargo passing though a segment (k, l) in the
network. It can be shown that, in equilibrium, the value of traffic between k and l is

Ξkl = t−θkl P
−θ
k Π−θl . (10)

Furthermore, there is a simple mapping between trade and traffic: One can express equi-
librium trade flows as:

Xij = cXijYiEj (11)

where cXij is the (i, j)th element of the matrix CX ≡
(
DX −Ξ

)−1
, where DX is a diagonal

matrix with ith element di ≡ 1
2 (Yi + Ei) + 1

2
∑
j (Ξji + Ξij) and Ξ = [Ξij] (Allen and

Arkolakis, 2022).
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6 Network Externalities of the Canal Expansion

We now turn to applying the model to assess whether the Panama Canal expansion
gave rise to network externalities, and if so, to quantify the sign, and magnitude, of the
externalities. First, we estimate the change in transportation costs associated with the
expansion. Second, we calculate a counterfactual equilibrium with lower transportation
costs and quantify the local and global impact on real incomes. Finally, we evaluate the
fit and performance of the quantified model.

6.1 Estimating the impact on Transportation Costs

We use the structure of the model to estimate the impact of the canal expansion on
transport costs. We start by assuming that transport costs tkl are a function of the canal
expansion:

tkl = e−δPanExpandklνkl, (12)

where νkl captures unobserved factors that determine transportation costs and PanExpandkl
is one if link kl is using the canal and zero otherwise. Recall that the model gives us the
following equilibrium expression for traffic flows: Ξkl = t−θkl P

−θ
k Π−θl . Taking logs, differ-

encing and inserting equation (12) yields

∆ ln Ξkl = δθPanExpandkl − θ∆ ln Πl − θ∆ lnPk − εkl, (13)

where εkl ≡ −θ∆ ln νkl and ∆ denotes the change from the 1st to the 2nd half of 2016.
The multilateral resistance variables ∆ ln Πl and ∆ lnPk will be controlled for using origin
and destination fixed effects, respectively.

While the model gives us an expression for the value of traffic, Ξkl, our data has
information about the volume of traffic, ΞV

kl. We proceed by assuming that the volume
and value of traffic are proportional, i.e. Ξkl = αΞV

kl, so that ∆ ln ΞV
kl = ∆ ln Ξkl. We

acknowledge that this assumption may be overly restrictive in the cross-section, e.g. traffic
between some port-pairs (k, l) may have higher unit values than between other port pairs
(k′, l′). For the purposes of inferring θδ, however, the key (and less restrictive) requirement
is simply that the unit value of traffic through the canal does not change pre/post the
canal expansion, relative to the control group.
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The estimate of δθ then allows us to infer the change in transport costs from equation
(12), given knowledge about the trade elasticity θ. Specifically, the change in transport
costs is:

∆ ln tkl = − δ̂θ
θ
PanExpandkl. (14)

We estimate equation (13) using the AIS data, for every port-pair kl, from the 1st to
the 2nd half of 2016 (recall, the expanded canal opened 26 June 2016). By construction,
the volume of traffic on a segment kl, ΞV

kl, is the product of three margins:

ΞV
kl = ShipSizekl × Frequencykl × Utilizationkl,

where ShipSizekl is the average size of ships on link kl, Frequencykl is the number of
ships and Utilizationkl is the percentage of used ship capacity. All these margins are
observed directly in the AIS data. The construction of the dataset is described in detail
in Appendix Section B. We estimate equation (13) using each of these margins as outcome
variables.

Results. The estimation results are shown in Table 6. Columns (1), (4) and (7) show
results without any controls, whereas columns (2), (5) and (8) are results with the fol-
lowing controls: source- and destination country fixed effects, source and destination port
latitude and longitude, source and destination port capacity (total traffic), and average
travel time between k and l. Columns (3), (6) and (9) are estimation results when we
instead include source- and destination port fixed effects. We find that average ship size
increased by .12− .22 log points, depending on the specification, for Panama Canal seg-
ments relative to other segments. This is as expected, because the expansion facilitated
much larger ships passing through the canal, see Section 3.1. The other two margins,
ship utilization and frequency, are estimated to be around zero and are statistically in-
significant. This suggests that the impact of the expansion on trade runs mainly through
allowing bigger ships to pass through the canal. We also investigate whether travel time
changed due to the canal expansion. The last three columns in Table 6 report the results
when (the change in log) average travel time from k to l is the outcome variable. This
margin is also close to zero and statistically insignificant, reinforcing the conclusion that
ship size was the main margin of adjustment.

Economic magnitudes. The estimate of δθ equals to the sum of the estimates for the
three margins: ship size, frequency and utilization from Table 6. Across specifications,
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Table 6: The Margins of Shipping: Results

Dep. var. ∆ lnShipSizekl ∆ lnFrequencykl ∆ lnUtilizationkl ∆ lnTimekl

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

PanExpandkl .22∗∗∗ .14∗∗ .12∗ .01 .02 .02 .05 .02 .02 .07 .01 .01

(.05) (.06) (.06) (.12) (.14) (.15) (.04) (.05) (.05) (.06) (.04) (.04)

