
Endogenous Uncertainty and Credit Crunches∗

Ludwig Straub

Harvard

Robert Ulbricht

Toulouse School of Economics

July 25, 2018

Abstract

We develop a theory of endogenous uncertainty where the ability of investors to learn about

firm-level fundamentals declines during financial crises. At the same time, higher uncertainty

reinforces financial distress, causing a persistent cycle of uncertainty, pessimistic expectations,

and financial constraints. Through this channel, a temporary shortage of funds can develop into

a long-lasting funding problem for firms. Financial crises are characterized by increased credit

misallocation, volatile asset prices, high risk premia, an increased cross-sectional dispersion of

returns, and high levels of disagreement among forecasters. A numerical example suggests that

the proposed channel may significantly delay recovery from financial shocks.
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1 Introduction

Financial crises often entail deep and long-lasting recessions (Reinhart and Rogoff, 2009; Hall,

2014; Ball, 2014). A common view gives a central role to uncertainty, both as an amplifier of

financial distress and a source of slow recovery from financial shocks.1 This paper explores this idea,

developing a theory that formalizes the interaction between financial constraints and uncertainty.

The theory provides a narrative on how a temporary disturbance of the financial sector is

reinforced and amplified by endogenously rising uncertainty, developing into a long-lasting crisis of

the real economy. The theory is consistent with a number of stylized facts from previous financial

crises, such as the one in 2008/09: (i) persistently reduced hiring and output; (ii) volatile asset prices

and high risk premia; (iii) an increased cross-sectional dispersion of returns (iv) the contemporaneous

increase in measured uncertainty2; and (v) forecasts and expectations marked by high levels of

pessimism (relative to the true state of nature) as well as high levels of disagreement among

forecasters (Senga, 2016).

In the model, a firm’s access to funding depends on how investors assess the firm’s business

conditions. If investors find it likely that a firm is productive, funding to that firm is generous and

the firm achieves its unconstrained optimum. If, however, investors are pessimistic or uncertain

regarding a firm’s business potential, firms are financially constrained. When constraints are

sufficiently tight, firms are forced to become inactive. The key friction in our model is that agents

do not learn the productivities of inactive firms even though they perfectly know the productivities

of active firms.

In this environment, a temporary tightening of a firm’s financial constraint can trigger a persistent

(and perfectly rational) period of increasing uncertainty and inactivity that can persistently disrupt

the firm’s access to funds. We refer to such episodes as “funding freezes”. Interestingly, the dynamics

of the second moments of agents’ beliefs interact with the first moments: lacking new information

during a funding freeze, any initially pessimistic beliefs persist into the future, making it even less

likely to exit the funding freeze.

The persistent effects of financial shocks at the firm-level carry over to aggregate financial shocks.

In particular, an aggregate shock to firms’ financial constraints increases the fraction of inactive

firms. This leads to greater uncertainty among investors and a rise in credit misallocation. The

misallocation manifests itself through decreases in output and hours that may persist even after

1For example, Olivier Blanchard (2009) speculated at the height of the recent financial crisis that “the crisis would
largely go away” if it were not for uncertainty, whereas Bloom et al. (2016) document how uncertainty was repeatedly
recognized by the Federal Open Market Committee as a driver of both, the recession that followed the dot-com bubble
in 2001, and the recent Great Recession. An increasing number of empirical studies further substantiates these ideas,
pointing to the Great Recession being likely “an acute manifestation of the toxic interaction between uncertainty and
financial shocks” (Caldara et al., 2016; see also Stein and Stone, 2013, Stock and Watson, 2012, and Gilchrist, Sim
and Zakraǰsek, 2016).

2Unusually high levels of uncertainty during the recent financial crisis have been documented using a variety of
different approaches (see, e.g., Jurado, Ludvigson and Ng, 2015, Born, Breuer and Elstner, 2017, and the studies cited
in Footnote 1). Most closely related to the concept of uncertainty explored in this paper is the forecast-based evidence
given in Senga (2016), which documents a sharp increase in uncertainty regarding firm-level business conditions among
financial analysts.
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financial stress has subsided. At the same time, the interaction between investors’ uncertainty

and firms’ funding conditions can account for an increase in investors’ average disagreement and

pessimism (even though all signals are unbiased), an increase in asset price volatility, and a divergence

in asset returns.

We explore the quantitative potential of our model in a simple calibration to the U.S. economy.

A novel aspect of our calibration is the explicit use of micro data on analyst forecasts, which we

use to pin down the information parameters of our model. Our numerical exercise suggests that

endogenously rising uncertainty may significantly delay recovery from financial shocks. Specifically,

we look at the model’s response to an exogenous tightening in financial constraints (with a half-life

of 5 quarters), and compare it with counterfactual responses, in which we shut down the impact

on uncertainty. While in the fixed-uncertainty counterfactual such a financial shock produces a

short-lived recession with the same 5-quarter half-life as the exogenous shock, the same shock

produces a long-lasting recession with a half-life of 11 quarters in the economy with endogenous

uncertainty.

Finally, we provide direct evidence for the link between uncertainty and financial constraints

predicted by the model. Using a combination of firm-level survey data, accounting data, and stock

prices, we look at correlations of measures of firms’ financial constraint and several proxies for

uncertainty. Supporting the main mechanism of our model, we find a significantly positive correlation

between financial constraints and all uncertainty proxies that is in line with the model-implied

correlations.

Related literature Our paper is related to a large and growing literature that introduces dispersed

information into macroeconomics (e.g., Lorenzoni, 2009; Angeletos and La’O, 2010, 2013; Amador

and Weill, 2010, 2012; Maćkowiak and Wiederholt, 2015; Hassan and Mertens, 2014, 2017; Acharya,

2013; Hellwig and Venkateswaran, 2014; Chahrour and Gaballo, 2016). La’O (2010) shares with us

the combination of information heterogeneities with financial frictions, but considers a static model

with a constant level of uncertainty. David, Hopenhayn and Venkateswaran (2016) also analyze

information frictions as a source for factor misallocation, but focus on long-run consequences rather

than fluctuations driven by financial shocks.

Our paper also contributes to a recent literature that explores the role of endogenous fluctuations

in uncertainty for business cycles, including van Nieuwerburgh and Veldkamp (2006), Ordoñez

(2013), and Fajgelbaum, Schaal and Taschereau-Dumouchel (2017).3 In these papers, the level

of aggregate investment determines the amount of information and hence aggregate uncertainty.

An important distinction relative to these papers is this paper’s focus on uncertainty regarding

firm-specific fundamentals rather than economic aggregates (see Senga 2016 for a similar approach).4

3Studies of endogenous uncertainty in financial market settings include Veldkamp (2005), Yuan (2005), Albagli
(2011), and Sockin (2017). However, none of these papers considers spillovers from financial distress on the real
economy that are at the core of this paper.

4In a previous version of this paper, we have explored a version of our model where investors are learning about
aggregate business conditions instead (Straub and Ulbricht, 2012). While the two versions of the model are qualitatively
similar, we argue here that learning at a firm-level is more likely to be quantitatively important.
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On the one hand, this allows us to explain the above-mentioned stylized facts relating to the cross-

sectional distribution of firms and investor beliefs. On the other hand, this also helps overcoming

an important challenge of the endogenous uncertainty literature; namely that often unrealistically

large fluctuations in uncertainty are needed to generate a significant amplification. In our model,

learning breaks down when a firm is constrained, not when aggregate economic activity comes to

a stand-still, implying that the aggregate economy scales approximately proportionally with the

fraction of firms being constrained. Accordingly, even small variations in average uncertainty, can

have severe consequences.

