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Abstract. The relation between biodiversity loss and frequency/probability of
zoonose pandemic risk is now well documented in the literature. In this article
we present a first model to integrate this phenomenon in the context of a general
equilibrium dynamic economic set-up.

The occurrence of pandemic episodes is modeled as Poissonian leaps in stochastic
economic variables. The planner can intervene in the economic and epidemiological
dynamics in two ways: first (prevention), by deciding to preserve a greater quantity
of biodiversity, thus decreasing the probability of a pandemic occurring, and sec-
ond (mitigation), by reducing the death toll through a partial blockage of economic
activity.

The class of social welfare functional considered has, as polar cases, a total utili-
tarian and an average utilitarian specifications. It implicitly considers, at the same
time, the effects of policies on mortality and on the productive capacity of the country.
Thanks to the Epstein-Zin specification of preferences, we can distinguish between
risk aversion and fluctuation aversion.

The model is explicitly solved and the optimal policy completely described. The
qualitative dependence of the optimal intervention as a function of natural, produc-
tivity and preference parameters is discussed. In particular the optimal lockdown
is shown to be more severe in societies valuing more human life, and the optimal
biodiversity conservation is shown to be more relevant for more “forward looking” so-
cieties, with a small discount rate and a high degree of altruism towards individuals
of future generations. We also show that societies accepting a large welfare loss to
mitigate the pandemics are also societies doing a lot of prevention, not to have to
incur the loss too often.

After calibrating the model with COVID-19 pandemic data we compare the miti-
gation efforts predicted by the model with those of the recent literature and we study
the optimal prevention-mitigation policy mix.
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1. Introduction

The hopes of the post-war period that infectious diseases were behind us (Fisher,
1995) have been dashed: the number of emerging diseases has continued to rise since the
1950s (Smith et al., 2014). Despite this increasing frequency of disease, the number of
infected people has been reduced thanks to control and treatment improvement (Smith
et al., 2014). However, the fear of a pandemic has remained vivid, as shown by the
Clade X exercise1 hosted at Johns Hopkins Center for Health Security in 2018. Indeed,
at the same time, the number of outbreaks leading to epidemics and even pandemics
has accelerated sharply over the last twenty years.

As 60% of these emerging diseases are linked to zoonoses (Jones et al., 2008), it is
natural to make the link between the loss of biodiversity and the emergence of epidemics
(Morand et al., 2014, Morand, 2018), especially since the current COVID-19 pandemic
is linked to the transmission of a pathogen from humans to animals.

The link between biodiversity and epidemics is complex because both a dilution effect
(decreasing relationship between biodiversity and epidemic risk, Civitello et al. 2015)
and an amplification effect (increasing relationship between biodiversity and epidemic
risk, Wood et al. 2017) are at work simultaneously (Rohr et al., 2019). The predomi-
nance of one effect over the other depends on the spatial scale at which the phenomenon
is studied (Johnson et al., 2015). On a national or global scale, the dilution effect dom-
inates (Halliday et al., 2020, Morand et al., 2014) and conserving biodiversity appears
as a prevention against emerging diseases.

There are at least two reasons for the dilution effect (Keesing et al., 2010). Firstly, the
decline in biodiversity leads to an increase in the prevalence and transmission rates at
the local level and to a selection effect of the most harmful pathogenic strains. Second,
habitat destruction brings species together and brings them closer to humans (Wolfe
et al., 2005)2. The promiscuity between several species, in the wild, in captivity or
in breeding, increases the risk of transmission and mutation of pathogens, and makes
transmission to humans more likely (LoGiudice et al., 2003).

The economic cost of these emerging epidemics is very high (Sands et al., 2016a),
leading to a disruption at each emergence (Sands et al., 2016b). The COVID-19 epi-
demic and the containment measures that led to the containment of more than half of
the planet resulted in GDP losses of more than 10% in several countries (see OECD,

1https://www.centerforhealthsecurity.org/our-work/events/2018_clade_x_exercise/
2The case of bats is emblematic. Bats are reservoirs of pathogens. The reduction of their habitats

due to deforestation forces them to move closer to fruit production, livestock farming and other species.



PREVENTION AND MITIGATION OF EPIDEMICS:BIODIVERSITY CONSERVATION AND CONFINEMENT POLICIES3

2020). The Ebola epidemic led to a 10% loss of GDP in Sierra Leone and Guinea (World
Bank, 2014).

In this work we propose a first stylized model to study the impact of biodiversity
conservation on the economic dynamics via the “pandemic frequency” channel. We
model the uncertainty of the survenue of a recurrent epidemic outbreak using a Poisson
stochastic process, which implies irreversibility due to over-mortality and productivity
loss.

In the model a planner can decide about the size of the land devoted to biodiversity
conservation and, consequently, the size of the land converted to economic activities.
The former impacts the probability (and then the frequency) of having demo-economic
pandemic shocks, the latter has an immediate effect on production flow. The planner
targets a social welfare functional in a family which includes (varying an altruism degree
in the spirit of Palivos and Yip, 1993), as polar cases, total and average utilitarianism.

In addition to preventive intervention determined by the preservation of biodiversity,
the planner also has the possibility to decide on lockdown mitigation policies. She can
indeed decide that, in the event of a pandemic, a (partial) blockage of economic activity
will be put in place in order to reduce population mortality, at the cost of a reduction
in productive activities.