Controls No Yes No No Yes No No Yes No No Yes No

Source/dest. FE No No Yes No No Yes No No Yes No No Yes

Obs 3,595 3,566 3,403 3,595 3,566 3,403 3,595 3,566 3,403 3,595 3,566 3,403

Notes: The difference ∆ refers to the change from the 1st to 2nd half of 2016. ShipSizekl is calculated as the average
across all trips on a given segment. Frequencykl is the number of ships using the segment. Utilizationkl is traffic Ξi

relative to capacity (ShipSizekl × Frequencykl). Timekl is the average travel time from k to l. PanExpandkl is an
indicator taking the value one if the segment uses the Panama Canal. Regressions are weighted by the initial level of traffic
Ξkl. Controls are: source- and destination country fixed effects, source and destination port latitude and longitude,
source and destination port capacity (total traffic), and average travel time between k and l. Source/destination
FE refers to source- and destination port fixed effects. Robust standard errors in parentheses. Significance levels:
∗p < 0.1, ∗ ∗ p < 0.05, ∗ ∗ ∗p < 0.01.
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this yields a value of θδ between 0.15 and 0.25. In our baseline specification we use the
value θ = 8, implying that the canal expansion lowered transport costs by around 2-3
percent (θ̂δ/θ ≈ .2/8).

6.2 Network Externalities

Exact hat algebra. The general equilibrium of the model presented above can be written
in changes, using the “exact hat algebra” approach from Dekle et al. (2007). We focus
on a change in transportation costs (estimated in the section above), holding everything
else constant. Section H.1 in the Appendix shows that the system of equations can be
simplified to:

Π̂−θi = Yi
Yi +∑

j Ξij

Π̂−θ/(θ+1)
i

P̂−θi
+
∑
j

(
Ξij

Yi +∑
j Ξij

)
t̂−θij Π̂−θj (15)

P̂−θi = Yi
Yi +∑

j Ξji

Π̂−θ/(θ+1)
i

Π̂−θi
+
∑
j

(
Ξji

Yi +∑
j Ξji

)
t̂−θji P̂

−θ
j , (16)

where the hat notation is the relative change from the initial to the counterfactual equi-
librium, e.g. t̂kl = t′kl/tkl where t′kl is transportation costs in the counterfactual equilib-
rium. After solving this system of equations, the relative change in real income is simply
ŵi/P̂i = Π̂−θ/(θ+1)

i /P̂i.
The data and parameters required to solve this system are modest: We need the

estimate of the change in Panama Canal transportation costs from Section 6.1, t̂kl, data
on initial (i.e. 1st half of 2016) traffic Ξkl, initial expenditure Yi and the trade elasticity
θ. We set θ = 8, which is consistent with previous estimates in the literature (see e.g.
Eaton and Kortum (2002)).13 The procedure to calibrate the value of α (the relationship
between the volume and value of traffic) is described in Appendix H.3. To calculate
total expenditure by port, Yi, we use data for total country expenditure and allocate
expenditure to ports based on the relative port size, see details in Appendix Section G.3.
We summarize the data and parameters used in Table 7.

Results. A convenient measure of network externalities is the change in global real
income relative to the change in real income for Panama. If this ratio is greater than

13The quantification exercise is based on a slightly smaller set of ports (492) and countries (149), due
to the fact that it requires a balanced dataset of port-to-port flows for the 1st half of 2016.
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Table 7: Data and Parameters.

Variable Description Value Source

θ Trade elasticity 8 Previous literature

α The value per ton of traffic USD 1,734 Calibrated, Appendix H.3

ΞV
kl Initial traffic flows (volume) AIS, Marine Traffic, 1st half 2016

Yi Initial Expenditure Eora Global Supply Chain Database, 2015;

World Development Indicators; INSEE

one, then the canal expansion was associated with positive international externalities.
According to our results, this ratio is 3.14, i.e. the gains for the world was more than
three times greater than the gains for Panama alone. Our results therefore suggest that
the expansion was associated with large positive international externalities. Figure 8
shows the change in real income, wi/Pi, for the top 20 locations with the largest gains.
Not surprisingly, the ports closest to the canal are gaining the most. However, we also
observe ports further away, such as in Colombia, Ecuador, Peru and the Caribbean, that
obtain large welfare gains from the canal expansion.

6.3 Mechanisms and Model Fit

This section evaluates the out-of-sample fit of the model. According to the model, the
canal expansion caused trade to grow by X̂ij. In order to evaluate the performance of the
model, we estimate a version of the reduced-form equation (1) from Section 4.1, but we
replace real data on trade flows with the simulated trade data from the model (i.e. we
replace the left hand side variable with simulated data).

The results are shown in Table 8. Column (1) performs the analysis at the port-pair
level, while column (2) aggregates the data to the country level, similar to Table 4 in
Section 4.2. Interestingly, the treatment effect using simulated data is very close to the
treatment effect using real data. Furthermore, the high adjusted R2 values also suggest
that the model fits the data quite well. Recall that the counterfactual model only required
data on initial traffic Ξkl and expenditure Yi, in addition to an estimate of the change in
transport costs t̂kl and the trade elasticity θ. Therefore, the model-generated growth in
trade is an out-of-sample prediction, i.e. we did not use trade flows, neither in levels nor
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Table 8: Reduced-form regression: Simulated data.

Dependent variable: X̂ (simulated) Port-pair Country-pair

PanExp1
ij .083*** .085***

(.002) (.006)

Source/destination FE Yes Yes

Observations 240,064 10,253

Dep. ports/Arr. ports 490/492 138/102

adj. R2 .726 .736

Notes: The dependent variable is the relative change in exports from port i
to port j implied by the model, X̂. All columns include i and j fixed effects.
Standard errors clustered by i and j. Significance levels: ∗p < 0.1, ∗ ∗ p <
0.05, ∗ ∗ ∗p < 0.01.

in changes, when parameterizing the model.

