## Ports and their influence on local air pollution and public health

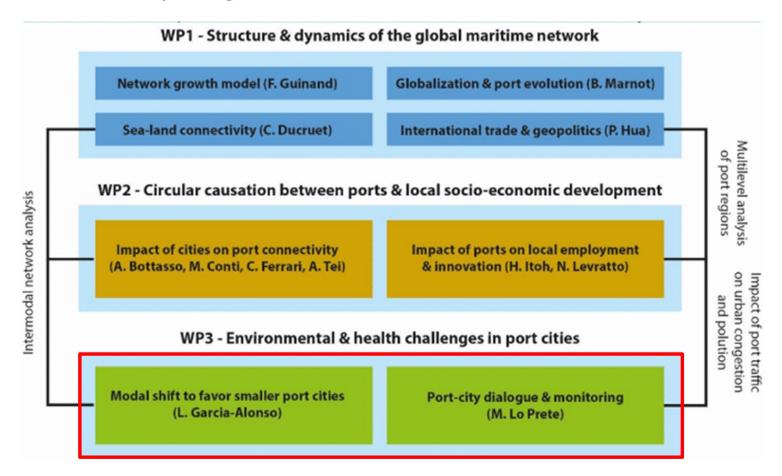
César Ducruet Hidekazu Itoh Mariantonia Lo Prete Barbara Polo Martin Mame Astou Sene Ling Sun Yoann Pigné







### Origins of this research


- Work for the World Health Organisation (WHO) on environment and health in European port cities, 2020-2022 (unpublished)
- ANR-funded research project hosted at EconomiX, 2023-2026







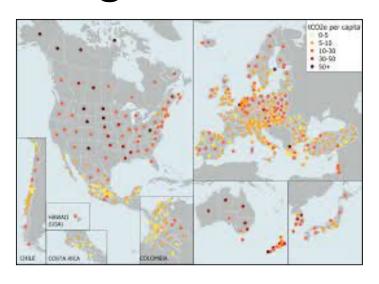
### The ANR project 'MAGNETICS' 2023-2026

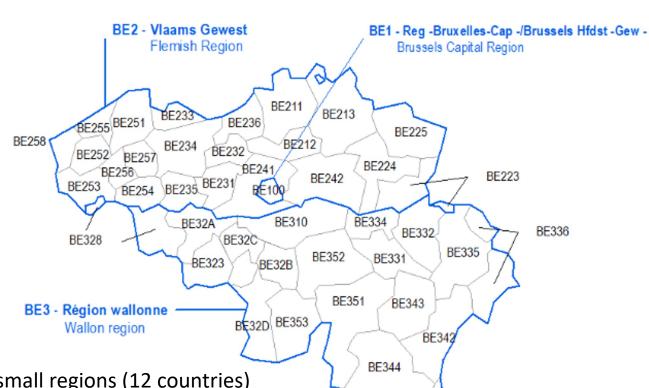


### Background and research question

- Literature: numerous analyses of shipping and port pollution
- Increasing number of analyses about urban sustainability
- Only a handful of papers deal explicitly with ports and health

 Today's presentation: is having port(s) detrimental to the environmental and health conditions of cities and regions?


| Characteristics            | Environmental studies                                                               | Health studies                                                                                                                                  |  |  |
|----------------------------|-------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Specialization             | Transport studies (operations research, social sciences) and environmental sciences | Medical sciences (e.g. public health epidemiology), interdisciplinary                                                                           |  |  |
| Methodology                | Measurement and mapping of pollutions considered as health risks                    | Cohort studies; model-based analyses; correlation between population exposure to hazards and health; often cross-sectional or ecological design |  |  |
| Data and monitoring        | Pollutions and emissions from different sources, geocoding                          | Hospital admissions, premature deaths, diseases, socioeconomic status, gender, age, habits                                                      |  |  |
| Comparability and timeline | Cross-comparisons, static                                                           | Monographs, time series                                                                                                                         |  |  |
| Decision support           | Technical and/or organizational solutions, policy implications                      | Limited discussion on actors and governance                                                                                                     |  |  |
| Health impacts             | Health impacts sometimes implicit but mostly not directly discussed                 | Health impacts explicit                                                                                                                         |  |  |


one common point: studies usually done at the intra-urban level / lack of systematic, quantitative, international analyses