Given the simplicity of the model we can solve it explicitly. We characterize the
optimal mitigation policy and the optimal allocation of land to biodiversity conservation
and study their behaviors in terms of the model’s parameters. We show that the optimal
lockdown is more severe in societies valuing more human life, and that the optimal
biodiversity conservation is greater in more “forward looking” societies, with a small
discount rate and a high degree of altruism towards individuals of future generations.
We also show that societies accepting a large welfare loss to mitigate the pandemics are
also societies doing a lot of prevention, not to have to incur the loss too often and so all
the more since risk aversion or the risk of pandemics absent any biodiversity are higher.

To calibrate the model (Section 4) we use data from Gollier (2020) on the conse-
quences in terms of mortality and economic activity of the laissez-faire, a “flatten the
curve” mitigation strategy and a “crush the curve”, or suppression, strategy. We exhibit
the terms of the trade-off between the loss of lives and the loss of GDP for the whole
set of mitigation strategies, from laissez-faire to suppression. We compute the optimal
mitigation policy as a function of the relative value the planner assigns to life over the
economy, and the optimal prevention strategy, depending on the former and on the risk
parameters.
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The idea of assessing the economic impact of disasters that arise from “environmental”
causes is the source of a well-stocked literature, both in the empirical works (see for
instance Noy, 2009, and the contained references) and from the theoretical point of
view (see for instance Akao and Sakamoto, 2018 or Bakkensen and Barrage, 2016). The
general idea of these contributions is to try to understand the impact of environmental
disasters on growth and development. Particularly inspiring for our research are the
papers by Bretschger and Vinogradova (2016, 2019) and Douenne (2020). The latter
in particular studies in detail the possibility of dealing with disaster of endogenous
probability3 and then the idea of disaster prevention. In the present paper the focus is
different since, for the first time we link biodiversity conservation, the risk of pandemics,
population and economic dynamics and mitigation policies.

The paper is organized as follows. Section 2 introduces model’s assumptions and
formulation. In Section 3 we describe the explicit solution of the model. Section 4
contains numerical simulations while Section 5 concludes. All the proofs are reported
in the Appendix A.

2. The model

We consider an economy where the planner makes decisions about how to manage
biodiversity and how to deal with a pandemic if it happens.

2.1. Biodiversity and the economy. The planner decides at the beginning of the
planning horizon how to allocate the land (whose total size is normalized to 1). A part
f is devoted to biodiversity conservation while 1−f is used for various economic human
activities, such as agriculture, industry, human settlement and infrastructure.

The choice of f influences the economy in two ways. Firstly in a direct way: the land
devoted to human activities is used as an input in the production process. Indeed we
suppose that the production is described by an aggregate production function of the
form

Y (t) = F (1− f(t), A(t)N(t))

where N(t) is the size of the population and A(t) is labor productivity at time t. We
abstract in particular from the use of capital (but the model can be extended in various
ways to a more general production structure).

3The idea of preserving biodiversity to reduce the probability of future negative outcomes is also used
in another bunch of works in the literature, see for instance Baumgärtner (2007), Baumgärtner and
Quaas (2010), Baumgärtner and Strunz (2014), Augeraud-Véron et al. (2019, 2020) which highlight
the insurance value of biodiversity.
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Consistently with the choice of not modeling factor accumulation and then invest-
ment, we suppose that all production is consumed:

C(t) = Y (t).

The second way the choice of f influences the economy is through its effects on
zoonoses’ outbreaks. We suppose that f influences the probability h(t) that a zoonose
appears and becomes a pandemic: the bigger f , the more biodiversity and the smaller
the probability of epidemic outbreaks. In this sense, biodiversity conservation is a
risk-reducing policy.

2.2. Pandemics and policy response. When a pandemic hits the economy, it pro-
duces an instantaneous decrease of the population which size depends on the policy
response of the planner, that is the mitigation policy she adopts. Let e represent the
intensity of social interactions. In normal times, this intensity is ē. The planner, by
imposing a more or less severe and lengthy lockdown, is able to make the intensity of
interactions decrease, eventually down to 0, which corresponds to a total lockdown. The
size of the instantaneous decrease of the population at the date τ when the pandemic
hits the economy depends on the severity of the lockdown as follows:

Ñ(τ) = k(e)N(τ)

where k(e) < 1 is a decreasing function of e: the more severe the lockdown the fewer
deaths in the population. We suppose more precisely that k′(e) < 0, k(ē) = k ∈ (0, 1),
k(0) = k ∈ (k, 1), and k′′ ≤ 0: the marginal effectiveness of the mitigation policy is
weakly decreasing (see Figure 1). 1− k is the instantaneous deaths rate at the date the
pandemic hits, absent any policy response. It is the product of the force of infection,
the contagion rate, the number of people each person meets on average. We summarize
in this simple statistics the outcome of complex dynamics like the ones described by
compartmental models (SIR, SIS, SEIR..., see Hethcote, 1994). In fact, here, in a
context where we look at a complete time series of potential pandemic explosions, we
work on a longer time scale. This fact also justifies the choice of modeling pandemic-
related shocks as punctual.