7 The Distribution of Network Externalities

Throughout the paper, we have emphasized the role of the shipping network for in-
ternational externalities. In this section we show how our framework also can be used
to quantify the magnitude of international externalities associated with all links in the
global shipping network.

We proceed as follows: For each link in the shipping network with observed positive
traffic Ξkl > 0 (in total 3,821 links), we remove that link from the network, i.e. set
tkl =∞, and calculate the counterfactual equilibrium for the world economy, as described
in Section 6.2 above. This methodology is similar to so-called link removal analyses
that have been used extensively to study real-world networks in different fields of science
(Bellingeri et al., 2020).

For each dropped link kl, we calculate the global change in real income:

∆Globalkl =
∑
i

Yi

(
ŵkli
P̂ kl
i

− 1
)
,
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and the local change in real income (for locations k and l):

∆Localkl =
∑
i=k,l

Yi

(
ŵkli
P̂ kl
i

− 1
)
.

In these expressions, superscript kl refers to the counterfactual where link kl is dropped,
whereas subscripts refer to ports. Our preferred measure of international externalities is

Extkl = ∆Globalkl
∆Localkl . (17)

Similar to the analysis in Section 6.2, if Extkl > 1, then the drop in global income is larger
than the drop in local income, implying that the link produces a positive externality for
countries other than k and l. If Extkl < 1, then the opposite is true, so that the link
produces a negative externality for countries other than k and l.

Figure 9 shows the distribution of Extkl across all dropped links kl. The mean of Extkl

is 1.12, i.e. the global losses are 12 percent greater than the local losses. Therefore, our
results show that the average link in the global shipping network produces a positive, and
quantitatively important, international externality. For 71 percent of the links, Extkl > 1,
showing that positive network externalities are widespread.

Next, we explore which links produce the most positive externality in an absolute sense.
Specifically, we calculate the relative change in global income, but exclude locations k and
l from the calculation:

ˆRealInc
−kl =

∑
i 6=k,l

Yi∑
j 6=k,l Yj

ŵkli
P̂ kl
i

.

Figure 10 shows the links associated with the largest drop in global income (excluding
locations k and l). Many of the worlds busiest links are associated with the greatest
positive externalities: According to our results, Los Angeles to Oakland, Singapore to
Hong Kong and Port Klang to Singapore are among the the top externality links.

A No-network Benchmark We end this section by contrasting the results above with
counterfactual results coming from a canonical model of international trade without a
transportation network. Our hypothesis is that the positive externalities identified above
will disappear, and even turn negative. The reason is that a better link between location
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Figure 8: Real income, % change. Top 20 ports.
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Figure 9: International Externalities.

0.5 1  1.5 2  

0

50

100

150

200

250

300

350

400

450
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b and c is likely to hurt a rather than help a in a non-networked environment: Lower
trade costs will divert trade from a to b and c, which may lower real incomes in a.14

We proceed as follows. In the absence of a shipping network, trade costs τij are
exogenous. Using the same definition of the equilibrium as described in Section 5, we
solve the model in changes. Appendix Section J shows that the system of equations is

Π̂−θi =
∑
j

τ̂−θij
Êj

P̂−θj

Xij

Yi
(18)

P̂−θi =
∑
j

τ̂−θji
Ŷj

Π̂−θj
Xji

Ei
(19)

After imposing trade balance, Êj = Ŷj, and using the fact that Ŷi = Π̂−θ/(θ+1)
i , we can

solve this system of equations given data on initial trade flows Xij, expenditure Ei, output
Yi, as well as the change in trade costs, τ̂ij, and the elasticity, θ. As in the counterfactuals
above, we set τ̂ij = ∞ for each possible link with positive traffic. Initial trade flows
Xij, expenditure Ei and output Yi are calculated as follows. In the network model,
we only used data for initial traffic Ξij, and no data for trade Xij. To make the two
counterfactuals comparable, the initial values need to be consistent across models. We
do this by first converting the traffic data Ξkl to trade data Xij, using equation 11. Total
income and expenditure is then simply the sum across rows and columns in the trade
matrix, Yi = ∑

j Xij and Ei = ∑
j Xji. By doing so, the two models are calibrated to the

same initial steady state.
As above, we calculate our measure of externality from equation (17). Figure 11

shows the distribution of international externalities, Extkl, across all links. The mean of
Extkl is now 0.96, showing that the average link produces a negative externality for other
countries. For 64 percent of the links, there is a negative externality, i.e Extkl < 1.

For completeness, we also report the density of Extkl when imposing symmetry in

14This is a common finding from the literature on preferential trade agreements. While Viner (1950)
raised the (in his eyes, unlikely) possibility of positive welfare effect in third countries arising from
the “general diffusion of the increased prosperity of the customs union area” (p.105), a wide range of
theoretical models predict that negative externalities dominate (Riezman, 1979, Baldwin et al., 2003,
Behrens et al., 2007 and Mossay and Tabuchi, 2015). While empirical evidence on welfare effects is hard
to come by, several studies document negative effects on trade between third countries and members of
a preferential trade agreement (see, e.g. Freund and Ornelas, 2010 for a summary of findings).

35



trade costs, i.e. τij = τji.15 Figure 12 shows the distribution of Extkl across all links. The
mean of Extkl is 0.93 and for 100 percent of the links, Extkl < 1. Therefore, the canonical
model with trade cost symmetry will always produce negative externalities from changes
in trade costs. We therefore conclude that in the absence of a transportation network,
reduced trade barriers will typically harm rathern than benefit third countries.