A second difference to the existing endogenous uncertainty literature is that this paper links

financial crises and uncertainty through a novel mechanism, explaining why high levels of uncertainty

are particularly prevalent during financial crises. In our model, it is not the overall level of economic

activity that determines how much information about firms’ fundamentals is revealed; rather it is

the degree to which firms’ actions (investments, employment, production, etc) actually reflect these

fundamentals. This insight naturally implies that when a firm’s behavior is dictated by financial

constraints, rather than fundamentals, its actions carry less information.5

In our model, the emergence of uncertainty from financial distress interacts with propagation

of uncertainty through the financial sector. In support of such a financial transmission channel,

Gilchrist, Sim and Zakraǰsek (2016) present evidence that uncertainty strongly affects investments

via increasing credit spreads, but has virtually no impact on investments when controlling for credit

spreads. The financial transmission of uncertainty relates our model to a recent literature around

Christiano, Motto and Rostagno (2014), Arellano, Bai and Kehoe (2016), and Gilchrist, Sim and

Zakraǰsek (2016), which stresses the importance of uncertainty (or risk) shocks in the financial

sector, but treats these shocks as exogenous.6

The predictions of our model are also broadly consistent with a recent empirical literature that

measures the effects of financial constraints. Giroud and Mueller (2017) show that establishments

of firms that are more likely to be financially constrained were heavily affected by falling collateral

values (house prices). In fact, they show that the entire correlation of employment loss and house

prices is explained by these arguably financially constrained firms. Similar in spirit, Chodorow-Reich

(2013) documents that firms borrowing from less healthy lenders experience relatively steeper declines

in employment during the financial crisis, consistent with the interpretation that these firms faced

tighter financial constraints. Our model clarifies how an intense but relatively short-lived financial

crisis can still translate into persistent financial constraints for firms, making it much harder for

5In the current draft, we simplify the exposition by looking at the extreme case where a firm’s action is either fully
informative (it operates) or fully uninformative (it is shut down by the financial market). The insight is, however,
more general, as we have shown in previous versions of this paper where information is lost even for constrained but
active firms.

6Two other related strands of the literature study the propagation of exogenous uncertainty through real options
as in Bloom (2009), Bloom et al. (2016), and Bachmann and Bayer (2013), and through risk premia as in the time-
varying (disaster) risk literature (e.g., Gabaix, 2012; Gourio, 2012). Related to the latter, Kozlowski, Veldkamp and
Venkateswaran (2017) explore a model where agents learn about tail-risks and where belief revisions after short-lived
financial shocks can have long-lasting effects. Similar, Nimark (2014) presents a mechanism that increases uncertainty
after rare events, if news selectively focus on outliers.
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them to weather such periods and retain their employment and capital.

Outline The plan for the rest of the paper is as follows. The next section introduces the model

economy. Section 3 characterizes the equilibrium. Section 4 explains how persistent funding freezes

can emerge at the firm level. Section 5 analyzes the model’s response to aggregate shocks. Section 6

tests the mechanism at the core of the paper using micro data. Section 7 concludes and offers a few

policy insights.

2 Model

There is a continuum of islands of mass unity, indexed by i. Each island is inhabited by a single firm

and a representative household, who interact in a local labor market and a local financial market.

The firm uses the labor provided by the household to produce a differentiated consumption good.

To finance its wage bill, the firm must obtain working capital funding from the household. The

ability of the firm to obtain funding is restricted by a pledgeability constraint, which limits the

fraction of revenues that the firm can pledge in exchange for funds. Time is discrete with an infinite

horizon and is indexed by t.

Preferences and technology Households have GHH-preferences (Greenwood, Hercowitz and

Huffman, 1988), maximizing

Et
∞∑
τ=t

βτ−t
1

1− γ
u1−γ
i,τ

with

ui,t = Ci,t −
1

1 + ζ

(
L1+ζ
i,t − v

)
,

where Li,t are hours worked, Ci,t is a composite consumption good given by

Ci,t =

[∫ 1

0
C
ξ−1
ξ

i,j,t dj

] ξ
ξ−1

,

and Ci,j,t is the consumption of good j by the household on island i. The preference parameters

satisfy γ, v > 0, ζ ≥ 0, β ∈ (0, 1) and ξ > 1.7

The output of the firm on island i is given by

Yi,t = Ai,t max{Li,t − φ, 0}, (1)

where φ > 0 is a fixed amount of overhead labor as in Bartelsman, Haltiwanger and Scarpetta

7Throughout we assume that v is sufficiently large so that ui,t ≥ 0 a.s. at the households’ interior optimal labor
supply. This is needed because Ci,t will be random at the time where Li,t is chosen by the household.

4



(2013). Log-productivities are given by

logAi,t = ρ logAi,t−1 + εi,t, (2)

with ρ ∈ (0, 1), and the innovations εi,t being i.i.d. (across islands and time), normal, with zero

mean and variance σ2
ε .

Pledgeability constraint Each period has two subperiods, a morning and an afternoon. Firms

operate subject to a working capital constraint that requires them to finance their wage bill in the

morning whereas production realizes in the afternoon. To raise funds, each firm issues claims on

current-period revenues to the local household, but is restricted in its ability to raise funds as only

a fraction χi,t ∈ (0, 1] of revenues is pledgeable.8 Let Qi,t denote the equilibrium valuation of firm

i’s expected revenues by the local household. Then the constraint on firm i’s labor input is given by

Li,t ≤ L̄i,t ≡ χi,tQi,t/Wi,t. (3)

The pledgeability limit χi,t is i.i.d. across islands, has finite support X ⊂ (0, 1], and follows a Markov

process with an aperiodic and irreducible transition matrix Ξ.

The timing of events within each period can be summarized as follows.

• Morning: pledgeability limits {χi,t} realize; labor and financial markets operate; firms issue

claims on pledgeable revenues and pay wages to households.

• Afternoon: productivities {Ai,t} realize and production occurs; product markets operate;

claims on revenues mature and dividends are paid; households consume.

Households Because the household on island i is the only one trading firm i’s assets, we have

that in equilibrium the local household holds a claim on χi,t units of the firm’s revenues. In addition

to its claims on pledgeable revenues, the local household is also residual shareholder to the local

firm’s profits. Accordingly, the budget constraint in the afternoon is

Ci,t = Zi,t + Wi,tLi,t︸ ︷︷ ︸
wage-earnings

+ χi,t (Pi,tYi,t −Qi,t)︸ ︷︷ ︸
claim on pledgeable revenues

+ (1− χi,t)Pi,tYi,t + χi,tQi,t −Wi,tLi,t︸ ︷︷ ︸
residual dividends

,

where Zi,t is the payoff from Arrow-Debreu securities that allow households to complete markets

in the morning contingent on all available information (described below). In this environment,

households can effectively insure themselves against all consumption losses that arise from the local

8Limited pledgeability can be motivated in different ways, including limited commitment, private benefits, or
incentives to counter moral hazard (e.g., Holmstrom and Tirole, 1997). Alternatively, we could have assumed that
firms issue new stock to finance their working capital, but are limited in the ratio of new to old stock that they can
issue, which can be shown to deliver identical results. More general, we can think of χi,t as a proxy for a firm’s
dependence or ability to raise external funding.
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firm being financially constrained (which is determined in the mornings), whereas they continue to

be exposed to uncertainty about current operating profits (which materialize in the afternoons).