The drawbacks of the policy response to the pandemics is of course that it reduces
labor productivity. “Non-essential” economic activities, that is activities outside the
health, food and energy sectors, are stopped when teleworking is not possible. In other
sectors the generalization the teleworking for all tasks can affect the productivity of
workers, especially if they have a poor working environment at home, or when they
must simultaneously take care of small children at home. The size of the instantaneous



6 E. AUGERAUD-VÉRON, G.FABBRI, AND K. SCHUBERT

k(e)

0 e

k

k

ē
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Figure 1. Instantaneous responses to the pandemics as a function of
the mitigation policy

negative shock on productivity when the pandemics hits is modeled as follows;

Ã(τ) = κ(e)A(τ)

with κ(e) < 1 an increasing function of e: the more severe the lockdown the larger
the productivity loss. We suppose more precisely that κ′(e) > 0, κ(0) = κ ∈ (0, 1),
κ(ē) = κ ∈ (κ, 1) and κ′′(e) ≤ 0 (see Figure 1).

2.3. Dynamics. We suppose that a deterministic exponential process of growth of
population and productivity takes place when the economy is not hit by a pandemic.
Therefore, given the structure of shocks described above, the dynamics of population
and labor productivity is described by the following couple of stochastic differential
equations:

dN(t)

N(t)
= ndt− (1− k(e))dq(t)

dA(t)

A(t)
= gdt− (1− κ(e))dq(t)

where n and g are the deterministic growth trends of population and productivity, and
q is a Poisson process with E [dq] = h(f)dt. The probability of a pandemic outbreak is
all the lower since biodiversity is important: h′(f) < 0 .

2.4. Social welfare. Choosing a social utility functional is delicate since population
ethics is a difficult matter (see for instance Arrhenius et al., 2017). We consider here
a class of social welfare functions parameterized by λ ∈ [0, 1] by supposing that the
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planner’s instantaneous utility at time t is of the form

N(t)λu

(
C(t)

N(t)

)
with C(t) total consumption and then C(t)

N(t) per-capita consumption.4 The value of
λ measures the degree of altruism towards individuals of future cohorts (see, e.g.
Boucekkine et al., 2014) and it can be justified, as done by Barro and Becker (1989)
in a model of endogenous fertility choice by the “impure altruism” of parents. The two
polar cases λ = 0 and λ = 1 correspond respectively to standard average utilitarianism
and total utilitarianism.

The planner maximizes a non-separable intertemporal utility à la Epstein-Zin-Weil,
supposing that agents’ preferences are characterized by a constant relative risk aversion
θ > 0 (and θ 6= 1), an intertemporal elasticity of substitution 1/φ > 0 (φ represents
aversion to fluctuations) and a discount rate ρ > 0.

We can dig a little deeper in the utility functional to understand which choices of
parameters are meaningful. If we look at the analogous of the informal representation
of preferences given for instance by Svensson (1989) (see also Augeraud-Véron et al.,
2019) in our case, we have5, for given controls e(t) and f(t),

U(t) =
1

1− φ
N(t)λ

(
C(t)

N(t)

)1−φ
+ e−ρdt

(
Et
[
U(t+ dt)

1−θ
1−φ
]) 1−φ

1−θ
.

Notice that, since in the model the utility of death people is implicitly taken equal to 0,
the utility function of living people has to be positive. This requires φ ∈ (0, 1), which
we impose.

3. The optimal policy

In order to explicitly solve the problem we specify the described setting by considering
a linear probability of pandemics:

h (f) = ε(1− f), ε ∈ (0, 1],

and a linear production function:

Y (t) = (1− f(t))A(t)N(t).

4Indeed C(t)
N(t)

is actually the per capita average consumption but we abstract here from all distribu-

tional consideration and we suppose the production to be uniformly divided among population.
5As clarified by Epaulard and Pommeret (2003) (see in particular equation (2.1) and Footnote 2)

this expression is equivalent to the one originally proposed by Svensson via a transformation à la Duffie
and Epstain (1992).
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Thanks to the latter the per-capita consumption specifies to
C(t)

N(t)
= (1− f(t))A(t).

Then the instantaneous utility function becomes:

1

1− φ
N(t)λ

(
C(t)

N(t)

)1−φ
=

1

1− φ
N(t)λ (1− f(t))A(t))1−φ .

Observe that, abstracting from dynamics effects, at the level of the instantaneous util-
ity function, the per-capita consumption does not decreases when N increases so no
“quality/quantity” trade-off takes place. This is due to the linear specification of the
production function.

All in all the HJB equation of the problem reads:

(1) ρ
1− θ
1− φ

V (A,N) = max
f,e

[
Nλ [(1− f)A]1−φ

1− φ
1

((1− θ)V (A,N))
1−φ
1−θ−1

+ VAgA+ VNnN + ε(1− f) (V (κ(e)A, k(e)N)− V (A,N))

]
Theorem 3.1. Suppose that the function of the variable e ∈ [0, ē]

(2) k(e)
λ

1−φκ(e)

has a unique maximum point of e∗ ∈ [0, ē]. Suppose that the following interior condition

(3) ρ > (1− φ)g + λn

is verified together with the following transversality condition:

(4) (1− θ + φ)ρ >
1− θ
1− φ

((1− φ)g + λn) .