8 Concluding remarks

In this paper we exploit novel satellite data on all port calls made by container ships
in 2016. This allows for the construction of a new comprehensive dataset on the global
shipping network and optimal shipping routes. We apply this dataset to analyze how local
shocks hitting a segment of the shipping network affect all trading partners worldwide to
varying degrees based on their exposure to the shock.

Using the 2016 Panama Canal expansion as a quasi-natural experiment, we show that
this expansion not only had an effect on trade flows directly exposed to the canal, but
also had widespread indirect effects on world trade due to countries’ indirect exposure to
the canal through the global shipping network. Based on a counterfactual analysis we
find that the Panama Canal expansion produced sizable gains in real income, and that
the real income gains were shared by many countries. Therefore, our research points to
positive and quantitatively important international externalities associated with the canal
expansion.

Finally, we show that our framework can be used to address the more general ques-
tion of international externalities in a global transporation network. Using a link removal
strategy, we find that the large majority of the port-pair-links are associated with positive
international externalities. Our results illustrate that in the presence of global transporta-
tion networks, reduced trade barriers between two trading partners may indirectly also
benefit third countries. We compare our findings to an economic environment without
a transportation network, and find that in the absence of a network, reduced barriers
between trade partners typically harm rather than benefit third countries.

Our quantitative results point to the interdependences created by the global shipping
network, and suggest that as long as infrastructure costs are not shared across countries,

15In practice, we take the average of Xij and Xji before iterating on equations (18) and (19).
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Figure 10: International Externalities : Top 20 Links.
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the presence of positive externalities implies that the world invests too little in global
transportation networks. We leave it to future research to quantify the socially optimal
level of investment, given our findings. We view the analysis as a first step in unpacking
the overall impact of the network structure on global trade and income. A promising area
of future research is to quantify how improvements in transportation technology may
trigger upgrades in the shipping fleet and global port infrastructure with far-reaching
implications for the level and distribution of world income.
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Appendix

A Constructing the Container Traffic Data Set

Our point of departure are the AIS data containing all port calls made by ships in
2016 that has been provided by MarineTraffic. Based on the ship categories used by
MarineTraffic, we limit the data set to the ships categorized as “container ship” and
“Cargo/containership”. MarineTraffic provides each ship with a unique identifier (Ship
ID). We start out with close to 5,300 ships based on this identifier. We use this to identify
each ship’s travel history. A ship also has an IMO number and an MMSI number as well
as a Ship Name. We use this information to merge the AIS data set with the World
Fleet register data base constructed by Clarkson, which has vessel specific information
on a range of time invariant ship characteristics, such as the vessels carrying capacity
measured in deadweight tonnes (dwt) and cargo capacity of container ship measured in
twenty-foot equivalent unit (TEU).

Ideally there should be a perfect match between ship identifiers (IMO, MMSI and
Ship ID). However, for around 5% of the ships this is not the case. The mismatch could
either because of misreporting, or changing of owners (containerships typically change
their MMSI number when changing the owner). We correct for both misreporting and
the change of identifiers by cross checking a ship’s IMO and MMSI number, as well as
ship’s characteristics, like its deadweight tons (dwt). We are able to correct for most of
the misreporting and end up with 5,165 distinct containerships. Finally, as we want to
focus on global container traffic, we introduce a threshold of 15,800 deadweight tons. This
leaves us with 4,941 ships.

We then proceed by cleaning the routes of each container ship. The AIS data are very
rich with information on not just ports, but also on whether the ship is lading/unlading
in a port, or is just in transit (e.g. due to need for additional fuels). In addition the data
set has information on anchorages, i.e. stops made by ships in places that are not ports.

We sort trips for each ship by their time stamp, so that their travel records are listed
as Arrival-Departure-Arrival-Departure, etc. A trip is defined as a direct port-to-port
voyage. If a ship departs a port A, makes several in transit stops at other ports, or stops
at anchorages, before finally arriving at port B, we define the voyage from A to B as one
trip of the ship. We use the draught reported when the ship reaches the arrival port as
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the draught of the trip. Moreover, we drop a small number trips for which the arrival
time stamp erroneously equals the departure time stamp. We also drop trips that are
taken by less than 5 ships during the year. Finally, we aggregate ports located within
30 kilometers of each other and within the same country and we drop ports that do not
appear both as arrival and departure ports. We lose less than two percent of the shipped
volume by imposing these restrictions on ship size, non-zero travel time, and the set of
ports.

B Calculating Global Container Traffic

Based on the container traffic data set described above, we compute a set of mea-
sures to characterize the global container traffic for any port pair for a given period: (i)
frequency, i.e. the number of ships traveling between the two ports; (ii) ship size, i.e.
average ship size traveling in terms of deadweight tonnes (dwt); (iii) shipments (cargo),
computed based on AIS data matched with data on ship characteristics; and (iv) utiliza-
tion, calculated as shipments/(ship size × frequency).