From the households’ optimization problem it follows that local labor supply is

Wi,t = Lζi,t. (4)

Aggregating across islands, the inverse aggregate demand for good i is

Pi,t =

(
Yi,t
Yt

)−1/ξ

Pt, (5)

where Yt ≡
∫ 1

0 Ci,t di is aggregate demand for the composite good and

Pt ≡
(∫ 1

0
P 1−ξ
i,t di

)1/(1−ξ)

is the composite price index. Henceforth, we normalize Pt = 1, defining the composite consumption

good to be the numeraire.

Firms There is a single firm on each island. Firms are monopolistic competitors in the goods

market, and monopsonists in the local labor market. The latter assumption is made for tractability

reasons and ensures that firms always produce as long as they can obtain funding from the financial

market. Observe that some degree of monopolity or monopsony power is necessary for firms to earn

their fixed costs.

Subject to (3)–(5), the firm’s objective is to maximize the expected present value of its profits,

given by

Et
∞∑
τ=t

mi,τ |t (Pi,τYi,τ −Wi,τLi,τ ) , (6)

where mi,τ |t = βτ−tu−γi,τ /Et[u
−γ
i,t ] is the stochastic discount factor (between date-t mornings and

date-τ afternoons) of the local household.9

Information We consider a simple information structure where all learning is public and agents

have complete information about the realizations of χi,t. Moreover, there is no aggregate uncertainty;

i.e., agents have complete information about the aggregate state including the cross-sectional

distribution over (Ai,t, χi,t). The only source of uncertainty is a lack of information about the local

productivities Ai,t of each individual island. Specifically, because labor inputs and outputs are

perfectly observable, agents learn the productivities of all operating firms in the afternoon of each

period. By contrast, current productivities remain unknown for inactive firms. Let Bt = {i : Li,t > 0}
denote the set of active firms. Then the information set available to agents in the morning of date t

9Here we make the convenient assumption that firms maximize discounted profits, acting in the interest of both
holders of equity and revenue claims. Similarly results accrue if firms maximize only shareholder’s utility.
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is

It = {χi,t}i∈[0,1] ∪ {Ai,t−1}i∈Bt−1 ∪ It−1.

Discussion Firms in our model are financed each period by pledging a fraction of their revenues

that is then traded in a financial market. While this is, of course, overly simplistic, what ultimately

matters for our model is that a firm’s funding supply depends on market beliefs about firm

fundamentals. Our model achieves this in an admittedly crude but practical way, without having to

specify a full-blown banking sector.10

A crucial assumption in our modeling is that financial markets are unable (or unwilling) to

perfectly hedge firm-specific risks. This is consistent with Barber and Odean (2000) and Goetzmann

and Kumar (2008), documenting that the vast majority of U.S. investors are under-diversified.11

As usual, under-diversification can be motivated in different ways, including home bias (Coval and

Moskowitz, 1999), prior expertise or specialization in information collection (Van Nieuwerburgh and

Veldkamp, 2010), and incentive-constraints that require investors to have some “skin in the game”

for monitoring purposes (Holmstrom and Tirole, 1997). Alternatively, one can also think of our

setting as a short-cut to a class of models where investors are risk-neutral but where entrepreneurs

are exposed to idiosyncratic risks due to incentive-considerations and hence need to be compensated

for those risk-exposures (e.g., Holmstrom, 1979).

3 Equilibrium Characterization

In this section, we provide a characterization of the equilibrium in the economy. We start by solving

an unconstrained firm’s problem and then include the asset market. Finally, we study the dynamics

of beliefs, which represent the state variables in this economy. We formally define the notion of

equilibrium in the last subsection.

3.1 The Firm Problem

The characterization of the firm problem is facilitated by two facts. First, conditional on households

willing to fund the firm (Qi,t > 0), it is both feasible and optimal for the firm to operate (Li,t > φ).

Second, conditional on operating, the continuation value of the firm is independent of the current

scale of production. Accordingly, the firm’s desired level of operation is the solution to a static

profit maximization problem. The following lemma summarizes the result.

10Our assumption that firms are funded against cash flows is consistent with Lian and Ma (2017), who document
that 80 percent of non-financial corporate debt is based predominately on cash flows from operating revenues rather
than being collateralized by physical assets.

11Relatedly, a recent body of evidence documents that idiosyncratic risk significantly affects the cost of capital
to firms in stocks (Goyal and Santa-Clara, 2003; Fu, 2009), bonds (Campbell and Taksler, 2003) and in bank loans
(Quijano, 2013).
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Lemma 1. Labor inputs are given by Li,t = min{L̄i,t, Lopt
i,t }, where

Lopt
i,t = arg max

Li,t
Et
[
mi,t|t (Pi,tYi,t −Wi,tLi,t)

]
.

Substituting for (4) and (5), the optimal scale of production Lopt
i,t , conditional on being active, is

characterized by the unique positive solution to

λξ(Lopt
i,t − φ)(Lopt

i,t )ξζ = θi,t, (7)

where λ ≡ (1 + ζ)/(1 − 1/ξ) defines the markup and θi,t ≡ Et[mi,t|tA
1−1/ξ
i,t ]ξYt is a risk-adjusted

measure of expected business conditions.

In the computations in Section 5, it will prove useful to work with a log-linear approximation

of mi,t|t.
12 This allows us to explicitly express θi,t in terms of expected log-productivity, µi,t ≡

E[logAi,t|It], and the corresponding uncertainty, Σi,t ≡ Var[logAi,t|It],

log θi,t = (ξ − 1)(µi,t − γ̃Σi,t) + log Yt, (8)

where γ̃ defines the “effective degree of risk-aversion” (see Appendix A.2 for details).13

3.2 Equilibrium on the Asset Market

Standard asset pricing implies that claims on the firm’s revenue trade at a price

Qi,t = Et[mi,t|tPi,tYi,t]. (9)

Equations (9) and (3) define the usual loss-spiral between asset prices and financial constraints as

in Kiyotaki and Moore (1997) and Bernanke, Gertler and Gilchrist (1999). The following lemma

states the solution to the resulting fixed-point problem.

Lemma 2. The funding constraint L̄i,t, conditional on being binding, is defined by the largest

solution to14

L̄
ξ(1+ζ)
i,t = χξi,tθi,t max{L̄i,t − φ, 0}ξ−1. (10)

Equipped with Lemma 2, we are now ready to characterize the equilibrium scale of production.

12The approximation is not important for any of the formal characterizations that follow.
13Hypothetically, γ̃ can become negative for small γ. This is because Et[Ai,t] is increasing in Σi,t due to the

convexity of the exponential function, potentially dominating the risk-aversion of households. Throughout we focus on
the interesting case where γ̃ is positive.

14Aside from the trivial solution L̄i,t = 0, there can be up to two additional solutions. Only the largest of these
solutions constitutes a stable equilibrium in the sense that the household does not strictly prefer to offer a marginally
higher price than the equilibrium price Qi,t. That is, if there exist two solutions L̄′ < L̄′′, then the expected utility
gain from extending production to some L̄ ∈ (L̄′, L̄′′) strictly outweighs the additional cost of buying the claim.
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Proposition 1. There are unique thresholds θ∗(χ) ≤ θ∗∗(χ), such that

Li,t =


L̄i,t = 0 if θi,t < θ∗(χi,t)

L̄i,t > φ if θi,t ∈ [θ∗(χi,t), θ
∗∗(χi,t)]

Lopt
i,t > φ if θi,t > θ∗∗(χi,t).