Then optimal policy (f∗(·), e∗(·)) is deterministic and constant and it is given by e∗(·) ≡
e∗ and f∗(·) ≡ f∗ defined by6:

(5) f∗ := 1−min

1,
ρ− (1− φ)g − λn

φε

1− θ

1−
(
k(e∗)

λ
1−φκ(e∗)

)1−θ

 .
The corresponding social welfare is given by

V (A,N) = X

(
N

λ
1−φA

)1−θ

1− θ

6Observe that, since κ(e), k(e) ∈ (0, 1) then the term (1−θ)
[
1−

(
k(e∗)

λ
1−φ κ(e∗)

)1−θ
]−1

is positive

for any choice of θ > 0.
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with

(6) X =

 φ
φ

1−φ (1− θ)

(ρ− (1− φ)g − λn)
φ

1−φ ε

[
1−

(
k(e)

λ
1−φκ(e)

)1−θ
]


1−θ

Proof. See Appendix A. �

Theorem 3.1 first allows us to learn about the optimal mitigation policy. Denote by
z(e) the function of e defined in equation (2). With our assumptions on the functions
k and κ, z(e) is a positive and concave function of e: z′′(e) ≤ 0.

If z′(e) < 0 for all e ∈ [0, ē], the maximum of z is attained for e = 0. The optimal
policy is total lockdown: e∗ = 0. The condition z′(e) < 0 is equivalent to λ

1−φ
k′(0)
k(0) +

κ′(0)
κ(0) < 0, that is −κ′(0)/κ(0)

k′(0)/k(0) <
λ

1−φ . Denote τ := −κ′(0)/κ(0)
k′(0)/k(0) . The case under study is

then relevant for λ
1−φ > τ , that is for large values of the society’s relative preference for

life. Symmetrically, if z′(e) > 0 for all e ∈ [0, ē], the maximum of z is attained for e = ē

and the optimal policy is no lockdown: e∗ = ē. This case is relevant for λ
1−φ < τ , where

τ := −κ′(ē)/κ(ē)
k′(ē)/k(ē) , that is for small values of the relative preference for life. Finally, the

optimal mitigation policy is interior for values of the relative preference for life between
τ and τ . e∗ is then given by the first order condition for the maximization of (2):

(7) −κ
′(e)/κ(e)

k′(e)/k(e)
=

λ

1− φ
.

If the pandemic occurs the planner will react instantaneously by no/partial/total
lockdown, according to her relative preference for life over the economy λ

1−φ , and the
shape of the k and κ loss functions. On the left side of equation (7) we can recognize
the opposite of the ratio between the elasticities of κ and k with respect to e. This
expression can also be rewritten as −(1−φ)κ′(e)/κ(e) = λk′(e)/k(e). Unsurprisingly in
this expression the contribution of the elasticity of the negative effect on the population
is weighted with λ. Indeed, as already mentioned, the per-capita consumption is not
affected by the shock and the negative effect of the population loss only comes through
the term Nλ appearing in the utility function. This underlines once more the role of
λ as a measure of the value of a life in the planner functional. Similarly the shock on
productivity is weighted by the exponent (1−φ) of the productivity in the instantaneous
utility. Risk aversion plays no role here. This is not particularly surprising because
the choice of e has some impact on the system only after (and if) the shock occurs.
Conversely the value of θ clearly appears in the choice of f which is the “disaster
prevention choice” of the planner. Due to the linearity of the model, the growth rates
of the productivities (i.e. g and n) do not enter in the choice of e.
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Turning to the biodiversity conservation policy, we obtain several results by inspection
of equation (5).

First, the share of land optimally devoted to biodiversity conservation is a decreasing
function of the discount rate: the more the planner is interested in future outcomes,
the more she wants to reduce the risk of pandemic outbreaks and the more biodiversity
is needed. Conversely the higher the inherent capacity of the system to regenerate
after a shock (measured by the deterministic growth rates of the productivity and the
population g and n) the smaller the optimal biodiversity conservation.

Then, the role of the parameter ε describing the relationship between biodiversity and
the probability of a pandemic is straightforward; a larger ε leads to more biodiversity
conservation, which is conform to intuition. Indeed, the larger ε the more powerful is
biodiversity conservation in terms of risk reduction.

As for the preference parameters the results are not obvious and are collected in the
following proposition.

Proposition 3.2. Suppose that the hypotheses of Theorem 3.1 are verified and that the
optimal value of f∗ is interior. Then f∗ is an increasing function of θ and λ. Moreover
it is an increasing function of φ when the discount rate is high enough: ρ ≥ g + λn.

Proof. See Appendix A. �

Even if it is not obvious at a first look the impact of risk aversion is conform to
intuition: f∗ is an increasing function of risk aversion, meaning that the more risk
averse the planner is, the more she wants to reduce the risk of future pandemics.