## A handful of studies on seaports & health

- Civitavecchia (Bauleo et al., 2019): people living in areas with higher concentrations of PM<sub>10</sub> or NOx are younger and have a lower socioeconomic status than in less polluted areas; residents near the port have higher mortality from all cancers and neurological diseases,
- Brindisi (Gianicolo et al., 2013): health risks (i.e., unplanned hospital admissions) increase for people living under prevailing winds carrying PM<sub>10</sub> and NO<sub>2</sub> and coming from port and industrial areas;
- Taranto (Vigotti et al., 2014): the district most affected by the port and steelworks (i.e., young age, low socioeconomic status, high deprivation index, and highest SO<sub>2</sub> mean concentration) locates at distance from the port due to topography;
- Eight Mediterranean cities (Viana et al., 2020): shipping causes fewer premature deaths than vehicular traffic, though emissions from both remained comparable in magnitude;
- U.S. ports (Gillingham and Huang, 2021): air pollution from U.S. ports affects health outcomes but differ by race, as respiratory hospital visits, heart-related visits, and psychiatric visits are three times higher for Black people than for whites.

# Two levels of analysis: small and large regions





BE341

BE345

Study area: OECD countries

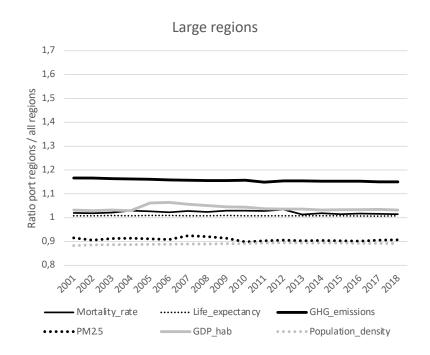
Study period: 2001-2018

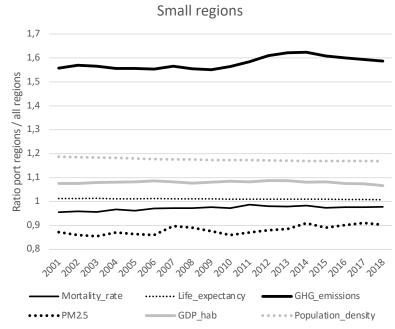
Nearly 5,000 ports

• 245 large regions (26 countries) & 164 small regions (12 countries)