Due to the availability of AIS data, the use of draught-based estimates of ships’ cargo
has recently emerged in the maritime transport literature, see e.g. Adland et al. (2017).
The draught of a ship refers to the vertical distance between the surface of the water and
the lowest point of a vessel. We build on this approach, and as we limit the analysis to
one type of ships, namely container ships, we are able to establish a relatively simple rule
for the computation of the ships’ container shipment. For each sailing ship we observe
the draught reported by the ship en route, HA, which will vary depending on the ship’s
cargo. A ship sailing without cargo is referred to as a ship sailing in ballast. In practice,
a ship sails in ballast if its draught is smaller than a given threshold value, which we refer
to as ballast draught (HB). Specifically, we define HB = 0.55HS, where HS is the ship’s
scantling draught. Scantling draught is the draught the ship will have when it is fully
loaded, and it is also referred to as design draught, as it is this draught it is build for, and
is thus a constant. We have access to technical information on ships’ scantling draught
as well as the vessel’s carrying capacity (dwt) from the Clarkson World Fleet Database
(see Section A above). We use 0.55 as the weight to define ballast draught based on the
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maritime engineering literature.16 Letting HA refer to the draught reported by the ship
en route, we calculate the shipments carried by a ship on a specific voyage, as

EffectiveDWT = dwt ∗ (HA −HB)/ (HS −HB) . (20)

A ship’s draught as well as estimated cargo relates to one specific trip, i.e. to a voyage
between two ports.

Table 9 shows that, based on our draught-based estimates, on average container ships
do merely 1% of their trips without cargo (in ballast). This stands in sharp contrast
to other types of vessels that are typically involved in very different trades, and do not
operate on “bus routes” like container ships. Brancaccio et al. (2020) focus on dry bulk
ships and report that 42% of the ships travel without cargo. We also observe that there is
substantial variation across trips with respect to draught, effective dwt, and across ports
with respect to total incoming and outgoing cargo.

Table 9: Ships, Trips and Port

Variable: Obs Mean Sd Min Max

Ships:

Share of trips in ballast (<55%) 4,937 0.01 0.05 0 1

Trips:

Actual draught (% of scantling draught) 331,249 0.94 0.07 0.55 1

Effective dwt on loaded trips 331,249 26,113.93 24,559.94 1.23 199,744

Ports:

Total incoming effective dwt (in millions) 514 16.83 44.36 0.01 498.70

Total outgoing effective dwt (in millions) 514 16.83 44.34 0.01 499.98

Note: Summary statistics are based on the port calls made by container ships in 2016. Effective
dwt is calculated based on dwt and draught and is used as a measure for cargo.

16The threshold for ballast water is chosen based on information from MarineTraffic supported e.g.
David (2015).
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C Fastest Route Calculation

Using the schedule of actual departure times and arrival times of all container ships
in our dataset, we compute the fastest path from port i to port j at time h, where
h measures hours since Jan 01 2016 00:00. Our algorithm solves the same problem as a
public transport routing algorithm that delivers the fastest bus route from i to j at time h,
allowing passengers to switch to feasible connecting buses at any stop. The only difference
is that we compute these paths ex post, that is, we use the observed departure and arrival
times in 2016, whereas the most common application of public transport algorithm is the
calculation of optimal routes for specific times in the future.

Our algorithm works as follows. Every time a ship departs from i to anywhere, we
compute all feasible paths a container can take to get to j through the network of con-
nections available at that point in time, allowing the container to switch to any ship that
leaves from the current port in the future. To limit the computational burden, we make
two simplifying assumptions. First, we consider only paths involving up to 15 intermedi-
ate ports. Second, we convert time stamps from seconds to hours. That is, we convert
the arrival and departure time stamps from the original format yy:mm:dd hh:mm:ss to
yy:mm:dd:hh, attributing arrivals or departures occurring within 30 minutes before and
after hour hh to hour hh. Without loss of generality, we then convert the time stamp
yy:mm:dd:hh to an integer h that counts hours since Jan 01 2016 00:00. We treat all ships
leaving port k at hour h+1 or later as a feasible connection for a container arriving at
port k at hour h.

From the set of feasible paths, we drop all those that are dominated by other paths
that start at the same time or later, but arrive earlier. We also drop paths that are
identical to others in terms of travel time and arrival time, but involve more stops in
intermediate ports. Note that any feasible path from i must start with one of the ships
that actually departed from i. Then, suppose we have identified the fastest path from i
to j starting with a ship departing i at time h0 (denoted (i,j,h0)) and another fastest path
from i to j starting with a ship departing at time h1, which we denote by (i,j,h1). Then,
for any hour h′ ∈ (ho, h1] , the fastest way to get to j is to wait at i until hour h1 and
then take the path (i,j,h1). The total travel time of (i,j,h′) is then the travel time along
(i,j,h1) plus the waiting time h1 − h′. The result of the algorithm is then a set of paths,
(at least) one for each port pair i,j at every starting time h in 2016. For every optimal
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path (i, j, h), we retain the information on the total travel time as well as the sequence of
intermediate ports.

The algorithm is programmed in Stata. We ran the algorithm in parallel on 514 cores
(one for each departure port) endowed with an Intel Xeon-Gold 6138 2.0 GHz processor on
the Saga supercomputer (https://www.sigma2.no/node/537). The average (maximum)
required CPU time per core denoted as hh : mm : ss is 01:55:55 (05:50:37), the total
CPU time is 993 hours. The maximum RAM required per core is 78920K. The result is
13,915,115 unique paths described by departure port i, arrival port j, departure time h,
arrival time ha and up to 15 intermediate ports.