Similarly Proposition 3.2 tells us that f∗ is an increasing function of λ.
We can dig a bit further here. In the limit case of average utilitarianism (λ = 0),

the optimal mitigation policy is no lockdown (e∗ = 0), since λ
1−φ = 0 < τ . But is it

necessarily the case that the optimal biodiversity conservation is nil? We have:

(8) f∗ |λ=0 = 1−min

[
1,
ρ− (1− φ)g

φ

1− θ
1− κ1−θ

]
If the productivity loss absent any social distancing is very small, κ is close to 1 and f∗ =

0: there is no biodiversity conservation. Conversely, if the pandemic causes a significant
productivity loss even without lockdown (and not only loss of lives), conserving some
biodiversity may be optimal to reduce the risk of pandemic outbreaks.

Moreover, we can infer from the previous results the nature of the links between
optimal prevention and optimal mitigation. At the beginning of the planning horizon,
the planner chooses the optimal mitigation policy she will put in place each times a
pandemic hits. This policy is all the more severe since she values life a lot. Therefore,
the loss she incurs each time a pandemic hits, 1 − k(e∗)

λ
1−φκ(e∗) is all the larger (see
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the proof of Proposition 3.2). To avoid paying this large cost too often, the planner will
choose to conserve a lot of biodiversity.

Finally Proposition 3.2 emphasizes that f∗ is an ambiguous function of the aversion
to fluctuations φ but a sufficient condition for f∗ being an increasing function of aversion
to fluctuations is that the discount rate is high enough: ρ ≥ g + λn. In the case of
average utilitarianism (λ = 0), this condition reads ρ > g and is necessary and sufficient.
Indeed we have, using equation (8) when the solution is interior:

∂f∗

∂φ
|λ=0 =

1− θ
1− κ1−θ

ρ− g
φ2

.

where the term 1−θ
1−κ1−θ is positive for any choice of θ since κ ∈ (0, 1).

Corollary 3.3. Let hypotheses of Theorem 3.1 be satisfied. Then the optimal evolution
of A(t) and N(t) are

A(t) = A0e
gtκ(e∗)q(t)−q(0)

N(t) = N0e
ntk(e∗)q(t)−q(0)

where the increment q(t)− q(0), that is the number of pandemic outbreaks since date 0,
is Poisson-distributed with mean ε(1− f∗). In particular

E(A(t)) = A0e
(g−ε(1−f∗)(1−κ(e∗)))t, V ar(A(t)) = (E(A(t)))2

(
e(g−ε(1−f∗)(1−κ(e∗)))t − 1

)

E(N(t)) = N0e
(n−ε(1−f∗)(1−k(e∗)))t, V ar(N(t)) = (E(N(t)))2

(
e(n−ε(1−f∗)(1−k(e∗)))t − 1

)
The expressions of previous corollary are particularly transparent: the evolution of

A(t) and N(t) only depends on their pandemic-free (exponential) dynamics and on the
size and the number of shocks (which, in the model, always have the effect of reducing
the quantities by the same factor). The growth rates of the expected productivity
and population are equal to the pandemic-free growth rates (g and n respectively)
adjusted for the effects of possible pandemics given by the size of the loss weighted by
the probability of the pandemics. A large weight of life in the social welfare function
(large λ) causes a severe optimal mitigation policy (small e∗) and thus a large drop
of productivity and a small death toll, together with an important risk-reducing effort
of biodiversity conservation (large f∗). Therefore, the growth rate of the expected
population is unambiguously an increasing function of λ, whereas the effect of λ on the
growth rate of expected productivity is ambiguous.
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Gollier Greenstone Thurnström
and Nigam et al.

mortality
Laisser-faire (% population) 0.54 1.13 0.68

economic cost
(% GDP) 3.73 2
mortality

Mitigation (% population) 0.363 0.52 0.29
economic cost
(% GDP) 5.74 6.2
mortality

Suppression (% population) 0.029
economic cost
(% GDP) 13.53

Table 1. Data

4. Numerical illustration

4.1. Specifications. We use the following specifications for the k and κ functions:

k(e) = k −
(
k − k

) (e
ē

)a
κ(e) = κ+ (κ− κ)

(e
ē

)b
When a ≥ 1 and 0 < b ≤ 1 these specifications satisfy the assumptions made above.

4.2. Data. Gollier (2020) calibrates a SIR model on the COVID-19 pandemic data for
France and performs cost-benefit analysis exercises. He estimates the death toll and the
GDP loss in the no-policy case, and for two strategies in particular: the “suppression”,
or “crush the curve” strategy, consisting in confining 90% of the population for 4 months
to eradicate the virus, and the “flatten-the-curve” strategy, consisting in confining 30%
of the population for 5 months. We use these data for our benchmark calibration.

Needless to say, the parameters used by Gollier to calibrate the SIR model and the
results he obtains are highly uncertain. We report in Table 1 Gollier’s results and
also the results of two other papers, obtained for different countries and with different
methods, to assess whether they give similar or very different information.