For all θ ≥ θ∗(χ), Lopt and L̄ are defined by (7) and (10), and are increasing in θ. The thresholds

are given by

θ∗(χ) = χ−ξλξ−1

(
1 + ζ

1 + ξζ
ξφ

)1+ξζ

(11)

θ∗∗(χ) =

χξζλξ(1+ζ)
(

φ
λχ−1

)1+ξζ
if χ ≥ λ−1

∞ else.
(12)

Proposition 1 provides a complete characterization of the equilibrium level of production on

each island as a function of risk-adjusted business expectations θi,t and the pledgeability limit χi,t.

Firms are denied funding and are forced to terminate whenever θi,t ≤ θ∗(χi,t). It is worth noting

that the threshold of operation enforced by the financial market can be much tighter than what’s

optimal from the firm’s (or a social) perspective. In particular, risk-adjusted expected date-t profits,

accounting for overhead labor costs, are positive if and only if θi,t ≥ θ∗(1). The difference between

θ∗(χi,t) and θ∗(1) therefore defines a wedge on the extensive margin of operation. To get a numerical

sense of the magnitude of the wedge, note that from (11), the wedge is given by

θ∗(χi,t)

θ∗(1)
= χ−ξi,t .

For ξ = 7.5 (implying a markup of 15 percent) and a pledgeability limit of 80% this implies a

wedge of roughly a factor 5. Decreasing pledgeability to 50%, the wedge increases to a factor of 181.

Introducing limited pledgeability therefore defines a huge region where investors are too uncertain

and pessimistic to fund the firm, even though it would be optimal for the firm to operate.

Figure 1 illustrates the characterization. For χi,t = 1, the household’s and firm’s objectives are

aligned and the firm is either efficiently terminated or operates unconstrained.15 For all χi,t < 1,

there is a wedge, leading to an increasing region of inefficient termination. Moreover, conditional

on operation, firms start out constrained and will operate unconstrained only for sufficiently large

χi,t and if investors are sufficiently optimistic and have little uncertainty about the firm’s business

conditions.

15Here, efficiency is to be understood as a constrained efficiency concept, conditional on the market structure in
goods and labor markets (monopolistic competition and monopsony). In particular, we say that a firm is terminated
efficiently if risk-adjusted expected current period profits (of the monopolistically competitive and monopsonistic firm)
are negative for all Li,t, ignoring any value of learning. If the firm’s continuation value of being active and learning
about its productivity is included in the definition of efficiency, the gap between equilibrium and efficient operation
would increase even more.
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Figure 1: Characterization of funding regimes

3.3 Belief Dynamics

To complete the characterization of equilibrium, we need to characterize how risk-adjusted business

expectations θi,t, defined in (8), evolve over time. From (2), the law of motion of beliefs is

µi,t+1 =

ρ logAi,t if i ∈ Bt
ρµi,t if i /∈ Bt

(13)

Σi,t+1 =

σ2
ε if i ∈ Bt
ρ2Σi,t + σ2

ε if i /∈ Bt.
(14)

As long as a firm is active, learning is perfect and uncertainty only reflects current innovations to

productivity. By contrast, uncertainty accumulates for inactive firms, and beliefs converge to the

unconditional prior.

3.4 General Equilibrium and Steady State

Imposing market clearing, aggregate output is given by
∫ 1

0 Ci,t di = Yt =
[∫ 1

0 Y
1−1/ξ
j,t dj

]ξ/(ξ−1)
.

From Proposition 1, Yj,t is a function of Sj,t ≡ (Aj,t, χi,t, µj,t,Σj,t) and Yt. Let Pt be the date-t

distribution over Sj,t. Since Pt is predetermined at date t, equilibrium output at date t is the

solution to Yt = Y (Pt, Yt). We confirm numerically that the solution exists and is unique for all our

simulation experiments.
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Figure 2: Phase diagram for firm-level beliefs in the absence of shocks. Thin gray lines depict (θ = θ∗)-contours;
Z-shaped blue lines are (Σi,t = Σi,t−1)-loci; vertical red lines are (µi,t = µi,t−1)-loci. Arrowheads represent distinct
points in time along the plotted trajectories. Left: Case with a unique steady state (η0 < η). Right: Case with
multiple steady states (η < η0 < η).

4 Funding Freezes

We are now ready to explore the interaction between funding constraints and learning. In this

section, we illustrate the main mechanism of the paper, focusing on the partial equilibrium dynamics

of a single firm in isolation. Combining (8) and (11), a firm is denied funding if

µi,t − γ̃Σi,t ≤ η(χi,t, Yt), (15)

where η is a decreasing, log-linear function in χi,t and Yt. From (13) and (14), it then follows that if

a firm is denied funding at t, future uncertainty increases and expectations are anchored around µi,t

regardless of the realized productivity Ai,t. Whenever (15) holds, current pessimism and uncertainty

thus get reinforced into future periods, constraining production for possibly long horizons.

4.1 Non-stochastic Steady States and Dynamics

Let logAi,s = 0 and fix some η0 = η(χi,s, Ys) for all s. Figure 2 shows the resulting phase diagram

for two different values of η0. The thin gray line depicts the contour where (15) holds with equality,

dividing the state space into an active and an inactive region. The red line corresponds to the

constant expectations locus (µi,t = µi,t−1), which is given by µi,t = 0 since logAi,t is mean-reverting.

The blue line corresponds to the constant uncertainty locus (Σi,t = Σi,t−1). The latter is “Z”-shaped,

because higher levels of uncertainty not only directly increase uncertainty at t+ 1 but also indirectly

by reducing the funds to firms: For sufficiently, optimistic (or pessimistic) expectations, this feedback

has no effect as firms’ access to funds will be secured (or denied) regardless of Σi,t. For moderate

levels of µi,t, however, uncertainty becomes pivotal to the operation of the firm, hence generating

multiple stationary values of uncertainty for a given belief µi,t. Specifically, for high levels of
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uncertainty, the firm is denied funding, reinforcing high levels of uncertainty, and vice versa for low

levels of uncertainty. Intersecting the two loci, we can have a unique or multiple (non-stochastic)

steady states, depending on the value of η0. (In either case, the firm’s dynamics are unique for any

aggregate sequence {Yt} as all endogenous components of Si,t are predetermined at t− 1.)

Proposition 2. There exist two thresholds η < η, such that for all η ≤ η0 ≤ η there are two

(non-stochastic) steady states at the firm-level, and otherwise there is a unique (non-stochastic)

steady state. When θi,t is approximated using (8), the thresholds are given by η = −γ̃σ2
ε and

η = −γ̃σ2
ε /(1− ρ2).

For intermediate levels of η0, funding freezes are infinitely persistent in the absence of shocks.

Accordingly, a one-time disruption in a firms’ funds (e.g., through a shock to χi,t) can indefinitely

cut off the firm from future funding.16

However, even when the steady state is unique, funding freezes may emerge as a persistent

(though not indefinite) disruption in a firm’s access to funding. This is illustrated by the gray

trajectories in the left panel of Figure 2. Along these trajectories, each arrowhead represents a

distinct point of time, so that the distance between two consecutive arrowheads can be viewed as

an inverse measure of the speed at which the state is evolving.

The three trajectories differ in the persistence of beliefs and the amount of uncertainty induced

along the path. Along the path starting to the right of the black contour line, the firm is initially

funded and beliefs thus immediately adjust to the unique steady state. The two other paths,

however, behave distinctly different: Starting to the left of the dashed contour line, households are

sufficiently pessimistic to deny funding so that learning breaks down. Accordingly, expectations only

slowly converge to the unconditional prior, whereas uncertainty accumulates to higher and higher

levels (since information about past levels of ai,t becomes less and less useful for predicting current

productivity), reinforcing tight funding constraints. Even though the steady state is unique, a firm

can find itself in a persistent “funding freeze” (lasting more than 20 periods along the left-most

trajectory).