Merger of ports belonging to the same region

Collection of « natural data » via GIS

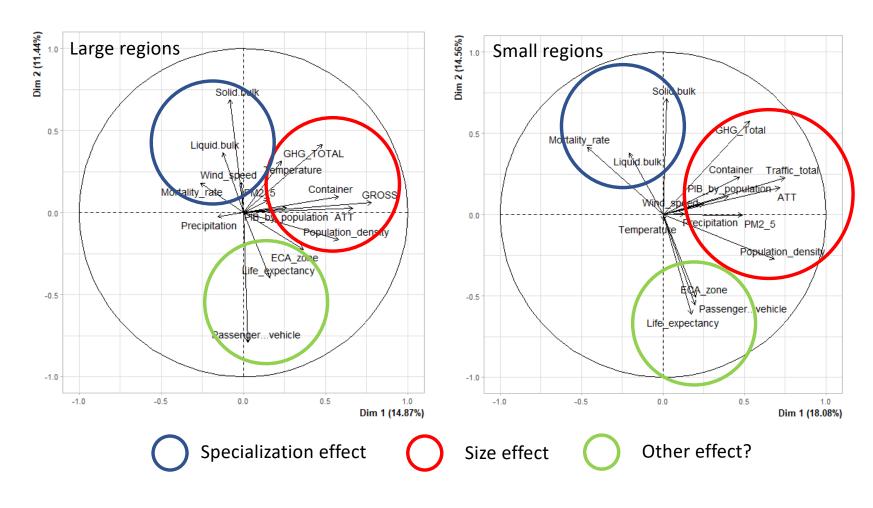

#### Database: OECD territorial data + the Lloyd's List

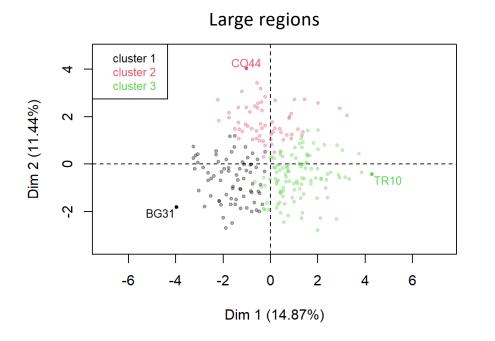

| Category       | Variable                                                                          | Description                                         |  |  |  |
|----------------|-----------------------------------------------------------------------------------|-----------------------------------------------------|--|--|--|
| Port traffic   | Total vessel traffic                                                              | Gross tonnage (GRT) (LN)                            |  |  |  |
|                | Containers, liquid bulks, passengers & vehicles, solid bulks                      | % in regional total                                 |  |  |  |
|                | Average ship turnaround time                                                      | Average number of days spent by vessels in ports    |  |  |  |
|                | Port dummy                                                                        | 0/1                                                 |  |  |  |
|                | Emission Control Area (ECA)                                                       | 0/1                                                 |  |  |  |
| Geography      | Wind speed                                                                        | Knots                                               |  |  |  |
|                | Precipitations                                                                    | 0.01 inches                                         |  |  |  |
|                | Temperature                                                                       | Farenheit                                           |  |  |  |
| Pollution      | Particulate matter (PM <sub>2.5</sub> ) emissions                                 | Average level experienced by the population (μm/m³) |  |  |  |
|                | Total CO <sub>2</sub> equivalent emissions                                        | Metric tons (LN)                                    |  |  |  |
|                | CO <sub>2</sub> equivalent emissions by source (transport, industry)              | % in total emissions                                |  |  |  |
| Health         | Mortality rate                                                                    | No. deaths per 1,000 people                         |  |  |  |
|                | Mortality rate by cause (respiratory system, circulatory system, transport)       | % in total deaths                                   |  |  |  |
|                | Life expectancy at birth                                                          | No. years                                           |  |  |  |
| Socio-economic | Gross Domestic Product (GDP) per capita                                           | \$US per inhabitant (LN)                            |  |  |  |
|                | Population density                                                                | No. inhabitants per km² (LN)                        |  |  |  |
|                | Employment in manufacturing, heavy industries & energy, transport & accommodation | % in regional total                                 |  |  |  |

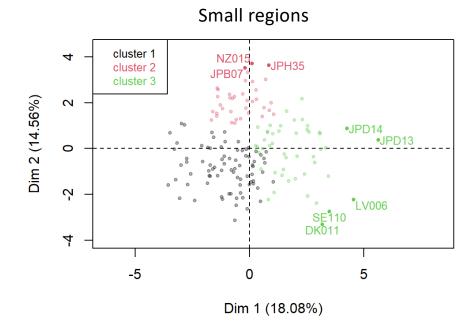


Data changed to location quotients to avoid the country bias

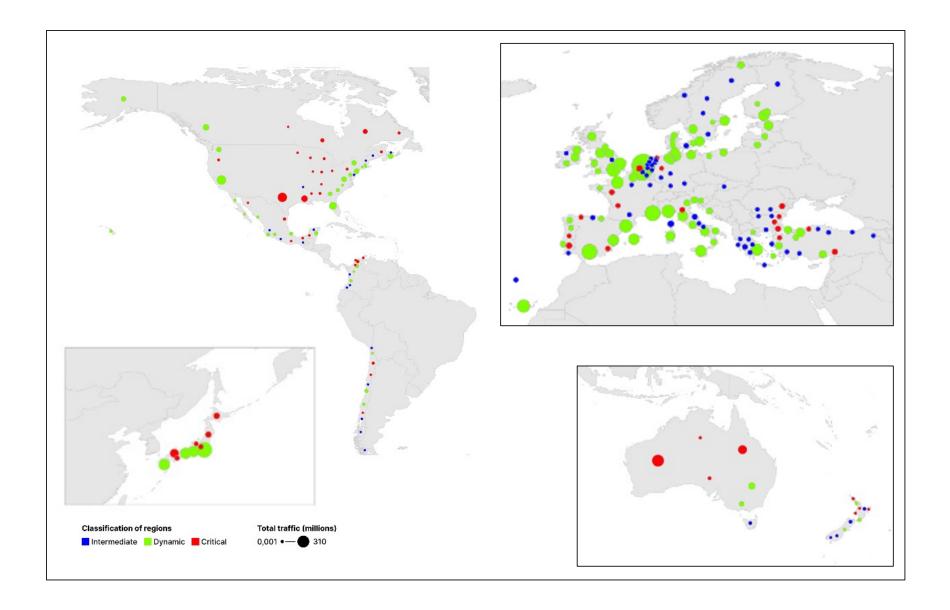
#### Port regions are more polluted by GHG...