Greenstone and Nigam (2020) are only interested in the death toll of the pandemic.
Using the famous Ferguson et al. (2020) simulation model of COVID-19’s spread and
mortality impacts in the United States, they estimate the death toll in the laissez-faire
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k(e) κ(e)

laissez-faire k = 1− 0.0054 κ = 1− 0.0373

mitigation k −
(
k − k

)
eam = 1− 0.00363 κ+ (κ− κ) ebm = 1− 0.0574

suppression k = 1− 0.00029 κ = 1− 0.1353

Table 2. Calibration of the loss functions

situation and in the case of a moderate social distancing policy, taking into account, as
Gollier does, not only direct deaths but also the deaths due to the overwhelming of hos-
pital intensive care units. Thunström et al. (2020) also examine the impacts of social
distancing in the US, but on both the death and the GDP sides. They use epidemi-
ological and economic forecasting to perform a cost–benefit analysis of controlling the
COVID-19 outbreak. We assume here that Gollier’s “flatten the curve” scenario, Green-
stone and Nigam “moderate social distancing” scenario and Thunström et al. “control”
scenario are roughly equivalent in terms of severity and length of the lockdown. Table 1
shows that Gollier and Thunström et al. give similar estimates of the death toll in the
laissez-faire scenario (no policy) and the mitigation (flatten the curve) scenario whereas
Greenstone and Nigam are more pessimistic. For the economic cost of the pandemic in
terms of GDP loss, the results from Thunström et al. we report in the table correspond
to immediate losses (the year of the outbreak). The authors also compute the present
value of GDP losses on a 30-year horizon, that we do not use for comparability with
Gollier’s estimates. Gollier is more pessimistic in the laissez-faire scenario, less so in
the mitigation scenario. But again theses estimates are very uncertain.

4.3. Calibration. We normalize ē to 1.
We use Gollier’s data, as reported in Table 1, to calibrate the parameters of the k

and κ loss functions. The laissez-faire, mitigation and suppression scenarios correspond
respectively to e = ē = 1, e = em unknown and e = 0. We have to calibrate parameters
k, k, κ, κ, em, a and b. The relationships reported in Table 2 allow us to obtain 6 out
of these 7 parameters. We choose to calibrate a/b, set arbitrarily a = 2 and deduce b.
The results are in Table 3.

ē em a b k k κ κ ρ g n φ

1 0.753 2 0.8 0.9946 0.99971 0.8647 0.9627 0.02 0.02 0.005 0.95
Table 3. Results of the calibration of the loss functions, and other
parameters
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We obtain that the mitigation strategy corresponds to a moderate lockdown: social
interactions are reduced by around one quarter (em = 0.753).

The other parameters of the model, namely the discount rate ρ, the deterministic
growth rates of population and productivity n and g, and the aversion to fluctuations
φ are in the range of the parameters found in the literature (Table 3).

suppression

laisser-faire

0.001 0.002 0.003 0.004 0.005
death rate

0.02

0.04

0.06

0.08

0.10

0.12

0.14

productivity loss

Figure 2. Trade-off lives vs economy

4.4. Results. Figure 2 shows the terms of the raw trade-off between the loss of lives
and the loss of GDP, for a mitigation strategy between 0 (suppression), on the left end
of the curve, and ē (laissez-faire), on the right end. This trade-off is monotonous, in
contrast to what Acemoglu et al. (2020) obtain in a model with several age classes. In
their case, if, from the laissez-faire situation, the planner decides to confine the older
age classes, most at risk, then she can at the same time save lives and mitigate the GDP
loss. For more severe mitigation policies, all age classes are confined and the trade-off
becomes similar to ours.

Figure 3 shows the optimal mitigation policies as a function of λ. With our specifi-
cations and calibration, the thresholds of λ/(1− φ) under which there is no mitigation
and above which there is suppression are respectively τ = 10.5672 and τ = +∞. With
φ = 0.95, the lower threshold corresponds to λ = 0.52. In the case of average utilitar-
ianism (λ = 0) and for all λ < 0.52 it is not optimal to engage in mitigation. In the
case of total utilitarianism (λ = 1) we obtain e∗ = 0.44: optimal mitigation is far more
severe that in Gollier (2020)’s mitigation strategy for which e∗ = em = 0.753, that is
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Figure 3. Optimal mitigation policy as a function of λ
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Figure 4. (θ − ε) frontier for λ = 0.9

far more severe than the the “flatten-the-curve” strategy, consisting in confining 30% of
the population for 5 months.

The very recent literature on the cost-benefit analysis of COVID-19 mitigation poli-
cies commonly uses the Value of a Statistical Life (VSL) to monetize the death toll
and compare the benefits of the policy in terms of avoided deaths to its costs in terms
of foregone GDP. We do not need to do that here. In our model, the relative value
of life is VNN

VAA
, the value of the population over the value of productivity, population

and productivity being both valued at the marginal increase of welfare their increase
causes. With our specifications the relative value of life is constant and equal to λ

1−φ . It
only depends on the characteristics of the social welfare function, the degree of partial
altruism λ and the aversion to fluctuations φ.

The optimal biodiversity conservation f∗, given by equation (5), depends on all the
parameters identified above but also on the risk parameters, the risk aversion θ and the
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probability that the pandemic hits absent biodiversity ε. This last parameter is partic-
ularly difficult to calibrate. Instead of engaging in the exercise, we choose to determine
the couples (θ, ε) constituting the frontier between no biodiversity conservation and
biodiversity conservation or, to put things differently, no prevention and prevention of
the pandemics. This frontier is represented on Figure 4 for λ = 0.9. We see that with
our calibration, when risk aversion is around 2 biodiversity conservation becomes opti-
mal for very high values of the probability of pandemics (around 12%), whereas when
risk aversion is around 20 it becomes optimal for values of the probability of pandemics
around 4%. Again, these figures are only illustrative.