4.2 A Temporary Financial Shock to the Pledgeability Limit

We next illustrate how a temporary reduction in the local pledgeability limit can disrupt a firm’s

access to funding, triggering funding freezes as discussed above. Fix some initial productivity and

pledgeability limit, Ai,0 = A0 and χi,0 = χ0 such that the firm is active at t = 0. Now suppose that

at t = 1, the pledgeability is reduced to χ1 < χ0 and then mechanically reverts back to χ0 at t = 3.

Figure 3 illustrates the dynamics using the phase diagram developed above. In the diagram, the

drop in pledgeability results in a rightward-shift of the (θ = θ∗)-contour (depicted by the dashed

gray line). For sufficiently small χi,0, the firm is denied funding, setting in motion a downward-spiral

16See Section 4.2 for how temporary shocks to χi,t can trigger funding freezes. Alternatively, the starting two
leftmost starting beliefs depicted in Figure 2 can be implemented by a sequence of productivities ai,t+s = 0 for all
s 6= −1 and at−1 = ρ−1µ0. Similarly, one could derive independent fluctuations in µi,t by endowing agents with an
additional signal that communicates a noisy version of ai,t in the mornings of each date.
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Figure 3: Dynamic response to a drop in χ at t = 1 and a subsequent recovery at t = 3. Arrowheads depict distinct
points in time along the plotted trajectory.

between uncertainty and reinforcement of the funding constraint. Once uncertainty has passed the

original (θ = θ∗)-contour line (depicted by the solid gray line), even a recovery of the pledgeability

limit will not end the spiral, resulting in funding freezes that may significantly outlast the exogenous

disruption in pledgeability.

The response of local output along with the responses of (χi,t, µi,t,Σi,t) can be seen in Figure 4.

To isolate the contribution of the endogenous-uncertainty channel, we contrast the model’s response

(starred green lines) with a counterfactual response where the firm suffers the same loss in pledgeability

but uncertainty is fixed at its lower bound, Σ = σ2
ε (dashed black lines).17 In both cases, output

initially drops to zero as long as pledgeability is reduced. The difference between the model and the

counterfactual emerges at t = 3. Whereas output recovers in the counterfactual once pledgeability

is restored, the firm continues to be denied funding in the presence of endogenously increased

uncertainty. Since the parameters imply a unique steady state at χ0, beliefs and funding eventually

recover when µi,t crosses the (θ = θ∗)-contour line in Figure 3. At this point, the firm continues

operation, uncertainty drops to σ2
ε and µi,t = ρ logAi,t−1.18

Comment on misallocation There are two sources of misallocation here (aside from the two

monopoly distortions). First, the financial constraint drives a discrepancy between the equilibrium

17The parametrization of the model is detailed in Section 5. Throughout the response, Yt is fixed at its steady state
level.

18Since there are no shocks to Ai,t along the response path, expectations are correct throughout (µi,t = logAi,t).
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Figure 4: Dynamic responses to a drop in χ at t = 1 and a subsequent recovery at t = 3. Starred green lines are
model responses; dashed black lines are counterfactual responses where uncertainty is exogenously fixed at Σ = σ2

ε .

use of labor and the optimal use of labor given θi,t as illustrated in Figure 1. Second, an inefficient

response due to undetected changes in productivity, reflecting that competitive financial markets

have no incentives to experiment to identify productive firms as all potential gains are arbitraged

away under perfect competition in financial markets. Along the simulated response path, this

manifests itself by the fact that, as long as the firm is denied funding, any change in Ai,t goes

undetected, potentially implying huge efficiency losses from forgone business opportunities.

5 Aggregate Financial Shock

In this section, we explore how an aggregate disruption in firms’ access to funding propagates

through our model.

5.1 Extended Model and Parametrization

Extended model So far, agents did not receive any information on inactive firms. For our

numerical experiment we depart from this strong assumption and provide agents with an additional

noisy signal, si,t = logAi,t−1 + ui,t, disclosing past productivities subject to a Gaussian noise term

ui,t with zero mean and variance σ2
u. The signal si,t plays two roles: First, it gives agents a mean to

learn about a firm’s business potential (to a limited degree) even if the firm is inactive. Second, it

introduces some independent source of variation in agents’ beliefs regarding inactive firms which, as

we show below, has interesting implications.

The information set available to agents in the morning of date t is now

It = {χi,t, si,t}i∈[0,1] ∪ {Ai,t−1}i∈Bt−1 ∪ It−1.

Using the Kalman filter to recursively filter through information about inactive firms, agents’ beliefs

about firm i in the morning of date t are given by

µi,t =

ρ logAi,t−1 if i ∈ Bt−1

ρ [δi,tµi,t−1 + (1− δi,t)si,t] else
(16)
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and

Σi,t =

σ2
ε if i ∈ Bt−1

ρ2δi,tΣi,t−1 + σ2
ε else,

(17)

where δi,t = (1 + σ−2
u Σi,t−1)−1. Replacing (13) and (14) by (16) and (17), the equilibrium charac-

terization given in Section 3 remains fully valid.

Outside observers For the upcoming exploration it will also be useful to introduce a “background

layer” of outside observers (or forecasters) j ∈ [0, 1]. In addition to It, these forecasters each observe

a private signal ωij,t = logAi,t + ψij,t, where ψ is normally distributed with zero mean and variance

σ2
ψ. For simplicity, at each date t, the previous generation of forecasters is replaced by a new one.

The belief of forecaster j about firm i’s productivity at date t is given by

µ̃ij,t =
Σ−1
i,t µi,t + σ−2

ψ ωij,t

Σ−1
i,t + σ−2

ψ

. (18)

In Section 6, we use these forecasters’ beliefs to compare the model’s predictions with micro data

from a survey of professional forecasters. To keep the model tractable, we assume that forecasters

do not interact with the rest of the economy.

Parametrization We interpret one period as a quarter. The inverse Frisch elasticity of labor

supply ζ is set to 0.5, the elasticity of substitution between consumption goods is set to 7.5, and

the effective degree of relative risk aversion γ̃ is set to 3.19 These parameters are within the range

typically used by the literature. The productivity parameters are set to ρ = 0.9 and σε = 0.15,

broadly consistent with empirical estimates using plant-level data.20 Next, we set φ to match a 20

percent share of overhead labor at the steady state. This is consistent with Valerie A. Ramey (1991)

who reviews the empirical literature and considers 20 percent a reasonable consensus estimate.21

The process of firm-specific pledgeability limits is modeled as a two-state Markov process on

X = {χ, χ} with a financially fragile state χ and a financially sound state χ. We fix the latter at

χ = 1, implying full pledgeability in the good state. The transition matrix is given by

Ξ =

[
1− p p

p 1− p

]
.

The financially fragile state χ and the transition probability p are chosen to roughly match the

19While with our utility specification the coefficient of relative risk aversion depends on γ, ζ and v and fluctuates over
time as a function of Ci,t and Li,t, its effect on risk-perceptions remains constant given the log-linear approximation
to mi,t|t. Moreover, fixing γ̃, there is no need to take a separate stand on γ and v.

20See, e.g., Foster, Haltiwanger and Syverson (2008) and Castro, Clementi and Lee (2015). The former document a
quarterly persistence of .95 for physical TFP and a cross-sectional dispersion of .26 (implying σε = .11 for ρ = .9),
whereas Castro, Clementi and Lee (2015) document a persistence of revenue productivities of .81 and an innovation
volatility of σε = .17 (both converted to quarterly rates).