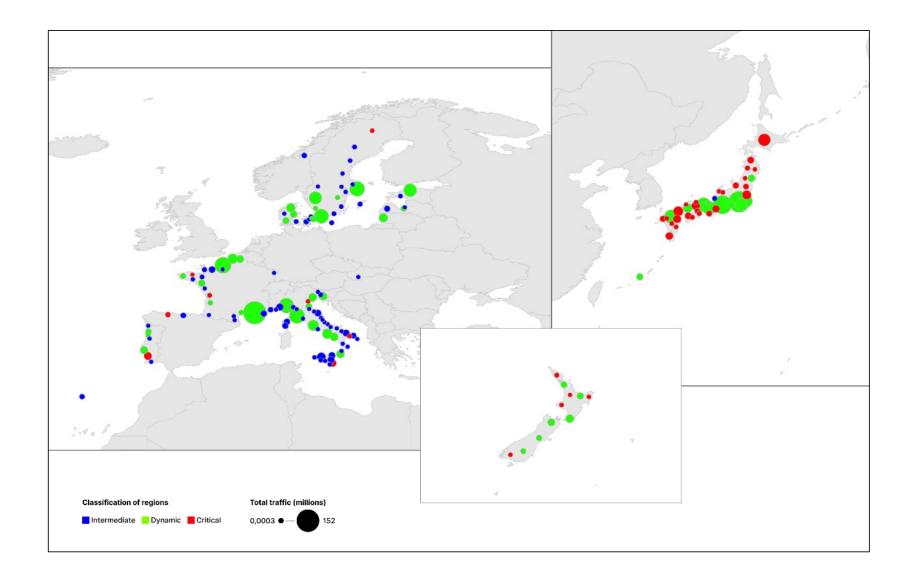



Richer and more densely populated (busier)


## Factor analysis: two main trends








|                     | Large regions        |                           |                       | Small regions        |                           |                       |  |
|---------------------|----------------------|---------------------------|-----------------------|----------------------|---------------------------|-----------------------|--|
|                     | Dynamic port regions | Intermediate port regions | Critical port regions | Dynamic port regions | Intermediate port regions | Critical port regions |  |
| GHG_emissions       | 3.31                 | 2.35                      | 3.60                  | 2.28                 | 1.38                      | 2.57                  |  |
| PM2.5               | 0.94                 | 0.92                      | 0.95                  | 1.01                 | 0.87                      | 0.94                  |  |
| Mortality_rate      | 0.99                 | 1.06                      | 1.09                  | 0.99                 | 1.09                      | 1.22                  |  |
| Life_expectancy     | 1.00                 | 1.00                      | 0.98                  | 1.00                 | 0.99                      | 0.98                  |  |
| Density_population  | 1.14                 | 0.65                      | 0.69                  | 1.01                 | 0.40                      | 0.28                  |  |
| GDP_capita          | 1.00                 | 0.85                      | 1.02                  | 1.02                 | 0.79                      | 0.97                  |  |
| Total_traffic       | 17.64                | 13.27                     | 16.29                 | 17.01                | 13.60                     | 15.61                 |  |
| Containers          | 24.95                | 6.31                      | 9.48                  | 22.45                | 1.58                      | 9.96                  |  |
| Liquid_bulks        | 12.64                | 16.57                     | 27.24                 | 12.33                | 14.25                     | 24.05                 |  |
| Passengers_vehicles | 49.16                | 43.60                     | 12.29                 | 47.64                | 51.56                     | 21.93                 |  |
| Solid_bulks         | 7.99                 | 8.50                      | 41.76                 | 9.04                 | 3.62                      | 34.01                 |  |
| ATT                 | 12.74                | 7.22                      | 10.49                 | 11.50                | 6.71                      | 8.41                  |  |
| ECA_zone            | 0.46                 | 0.27                      | 0.20                  | 0.32                 | 0.28                      | 0.05                  |  |
| Wind_speed          | 1.00                 | 0.93                      | 1.13                  | 1.21                 | 1.06                      | 1.04                  |  |
| Precipitations      | 0.91                 | 1.14                      | 0.96                  | 1.25                 | 0.90                      | 0.90                  |  |
| Temperature         | 1.01                 | 0.96                      | 1.06                  | 1.01                 | 1.02                      | 1.00                  |  |





### Port impact on pollution and health

#### **Pollution**

- The port dummy has a significant and positive influence on GHG
- But not for PM2.5: this pollution is de facto lower on the coast due to winds (significant and negative influence of wind speed on PM2.5)
- Higher temperatures foster pollution

#### **Health**

- port dummy has a significant and positive influence on mortality but only for large regions
- PM2.5 lowers the life expectancy

## Traffic impact on pollution and health

#### **Pollution**

- Total traffic: significant and positive effect on GHG emissions
- As well as ship turnaround time
- Negative effect of belonging to an ECA zone
- Solid bulks increase GHG emissions; liquid bulks and passenger traffic increase PM2.5

#### **Health**

- Total traffic increases mortality for all regions, but lowers life expectancy for small regions only
- Average ship turnaround time increases mortality and decreases life expectancy

Thanks for your attention !!

cesar.ducruet@economix.fr