0.2 0.4 0.6 0.8 1.0
λ

0.05

0.10

0.15

0.20

0.25

0.30

0.35

f*

Figure 5. Optimal prevention policy as a function of λ, for ε = 0.05

and θ = 8

To compute the optimal prevention policy as a function of λ we choose θ = 10 and
ε = 0.1. Figure 5 shows that there is no biodiversity conservation until λ = 0.6, and that
in the case of total utilitarianism 35% of the land is devoted to biodiversity conservation
for the prevention of pandemics.

5. Conclusion

Following the outbreak of the COVID-19 pandemic a long series of contributions in
theoretical and applied economics have been written and published.

In this work we dig a little not only into the policies to be implemented to mitigate
the effects of the pandemic when it occurs, but also (and above all) into one of the
possible vectors to prevent it.

We propose here, for the first time as far as we know, a theoretical dynamic model
that looks, in the case of a stylized economy, at the economic importance of reducing
the likelihood of the spread of zoonoses through the conservation of biodiversity.
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We consider a family of possible social welfare functions in which the elements of pro-
duction and consumption are combined with the need to combat the excessive mortality
caused by the spread of the virus.

Despite a certain technical complexity (due to the presence of jump processes and of
an Epstein-Zin type utility) the model is completely solved and a discussion about the
impact of various elements at stake (situation of the natural environment, productivity,
preferences) is developed.

Emphasizing a role of “forward looking” instrument, we prove that the biodiversity
conservation is more important when the social welfare functional is characterized by
a lower discount rate and a stronger degree of altruism towards individuals of future
cohorts. Not surprisingly, given the risk-reducing (prevention) effect of biodiversity in
the model, the biodiversity is also more relevant when the risk aversion or the risk of
pandemics is higher.

After calibrating the model using the data from Gollier (2020) we exhibit the terms of
the trade-off between the loss of lives and the loss of GDP for the whole set of mitigation
strategies, from laissez-faire to suppression.

The stylized framework we have developed in this work would enable us to extend our
research in several directions. First, we intend to consider a game-theoretical extension
of the model to study the cost of non-coordination of policies. Second, we would like
to consider uncertainty, disentangling aversion to ambiguity, risk aversion and aversion
to fluctuations. Finally in future developments of the model it would be interesting to
extend the analysis to production functions which are non-linear in labor. Indeed the
variation of the labor supply for health conditions or as a policies’ consequence is one
of the relevant points of mitigation policies evaluation for pandemics (see, for instance,
Kapicka and Rupert, 2020).
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Appendix A. Proofs

Proof of Theorem 3.1. As already mentioned in the main text the HJB equation related
to our maximization problem is

(9) ρ
1− θ
1− φ

V (A,N) = max
v,e

[
Nλ [(1− f)A]1−φ

1− φ
1

((1− θ)V (A,N))
1−φ
1−θ−1

+ VAgA+ VNnN + ε(1− f) (V (κ(e)A, k(e)N)− V (A,N))

]
Denote Ṽ = V (Ã, Ñ). The optimality condition w.r.t. f yields:

(10) 1− f =

(
NλA1−φ

ε(V − Ṽ )((1− θ)V )
1−φ
1−θ−1

)1/φ
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Replacing 1− f in the HJB equation (1) yields:

(11) ρ
1− θ
1− φ

V = max
e

NλA1−φ

1− φ

(
NλA1−φ

ε(V − Ṽ )((1− θ)V )
1−φ
1−θ−1

) 1−φ
φ 1

((1− θ)V )
1−φ
1−θ−1

+ VAgA+ VNnN +

(
NλA1−φ

ε(V − Ṽ )((1− θ)V )
1−φ
1−θ−1

)1/φ

ε(Ṽ − V )

= max
e

φ

1− φ

(
NλA1−φ

) 1
φ
(
ε(V − Ṽ )

)− 1−φ
φ
(

((1− θ)V )
1−φ
1−θ−1

)− 1
φ

+ VAgA+ VNnN

We try to find a solution of the form:

V (A,N) = X
NαA1−θ

1− θ
.

for some real positive parameters α and X. In this case

Ṽ = k(e)ακ(e)1−θV

VA = (1− θ)V
A

VN = α
V

N

Using these expressions in the HJB equation above we get:

ρ
1− θ
1− φ

V = max
e

φ

1− φ

(
NλA1−φ

) 1
φ
[
ε(1− k(e)ακ(e)1−θ)V

]− 1−φ
φ
(

((1− θ)V )
1−φ
1−θ−1

)− 1
φ

+ (1− θ)gV + αnV

i.e.