21See also the discussion in Bartelsman, Haltiwanger and Scarpetta (2013) who conclude that the reasonable range
for overhead labor is between 10 and 30 percent.
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Table 1: Parameters used for numerical experiment.

Parameter ζ ξ γ̃ φ p χ χ ρ σε σu σψ

Value 0.50 7.50 3.0 0.052 0.07 0.63 1.00 0.90 0.15 0.80 0.97

8-quarter, 16-quarter and 24-quarter survival rates of newly active firms to 0.66, 0.5 and 0.4,

respectively, consistent with the empirical 2-year, 4-year and 6-year survival rates of new firms (c.f.,

Headd, 2003). This yields χ = 0.63 and p = 0.07.

Finally, we set σu to match Corr(
∫ 1

0 µ̃ij,t dj, logAi,t) = 0.859, consistent with the empirical

pre-crisis correlation between the average professional firm-specific forecasts and realized returns on

assets (see Section 6 for a description of the data). Similarly, we set σψ to match the average belief

dispersion among forecasters regarding each firm,
∫ 1

0

√
Varj [µ̃ij,t] di = 0.023.

All calibration targets are matched at the steady state.22 Table 1 summarizes the calibrated

parameters.

Computation strategy In order to solve for the equilibrium distribution Pt, we discretize the

state space Si,t using a combination of Rouwenhorst’s method (c.f., Kopecky and Suen, 2010) and a

discrete numerical approximation to the agent’s equilibrium beliefs. See Appendix B for details on

our computation strategy.

5.2 Simulation of an Aggregate Financial Shock

We are now ready to explore the economy’s response to an aggregate disruption in firms’ access to

funding. The economy is initialized at its stochastic steady state where Pt = Pt−1.23 We consider a

one-shot perturbation to Ξ at date 0 that increases the transition probability Pr(χi,0 = χ|χi,−1 = χ)

to (p+ 0.1), while keeping the reverse transition probability at p = 0.07. The disruption effectively

reallocates a random mass 0.05 of firms from the financially sound state into the financially fragile

state (reflecting a 10 percent increase in financially fragile firms). At t = 1, Ξ is reverted back

to its calibrated value and the economy starts converging back to the steady state. Throughout

we assume that the perturbation to Ξ is common knowledge so that Yt ∈ It for all t. With this

assumption, our equilibrium characterization applies without change.

Figure 5 displays the model’s response to the perturbation at t = 0, depicted by the starred

green lines. To isolate the role of the endogenous amplification through rising uncertainty from

the exogenous impact of tighter funding requirements, we contrast the model’s responses with two

counterfactuals. First, dashed black lines display the direct impact of tighter pledgeability limits,

keeping uncertainty evolving according to its steady state dynamics. Second, solid red lines show

22Due to overidentification and computational restrictions, we match the targeted moments with a small numerical
error. At our parametrization, the overhead labor share is 19.97 percent, the survival rates are, respectively, 0.643,
0.505 and 0.405, the correlation between beliefs and realized productivities is 0.851, and the average belief dispersion
is 0.023.

23We confirm numerically that our model has a unique steady state distribution for the chosen parameter values.
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Figure 5: Dynamic responses to a one-shot perturbation in Ξ at t = 0. All responses are in percentage deviations from
the steady state. Starred green lines are model responses; dashed black lines are “pure financial shock” counterfactuals
where uncertainty evolves according to its steady state dynamics; solid red lines are “pure uncertainty” counterfactuals
where the direct impact of the financial shock is shut down.

the propagation through rising uncertainty, eliminating the direct impact of tighter pledgeability

limits.24 All responses are in percentage deviations from their respective steady state values.

Amplification and persistence Because uncertainty is predetermined, the impact response at

date 0 is fully explained by a tightening of pledgeability limits. Starting at date 1, however, the

adverse effects of rising uncertainty starts to both amplify and prolong the crisis relative to the

case where uncertainty evolves according to its steady state dynamics. At t = 5, output in the

counterfactual isolating the direct impact of the financial shock recovers by more than 50 percent to

0.97 percent below steady state. By comparison, at t = 5, output is still 1.98 percent below steady

24Formally, we compute the counterfactuals as follows. Let ∆ =

[
0 0
.1 −.1

]
denote the initial perturbation of Ξ at

date 0. Then the distribution over {χi,t} at date t can be derived directly from the steady state distribution over
χi,t using a one-time perturbation of Ξ to Ξ̂t = Ξ + ∆Ξt. Correspondingly, the direct impact of tighter pledgeability
limits is derived by initializing the economy at each date at its steady state distribution P̄ and perturbing Ξ to Ξ̂t.
Effectively, we induce the counterfactual to follow the same path for {χi,t} as in the equilibrium response. However,
by re-initializing the economy at its steady state in every period, we fix the path for uncertainty (and the ability of
agents to learn from past production) as if the economy would have been in its steady state until t− 1. Conversely, we
define the counterfactual isolating the role of uncertainty by initializing the economy at each date at the equilibrium
distribution Pt copied from the model’s equilibrium response and perturb Ξ to Ξ̂−1

t−1 to undo the perturbation of
{χi,t}. Effectively, this keeps the distribution of {χi,t} at its steady state path, while inducing the same path of
uncertainty (and agent’s ability to learn from past production) as in the model’s equilibrium response.
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Figure 6: Decomposition of output response.

in the endogenous uncertainty economy, amounting to a recovery of less than 7 percent. In terms of

half-lives, recovery takes more than twice as long in the model economy (11 quarters) compared to

the counterfactual isolating the direct impact of the financial shock (5 quarters).25

Figure 6 illustrates the relative contributions of the financial shock itself relative to the endoge-

nously rising uncertainty.26 In line with the above explanations, the contribution of endogenously

rising uncertainty increases over the course of the crisis, becoming the main driver after about 5

quarters.

Risk premia, pessimism, volatility and dispersion Rising uncertainty also helps explaining a

few financial market characteristics typically associated with financial crises. First, rising uncertainty

increases risk premia. Let Ri,t = log(Pi,tYi,t/Qi,t) define log-returns from pledgeable claims. In

equilibrium, we have27

Ri,t = (1− 1/ξ) (logAi,t − µi,t + γ̃Σi,t) . (19)

25Another way to measure the direct impact of the financial shock is to look at the mass of firms with χi,t = χ
relative to the steady state. The response (not plotted) looks similar to the counterfactual isolating the direct impact
of the financial shock, sharing the same 5-quarter half-life.

26The two contributions add up to slightly less than 1 due to the model’s non-linear response.
27Note that returns are well-defined in the limit as L→ φ due to L’Hospital’s rule (despite payouts converging to

zero).
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Conditional on date-t information, expected returns are hence given by

E [Ri,t|It] = (1− 1/ξ)γ̃Σi,t, (20)

illustrating how risk-premia rise in uncertainty.

Interestingly, (20) understates the risk-premia conditional on realized returns. This is because

of a selection effect introduced by the exogenous signal si,t: Realizations in si,t that induce overly

optimistic beliefs are likely to result in firm i being funded. This allows agents to effectively learn

about the firm’s true business potential, quickly correcting overly optimistic beliefs. By contrast,

overly pessimistic beliefs are more likely to result in firm i being denied funding and are therefore

endogenously more persistent. This discrepancy in the persistence of optimism and pessimism

results in agents having, on average, more pessimistic beliefs about business conditions, thereby

increasing the realized returns relative to (20). Panel (d) of Figure 5 plots average returns along

the simulated response path. Caused by both rising uncertainty and an increased pessimism (not

plotted), average returns increase by up to 2.5 percent relative to their steady state level throughout

the crisis.28 The response is exclusively driven by endogenous variations in agent’s ability to learn;

i.e., the direct impact of the financial shock on risk premia is zero.