D Empirical Evidence on Shipping Costs and Actual
Shipping Routes

D.1 Freight costs and Fastest Routes

Our empirical analysis relies on the assumption that cargoes from a country i to a
country j are shipped on the fastest route between the two countries. To justify this
assumption we use trade data for the US by customs district and country of origin that
allows us to back out freight costs and examine the correlation between freight costs
and travel time on direct routes observed in the AIS data. The results are reported in
Table 10. The dependent variable is freight costs computed as cif/fob margin relative
to import value. The unit of observation is the freight cost of containerized imports by
US customs district, country of origin, and product (10-digit HTS code). U.S. customs
districts are matched to U.S. container ports based on names.Independent variables are
travel time (lnHoursij), geodetic distance (lnDistij), total dwt of ships traveling to US
port j from country i in 2016 (lnDWT ), total number of ships traveling to US port i
from country j in 2016 (lnShipsij) and average ship size based on the latter two variables
(lnAvgDWTij). The analysis shows that there is a positive correlation between travel
time and freight costs. This positive correlation remains also when we control for other
potential determinants of freight costs such as distance and characteristics of the cargo
flow. We note that there is also a negative correlation between freight costs and average
ship size, indicating economies of scale in transport at the ship level.
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Table 10: Correlations with Freight costs

(1) (2) (3) (4) (5) (6)

lnHoursij .004*** .005*** .005*** .004*** .004***

(.000) (.001) (.001) (.001) (.001)

lnDistij .005* -.001 -.001 .002 -.001

(.001) (.001) (.001) (.001) (.001)

lnDWT -.000

(.000)

lnShipsij -.000 .000

(.001) (.001)

lnAvgDWTij -.005*** -.005***

(.000) (.000)

FEs j,p j,p j,p j,p j,p j,p

Observations 167,227 167,227 167,227 167,227 167,227 187,011

Exporter/US ports 61/20 61/20 61/20 61/20 61/20 61/20

Products 13,086 13,086 13,086 13,086 13,086 13,296

adj. R2 0.152 0.152 0.152 0.152 0.152 0.156

Note: Dependent variable is freight costs computed as cif/fob margin as share of the import value. Unit of observation
is the freight cost of containerized imports by US port, country of origin, and product (10-digit HTS code). The
sample is based on US trade in 2016 and include only transactions where the US port of entry is also the port of
unlading. Columns (1)-(5) include only those port-country pairs where a US port is connected to only one port
in the partner country. Column (6) includes all port-country pairs and the values of all independent variables are
computed as averages across multiple ports in the exporting country. All regressions include fixed effects for US
ports and products. Standard errors are clustered at the product level. Significance levels: *p < 0.1, **p < 0.05,
***p < 0.01.

D.2 Evidence on Actual Routes of Chinese Trade

We have access to Chinese customs data for 2006, where we observe both transporta-
tion method and one transit country. We can therefore check whether the transit ports ac-
cording to our fastest route algorithm overlap with the transit country in the Chinese data.
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We perform the following analysis. First, we aggregate the Chinese data to the origin-
transit country-destination level (imports or exports), and only keep observations where
transportation method is by sea. Second, for each origin-transit-destination triplet in the
Chinese data, we check whether we find a similar triplet according to the fastest route al-
gorithm. We find that 87% of the fastest-time routes we identified for Chinese imports and
exports include transit countries that are matched with origin-transit-destination triplets
in the Chinese data. At the same time 30% of the origin-transit-destination triplets in
the Chinese data are matched with triplets in our constructed fastest-time data set. How-
ever, the trade values of the matched triplets are on average 10 times higher than the
unmatched ones, in total making up about 81% of the Chinese marine trade in 2016. Our
finding suggest that fastest-time routes correctly capture the main routes Chinese trade
takes.

E The Container Shipping Market

We have compiled data on the size distribution of all container ships over time. Specif-
ically, using data from Clarksons, we can look the ship size distribution by year of con-
struction. Figure 13 plots the number of ships by different size bins and by construction
year. Interestingly, the number of Neopanamax ships (i.e., ships that cannot pass through
the old canal, but can pass through the new canal), has been relatively stable between the
announcement year and completion year (marked by dashed lines in the figure). Except
for ultra large container ships, which cannot pass the Canal even after expansion, all three
categories experienced a decline in newly build ships after the financial crisis (solid-line).
The numbers support our view that large ships (Post/Neopanamax ships) were already
widely adopted globally before the expansion project started, while the Panama Canal
was a bottleneck of global container shipping. The numbers strongly indicate that the
canal expansion was not sufficient to incentivize owners to invest in new ships. In addition
to this, the container shipping industry has been characterized by over-investment and
idle ship capacity for many years (see Figure 14), in the wake of the 2007 financial crisis
and trade collapse, see e.g. Zhang et al. (2014). Data from the consulting industry shows
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that around 5% of container ships were idle over the period 2009 to 2016, see Figure 14.17.
Moreover, container freight rates have also been relatively low over the 2006-2016 time
period, consistent with the finding that there was ample capacity in the market, see e.g.
Rau and Spinler (2016).

Figure 13: Ship Building

17http://www.globaltrademonitor.com/2020/09/21/flexport-idle-container-ship-capacity-is-
returning-to-normal-levels-after-increases-in-q2/

49



Figure 14: Idle Containership Capacity 2009-2020

F Panama Canal Exposure

F.1 Identifying Panal Canal passages

We identify port-to-port connections that involve a passage of the Panama Canal from
AIS signals triggered by ships that transit the anchorages on the Pacific side and/or the
Atlantic side of the Panama Canal. Port-to-port connections that involve a passage of
the canal but do not involve a stop at a Port in Panama are identified by ships that
transit both anchorages. Port-to-port connections that start or end at a port located on
the Atlantic side of Panama are identified by ships that transit the Pacific anchorage on
their way to/from the port in Panama and vice versa for port-to-port connections that
start or end at a port on the Pacific side of Panama. We conducted multiple plausibility
checks to rule out the possibility that the canal could be passed without transiting the
anchorages. i) We found that all connections that end or start in Panama involve a transit
of one of the two anchorages. If the origin/destination in the other country is located on
the Pacific side, ships transit the anchorage on the Pacific side, and vice versa. ii) We
sampled port-to-port voyages without stops in Panama that plausibly involve a passage
of the canal, like, e.g., a trip from Europe to the US West Coast, and found in all cases
that the ship transited the anchorages on both sides of Panama. Lastly, we add trips
between the ports on the Atlantic and Pacific side of Panama to the set of port-to-port
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connections that involve a passage of the Canal.