ρ
1

1− φ
− g − α

1− θ
n

= max
e

φ

1− φ

(
NλA1−φ

) 1
φ

[
ε
(
1− k(e)ακ(e)1−θ)

1− θ

]− 1−φ
φ (

NαA1−θ
)− 1

φ
1−φ
1−θ

X
− 1
φ

1−φ
1−θ

The maximum point for e is given by e∗ which maximizes (2). Choosing

α = λ
1− θ
1− φ

allows us to obtain:

1

1− φ
(ρ− (1− φ)g − λn) =

φ

1− φ

[
ε
(
1− k(e∗)ακ(e∗)1−θ)

1− θ

]− 1−φ
φ

X
− 1
φ

1−φ
1−θ
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i.e. finally (recall that assumption (3) implies ρ− (1− φ)g − λn > 0):

X =


φ

[
ε(1−k(e∗)ακ(e∗)1−θ)

1−θ

]− 1−φ
φ

ρ− (1− φ)g − λn


φ 1−θ

1−φ

Then (10) reads:

(12) 1− f =

(
1− θ

ε (1− k(e∗)ακ(e∗)1−θ)X
1−φ
1−θ

)1/φ

=
(1− θ)(ρ− (1− φ)g − λn)

φε

[
1−

(
k(e∗)

λ
1−φκ(e∗)

)1−θ
]

Since condition (3) is verified this value is in (0, 1).
We finally compute the transversality condition. We need to obtain that

lim
t→∞

e−ρtEV (A(t), N(t)) = 0.

The optimal evolution of A (t) and N (t) are

A(t) = A0e
gtκ(e∗)q(t)−q(0)

N(t) = N0e
ntk(e∗)q(t)−q(0)

Then:

V (A(t), N(t)) =
X

1− θ
N
λ 1−θ

1−φ
0 A1−θ

0 e

(
(1−θ)g+λ 1−θ

1−φn
)
t
κ(e∗)(1−θ)(q(t)−q(0)k(e∗)

λ 1−θ
1−φ (q(t)−q(0)

and

E

(1− θ)V (A(t), N(t))

XN
λ 1−θ

1−φ
0 A1−θ

0

 = e

(
(1−θ)g+λ 1−θ

1−φn−
(

1−κ(e∗)1−θk(e∗)
λ 1−θ
1−φ

)
ε(1−f∗)

)
t

i.e., using the definition of f∗,

E

(1− θ)V (A(t), N(t))

XN
λ 1−θ

1−φ
0 A1−θ

0

 = e

(
(1−θ)g+λ 1−θ

1−φn−
1−θ
φ

(ρ−(1−φ)g−λn)
)
t

So we have e−ρtEV (A(t), N(t))→ 0 as far as

−ρ+

(
(1− θ)g + λ

1− θ
1− φ

n− 1− θ
φ

(ρ− (1− φ)g − λn)

)
< 0

which reduces to the condition asked in (4). �
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Proof of Proposition 3.2. In the case of an interior solution on f∗, equation (5) reads:

f∗ = 1− ρ− (1− φ)g − λn
εφ

1− θ
1− z(e∗)1−θ

with
z(e∗) = k(e∗)

λ
1−φκ(e∗)

and e∗ does not depend on θ. Then

∂f∗

∂θ
=

(ρ− (1− φ)g − λn)[1− (1− (1− θ) ln z(e∗))z(e∗)1−θ]

εφ(1− z(e∗)1−θ)2

∂f∗

∂θ
≥ 0 ⇐⇒ 1−(1−(1−θ) ln z(e∗))z(e∗)1−θ ≥ 0 ⇐⇒ (1−(1−θ) ln z(e∗))z(e∗)1−θ ≤ 1.

Let P (θ) = (1− (1− θ) ln z)z1−θ.

P ′(θ) = ln zz1−θ + (1− (1− θ) ln z)
∂e(1−θ) ln z

∂θ
= (1− θ)(ln z)2z1−θ.

P ′(θ) T 0 ⇐⇒ θ Q 1.

P is therefore maximum for θ = 1, and as P (1) = 1 we can conclude that indeed
P (θ) ≤ 1. f∗ is an increasing function of θ.

Regarding the dependence of f∗ on λ, we have:

∂f∗

∂λ
=

1

εφ

1− θ
1− z(e∗)1−θ︸ ︷︷ ︸

>0

n− (ρ− (1− φ)g − λn)
(1− θ)z(e∗)−θ

1− z(e∗)1−θ︸ ︷︷ ︸
>0

∂z(e∗)

∂λ


∂z(e∗)

∂λ
= z(e∗)

[
1

1− φ
ln k(e∗) +

(
λ

1− φ
k(e∗)′

k(e∗)
+
κ(e∗)′

κ(e∗)

)
∂e∗

∂λ

]
According to the optimality condition defining the mitigation policy (equation (7)) the
term in parenthesis on the right-hand side member of this equation is nil. Then

∂z(e∗)

∂λ
= z(e∗)

1

1− φ
ln k(e∗) < 0,

from which we conclude that ∂f∗

∂λ > 0.

Finally, regarding the dependence of f∗ on φ, we have:

∂f∗

∂φ
=

1

εφ

1− θ
1− z(e∗)1−θ︸ ︷︷ ︸

>0

ρ− g − λnφ
− (ρ− (1− φ)g − λn)

(1− θ)z(e∗)−θ

1− z(e∗)1−θ︸ ︷︷ ︸
>0

∂z(e∗)

∂λ


with

∂z(e∗)

∂φ
= z(e∗)

1

(1− φ)2
ln k(e∗) < 0.
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The sign of ∂f∗

∂φ is therefore ambiguous. A sufficient condition for it to be positive is
ρ ≥ g + λn, that is a high enough discount rate. �
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