Relatedly, the model also predicts an increased return volatility during financial crisis. To see

this, consider the one-step ahead volatility conditional on date-(t− 1) realizations, Var[Ri,t|t− 1] =

(1− 1/ξ)2Var[logAi,t − µi,t].29 Substituting for (16), we have

Var[Ri,t|t− 1] = (1− 1/ξ)2

σ2
ε if i ∈ Bt−1

σ2
ε + ρ2(1− δi,t)2σ2

u else.

Since δi,t is decreasing in Σi,t−1, we have that higher uncertainty results in higher realized volatility.

Intuitively, as uncertainty increases, agents place increasingly more weight on the exogenous signal

si,t for the purpose of forming their beliefs. As a result, their beliefs, and hence asset prices, become

increasingly exposed to the exogenous noise term ui,t, increasing the volatility of returns.

Finally, increased volatility of firm-level returns also translates into an increased cross-sectional

dispersion of returns.30 Panel (e) of Figure 5 plots the cross-sectional dispersion over Ri,t relative

to its steady state level. As can be seen, rising uncertainty also induces the dispersion to rise along

the response path. Again, the response is zero throughout the counterfactual which isolates the

direct impact of the financial shock.

28In our simulation, the contribution of pessimism to return premia is small (2.34 percent at the steady state).
Accordingly, the response of the average risk premium closely mirrors the response of uncertainty even though
pessimism significantly increases along the return path (up to 20 percent at the peak relative to its steady state level).

29Alternatively, one may also be interested in the variance of returns conditional on date-t information. Computing
the conditional variance over (19), we have Var [Ri,t|It] = (1− 1/ξ)2Σi,t. Clearly, higher uncertainty about logAi,t
directly translates into a higher expected variability of returns.

30Generally, the (unconditional) cross-sectional dispersion will be larger than the one-step ahead volatility, as it
accumulates idiosyncratic volatility over time and is further amplified by a feedback from beliefs into funding, which
results in variation over the Σi,t-term in (19).
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Disagreement A final prediction of our model is with respect to the beliefs of market observers.

From (18), the degree of “disagreement” among market observers is given by

sdj [µ̃ij,t] =
σ−1
ψ

Σ−1
i,t + σ−2

ψ

. (21)

Clearly, disagreement rises with uncertainty. Intuitively, as less can be learned about firms that

are denied funding, market observers rely more on other sources. As long as those other sources

are partially dispersed, (average) disagreement among market observers then increases when an

increasing number of firms becomes constrained.31 Thus, according to our model, there should be

a tight empirical link between disagreement (as measure of uncertainty) on the one hand and the

degree to which a firm is financially constrained. We explore such a link in the next section.

6 Empirical exploration

At the core of our model is a two-way interaction between uncertainty and financial constraints,

causing both variables to comove. In this section, we explore the extent to which this comovement

can be seen empirically, using a combination of firm-level survey data, accounting data and stock

price data.

6.1 Data

In the following we describe the data sources and define the main variables used for our empirical

exploration. Technical details regarding the construction of our dataset are contained in Appendix C.

Proxies for uncertainty Our main proxy for uncertainty is based on data on individual forecasts

about earnings per share (EPS) by financial analysts from the IBES database. To make these

forecasts comparable to our model, we follow Senga (2016) and transform EPS forecasts into forecasts

about returns on assets (ROA). In our dataset, median productivity as measured by ROA is 3.7

percent (−9.5 percent at the 10th percentile, 13 percent at the 90th percentile). Let µEPS
ij,t denote

analyst j’s expectation about firm i’s EPS at date t.32 Beliefs regarding returns on assets are

computed as

µROA
ij,t = µEPS

ij,t ×
number of outstanding sharesi,t

total assetsi,t−1
.

31For simplicity, all active agents in our model share the same information set It, sparing us from dealing with
infinite regress (Townsend, 1983). Nevertheless it is worth pointing out that our predictions about disagreement are
not limited to professional forecasters, but would more generally carry over to any set of agents with dispersed signals
(or priors).

32As in Senga (2016), we extract those forecasts 8 months prior to each firm’s fiscal-year end month. See Appendix C
for details on the timing of our variables.
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As our primary proxy for firm-level uncertainty, we look at the dispersion of forecast errors among

analysts, defined by

σfce
i,t ≡ sdj

[
µROA
ij,t − ROAi,t

]
.

Since ROAi,t is constant across all analysts j, σfce
i,t can equivalently be interpreted as disagreement

among forecasters. It is worth noting that while there is a clear mapping in our model (equation

(21)), it is not immediately clear that disagreement is also empirically a good measure of uncertainty.

The biggest concern stems from the fact that dispersion is hump-shaped in the precision σ−2
ψ of

the individual signal. Therefore, there exists a region where dispersion may fall if σ2
ψ increases

disproportionately more than Σi,t. If this were the case, one would expect dispersion to fall during

times of heightened uncertainty, such as the recent financial crisis. As we argue below (Figure 7)

this could not have been farther from the truth.

As alternative proxies for uncertainty, we use firms’ average annual stock market returns (a

measure of risk premia) from CRSP as well as the within-firm return volatility and the within-group

dispersion of returns.

Proxies for financial constraint For the purpose of measuring financial constraints, we follow

the corporate finance literature and combine various balance sheet data to proxy for firms’ access to

funds. Our main measure is the “KZ-index” developed by Kaplan and Zingales (1997) and Lamont,

Polk and Saá-Requejo (2001).33 Based on its kzi,t-score, we classify a firm as likely to be constrained

if its current score is at or above the 95th percentile in a given calendar year. In Appendix D we

demonstrate the robustness of our results using dividend payouts and debt to capital ratios as

proxies for financial constraints.

The resulting dataset is an unbalanced annual panel from 1976 to 2016, covering on average

1979 firms per year.

6.2 Financial Constraints and Uncertainty

To explore whether the predicted link between financial constraints and uncertainty is present in

the data, we go over separate specifications for each of our measures of uncertainty.

Forecast dispersion We run a simple OLS regression of forecast-error dispersion σfce
i,t on the

KZ-based indicator. Panel (a) of Table 2 reports the estimated coefficients, controlling for different

combinations of fixed effects. The estimated effect is roughly constant over the first three specifi-

cations where we control for a combination of year, fiscal-end year month and 4-digit sector fixed

effects. In all three specifications, the forecast-error dispersion is increased by about 0.08 for firms

33The KZ-score is a weighted combination of a firm’s cash flow to total capital, its market to book ratio, its debt to
capital, dividends to total capital, and cash holdings to capital (see Appendix C for details). The weighting coefficients
are based on an ordered logit regression relating those accounting variables to an explicit classification of firms into
categories of financial constraints (Kaplan and Zingales, 1997; Lamont, Polk and Saá-Requejo, 2001). Firms with a
higher kzi,t score are more likely to be constrained.
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Table 2: Financial constraints and uncertainty

Data Model

(1) (2) (3) (4)

Panel a: Dependent variable is forecast-error dispersion σfce
i,t

Financially constrained .081 .079 .079 .031 .043

(.012) (.012) (.012) (.008) —
Observations 47 342 47 342 47 335 46 141 —
Adj. R-sq. .010 .023 .078 .709 —

Panel b: Dependent variable is stock returns Ri,t

Financially constrained .030 .034 .034 .146 .129

(.025) (.024) (.024) (.036) —
Observations 51 993 51 993 51 990 50 787 —
Adj. R-sq. .000 .116 .117 .130 —

Year × month FE no yes yes yes

Sector FE (4 digit) no no yes no

Firm FE no no no yes

Note: Standard errors clustered at the firm-level are in parenthesis.

that are classified as financially constrained. Controlling for firm-level fixed effects, the estimated

difference between financially constrained and unconstrained firms is reduced to 0.031.