F.2 Summary Statistics

Table 11: Summary statistics on Panama Canal exposure

Rank Importer Share of total Share in world Exporter Share of total Share in world

imports passing PC imports exports passing PC exports

1 USA 50.8 14.0 USA 30.5 9.0

2 MEX 10.2 2.5 CHN 16.0 14.9

3 CAN 9.6 2.7 MEX 12.1 2.6

4 CHN 4.2 7.7 CAN 10.1 2.5

5 JPN 2.8 3.7 JPN 5.8 4.3

6 KOR 1.7 2.6 DEU 3.4 8.5

7 DEU 1.6 6.5 KOR 3.4 3.4

8 GBR 1.6 4.2 GBR 1.3 2.6

9 CHL 1.2 0.4 FRA 1.3 3.3

10 COL 1.2 0.3 ITA 1.2 3.1

11 BRA 1.1 0.9 CHL 1.1 0.4

12 BLX 1.1 2.6 BRA 1.1 1.3

13 NLD 1.0 3.0 IRL 0.9 1.1

14 AUS 0.9 1.2 PER 0.8 0.2

15 FRA 0.9 3.8 COL 0.8 0.2
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F.3 Sailing without the Panama Canal

Figure 15: Travel Time without use of the Panama Canal

Note: The figure shows the distribution of port-to-port travel time
differences with vs. without the Panama Canal for the pairs that
are using the Panama canal according to our algorithm.

The figure is created as follows. First, we identify all the paths that pass the Panama
Canal according to our algorithm. Second, we remove the canal from the shipping network
and recalculate new, second-fastest, paths using our algorithm. Third, we compare travel
time before and after removing the canal.

G Additional Data Sources

G.1 COMTRADE Trade Flows

The monthly COMTRADE data was downloaded via the API call "https://comtrade.un.org/
api/get/plus?max=250000&type=C&freq=M&px=HS&ps=inserttimeperiod&r=insertrepo
rtercode&p=all&rg=all&cc=TOTAL&fmt=csv&token=inserttoken" between Jan 8-10, 2021.
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We aggregate monthly observations to quarters and keep only quarters were trade flows
were reported in every month. We use the total value of imports by destination and
country of consignment (i.e., the country from which goods were dispatched to the fi-
nal destination; see UN (2013, p 185)). For imports of raw materials used in Ta-
ble ??, we downloaded monthly trade data from the same source using the API call
“https://comtrade.un.org/api/get/plus?max=2
50000&type=C&freq=M&px=HS&ps=inserttimeperiod&r=insertreportercode&p=all&rg
=all&cc=25,26,27,72,73,74,75,76,77,78,79,80,81&fmt=csv&token=inserttoken”.

G.2 Estimation Data: Summary Statistics

The estimation sample covers about 82% of global imports reported to Comtrade.
The missing 18% are due to countries not reporting trade data to Comtrade on a monthly
basis (which are aggregated to the quarterly level).

Table 12: Summary Statistics of the Estimation Sample

Variable N Mean Std. Dev Min Max Source

ln Value (in $, by quarter) 199,177 16.2 3.27 1.39 25.74 monthly COMTRADE

FTA 199,177 .30 .46 0 1 WTO RTA database

ln Distance 199,177 8.66 .82 4.55 9.89 CEPII

Contiguity 199,177 .02 .15 0 1 CEPII

Common Language 199,177 .14 .35 0 1 CEPII

Pan Exposure 199,177 .14 .35 0 1 AIS data

Note: Export data in rows 1 is aggregated from monthly to quarterly frequency and covers
the period 2013Q1- 2019Q4.

G.3 Data for the Model-based Quantification

We distribute total expenditure by country across ports according to the relative size of
ports measured by the total incoming tonnes in the first half of 2016, according to the AIS
data. In our sample, 46 percent of countries have only one port. Expenditure by country
is taken from the Eora Global Supply Chain Database (MRIO) (https://worldmrio.com/).
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For 19 out of the 149 countries (small islands and overseas territories) expenditure data
is not available. We construct the missing expenditure level using GDP data for these
countries obtained from the Worldbank’s World Development Indicators and from INSEE
together with the average expenditure/GDP ratio of small islands for which we do observe
both expenditure and GDP.

H The Model

H.1 Solving the model in changes

This section shows how to solve the general equilibrium of the model in changes, using
the “exact hat” notation developed in Dekle et al. (2007).

The first equilibrium condition is

Yi =
∑
j

Xij

Yi = Yi

Π−θi

∑
j

τ−θij
Ej

P−θj

Π−θi =
∑
j

τ−θij
Ej

P−θj
,

where we substituted in for the gravity equation and solved for Πi. In matrix notation,
this can be rewritten as:

[
Π−θi

]
= [1− A]−1

[
Ei

P−θi

]

[1− A]
[
Π−θi

]
=
[
Ei

P−θi

]
[
Π−θi

]
− A

[
Π−θi

]
=
[
Ei

P−θi

]

Π−θi −
∑
j

t−θij Π−θi = Ei

P−θi

Π−θi = Ei

P−θi
+
∑
j

t−θij Π−θi .
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In a similar fashion, the second equilibrium condition can be rewritten as:

Ei =
∑
j

Xji

Ei = Ei

P−θi

∑
j

τ−θji
Yj

Π−θj

P−θi =
∑
j

τ−θji
Yj

Π−θj[
P−θi

]
= [1− A′]−1

[
Yi

Π−θi

]

[1− A′]
[
P−θi

]
=
[
Yi

Π−θi

]

P−θi −
∑
j

t−θji P
−θ
j = Yi

Π−θi

P−θi = Yi

Π−θi
+
∑
j

t−θji P
−θ
j .

Expressed in changes, the two equilibrium conditions become

Π̂−θi = Ei
Ei +∑

j Ξij

Êi

P̂−θi
+
∑
j

(
Ξij

Ei +∑
j Ξij

)
t̂−θij Π̂−θj

P̂−θi = Yi
Yi +∑

j Ξji

Ŷi

Π̂−θi
+
∑
j

(
Ξji

Yi +∑
j Ξji

)
t̂−θji P̂

−θ
j .

Since trade is balanced, Ei = Yi. Furthermore, by using the fact that Π̂i = Ŷ
−(θ+1)/θ
i ,

we can write the system as

Π̂−θi = Yi
Yi +∑

j Ξij

Π̂−θ/(θ+1)
i

P̂−θi
+
∑
j

(
Ξij

Yi +∑
j Ξij

)
t̂−θij Π̂−θj (21)

P̂−θi = Yi
Yi +∑

j Ξji

Π̂−θ/(θ+1)
i

Π̂−θi
+
∑
j

(
Ξji

Yi +∑
j Ξji

)
t̂−θji P̂

−θ
j . (22)

H.2 Algorithm for solving the equilibrium in changes

The system of equations (21) and (22) can be solved with a simple fixed point proce-
dure. We start with a guess of Π̂−θi and P̂−θi . We then update equation (21) to get a new
value of Π̂−θi . We then update equation (22) to get a new value of P̂−θi . We iterate on the
two fixed points until the system converges.
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World output is the numeraire, ∑i Yi = Y W = 1. Specifically, when iterating on the
fixed points above, for each iteration, we rescale Π̂i and P̂i so that Ŷ W = 1 holds. We
have

Ŷ W =
∑
i

Yi
Y W

Ŷi =
∑
i

Yi
Y W

Π̂−θ/(θ+1)
i .

After each iteration of equation (21), we calculate Ŷ W and then rescale Π̂−θi by dividing
by Ŷ θ+1

W .

H.3 Converting ΞV
kl to Ξkl

This section describes how to calibrate the value α in the expression Ξkl = αΞV
kl. The

methodology is as follows: First, start with a guess of the value of α, α0, and obtain
values of Ξkl. According to the model, there is a mapping between traffic Ξkl and trade
Xij according to equation (11). After converting traffic to trade, we calculate the value
of world container trade flows, i.e. X̃W = ∑

ij,i6=j Xij, according to the model. If X̃W is
different than the true value of world container trade, XW , i.e. X̃W −XW 6= 0, we update
the guess of α, and continue to do so until X̃W −XW = 0. The value of α that delivers
X̃W −XW = 0 is USD 1734 per deadweight tonnage of traffic.

The world value of container trade, XW , is calculated as follows. According to Rajkovic
et al. (2014), the global value of container trade was 5.6 trillion USD in 2010. According
to the WTO, world merchandise trade increased by 4.6 percent from 2010 to 2016. Under
the assumption that the share of container trade in total merchandise trade is constant,
world container trade in 2016 is 5.9 trillion USD (5.6 trillion USD×1.046)

I Alternative Exposure Measures

This section discusses the alternative Panama Canal exposure measure. We parame-
terize transport costs tkl as

tkl = TravelT imeδkl, (23)

where TravelT imekl refer to average travel time across all trips on a link kl. We set
θ = 8 (as in the main text) and δ = 0.15, consistent with a gravity distance elasticity of
roughly 1 (δ× θ ≈ 1). We calculate trade costs τij by invoking equation (7). We can then
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calculate the likelihood of using a link kl for trade between i and j. The likelihood is (see
Allen and Arkolakis, 2022):

πklij =
(

τij
τiktklτlj

)θ
.

Define P as the set of links that use the Panama canal, according to the container traffic
data. The model-derived likelihood of using the canal is calculated as

πPAij = max
kl∈P

πklij .

The alternative exposure measure is PanExp2
ij = πPAij .

J Solving the no-network model in changes

This section shows how to solve the general equilibrium of the no-network model in
changes, using the “exact hat” notation developed in Dekle et al. (2007).

The first equilibrium condition is

Yi =
∑
j

Xij

Yi = Yi

Π−θi

∑
j

τ−θij
Ej

P−θj

Π−θi =
∑
j

τ−θij
Ej

P−θj
,

where we substituted in for the gravity equation and solved for Πi.
The second equilibrium condition can be rewritten as:

Ei =
∑
j

Xji

Ei = Ei

P−θi

∑
j

τ−θji
Yj

Π−θj

P−θi =
∑
j

τ−θji
Yj

Π−θj
.
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Expressed in changes, the two equilibrium conditions become

Π̂−θi =
∑
j

τ̂−θij
Êj

P̂−θj

Xij

Yi

P̂−θi =
∑
j

τ̂−θji
Ŷj

Π̂−θj
Xji

Ei
.
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Figure 12: International Externalities : No Shipping Network and Trade Cost Symmetry.
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Note: The figure shows the distribution of Extkl across dropped links kl.
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