These results lend support to the model’s predicted positive relationship between financial

constraints and uncertainty. To check the quantitative significance of our results, we compute the

corresponding statistic at the steady state of the calibrated model. Using (21), we find that for firms

that are denied funding, σfce
i,t is on average increased by 0.043, roughly in line with our empirical

estimates.

Stock market returns Closely related to the predictions regarding forecast dispersion, our model

also predicts higher risk premia, an increased return volatility and greater dispersion in returns

for financially constrained firms. In panel (b) of Table 2, we regress CRSP stock returns on the

financial constrainedness indicator. For specifications (1)–(3), we estimate financially constrained

firms to have about 3 percent higher returns than financially unconstrained firms, but cannot reject

that the effect is zero. This may be due to the fact that funding is, in part, determined based on

observable characteristics, so that firms that are known to be unproductive also receive less funding.

Specification (4) partially controls for this by controlling for firm-specific fixed effects. Indeed, the

estimated effect is now increased to 0.146 and is found to be statistically significant. By comparison,

our calibrated model predicts a risk premium that is increased by 0.129 for firms that are denied

funding.

Return volatility and return dispersion We use a conditional heteroskedasticity model using

an exponential variance function to test the model’s prediction regarding return volatility and return

dispersion. Table 3 reports the estimated coefficient of the variance function. As predicted by
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Table 3: Conditional heteroskedasticity model for Ri,t

Data Model

(1) (2) (3) (4)

Financially constrained 1.045 1.015 .958 .481 —
(.063) (.059) (.057) (.064) —

Avg. marginal effect on s.d. of Ri,t-residuals .122 .116 .113 .061 .123

Observations 51

993

51

993

51

990

50

787

—

Adj. R-sq. 0.007 0.075 .107 .190 —

Year × month FE no yes yes yes

Sector FE (4 digit) no no yes no

Firm FE no no no yes

Note: Table reports results for the second-stage regression σ̂2
i,t = exp(xi,tβ+ εi,t) where σ̂i,t

are estimated from the residuals of linear first stage estimations of Ri,t on the same set of

independent variables as in the second stage. Standard errors are clustered at the firm level.

the model, we find a positive and statistically significant effect on the return dispersion across all

specifications, with average marginal effects on the standard deviation of returns ranging from 6.1

percent to 12.2 percentage points. By comparison, the model predicts an increase in the return

dispersion by 12.3 percentage points for firms without funding.

Time series of forecast dispersion Table 2 showed a strong significant relationship between

forecast dispersion and financial constraints. What episodes in the data are responsible for this

comovement? Figure 7 highlights that this is mainly driven by the recent financial crisis and

previous crisis episodes. During the crises, uncertainty about constrained firms’ fundamentals

increases dramatically while uncertainty about unconstrained firms’ fundamentals largely remains

flat. Figure 7 also makes it obvious that forecast dispersion moves in the intuitive direction and

increases significantly during the financial crisis.

7 Concluding Remarks

In this paper, we propose a theory of endogenous uncertainty and its interaction with firms’

financial conditions. In the model, firms require access to external finance in order to produce.

When uncertainty about a firm’s fundamentals is high, access to finance is limited, and the firm’s

production is reduced, or even halted. This endogenously limits production of information about

the firm as well, increasing uncertainty and perpetuating the funding problems. While present even

in normal times, this feedback loop becomes especially powerful in an aggregate setting, where a

temporary financial shock can significantly increase average uncertainty and create a prolonged

economic downturn.

We have so far refrained from policy analysis in this paper. There are, however, several policy

insights that merit further discussion. First, recapitalizing banks (investors) is not an effective policy
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Figure 7: Average forecast error dispersion (a proxy for uncertainty) of constrained and unconstrained firms.
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Note: This figure shows the average forecast error dispersion among financially constrained

and among financially unconstrained firms. Financially constrained firms are those whose

current Kaplan and Zingales (1997) index lies in the top 5% of the distribution. Financially

unconstrained firms are all other firms.

to restore lending in the model. In fact, investments are done by households, who are unconstrained

at all times, so such a policy would not have any effects. The critical friction in bad times is an

informational one and cannot easily be undone by tranfers to banks. This, however, suggests a

second policy action: direct transfers to firms. Even if the government has access to the same

information as everyone else in the economy, providing transfers or cheap loans to inactive firms can

crowd in lending in future periods due to an information externality: a re-activated firm produces

information that lets future private investors decide whether to resume private lending. Finally, if

the government can somehow increase transparency, for instance by improving reporting standards,

this could be useful during a financial crisis.

In this paper, we have mainly focused on the effects of financial shocks. However, the model’s

internal propagation mechanism applies similarly to other types of economic shocks, such as aggregate

demand shocks. For example, by reducing revenues, a fall in aggregate demand exacerbates the

financial friction at the heart of the model, increasing the fraction of inactive firms (cf., equation

15). This raises uncertainty going forward, so that, even as demand recovers, a supply problem

(uncertainty and tight financial conditions) remains. Conversely, strong demand (e.g. due to

accommodative monetary policy) can help shift firms into business, and thereby reduce uncertainty

and increase the allocative efficiency of the economy.
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A Mathematical Appendix (for online publication)

A.1 Proof of Lemma 1

First note that for all Qi,t > 0 it is feasible for the firm to operate (L̄i,t > φ). To see this, suppose it

were not. Then Li,t ≤ L̄i,t ≤ φ and, hence, Yi,t = 0. But then, from (9), Qi,t = 0, a contradiction.

Next, substituting (3) into (9) and rearranging, we get

χi,tEt[mi,t|tPi,tYi,t]−Wi,tL̄i,t = 0. (22)

By contrast, from (6), a sufficient condition for the firm to operate is

Et[mi,t|tPi,tYi,t]−Wi,tLi,t ≥ 0. (23)

Comparing (22) and (23), we have that whenever operation is feasible, it is also optimal for the firm

to operate. To complete the proof, it suffices to note that conditional on producing, the continuation

value of the firm is constant in Li,t.

A.2 Log-linearization of mi,t|t

By definition, mi,t|t = u−γi,t /Et[u
−γ
i,t ]. Taking a log-linear approximation to ui,t, we have

log ui,t ≈ f(Zi,t, Li,t, Yt) + κ(1− 1/ξ) log(Ai,t)

for κ = Ȳ /[Ȳ − (L̄1+ζ − v)/(1 + ζ)] and some log-linear function f . Noting that Zi,t, Li,t, Yt ∈ It,
we get

mi,t|t ≈
A
−γκ(1−1/ξ)
i,t

Et[A
−γκ(1−1/ξ)
i,t ]

.

Substituting into θi,t = Et[mi,t|tA
1−1/ξ
i,t ]ξYt, we have

log θi,t = ξ log

(
Et[A

(1−γκ)(1−1/ξ)
i,t ]

Et[A
−γκ(1−1/ξ)
i,t ]

)
+ log Yt

= (ξ − 1) (µi,t − γ̃Σi,t) + log Yt

where γ̃ ≡ (γκ− 1/2)(1− 1/ξ).

A.3 Proof of Lemma 2

Combining (1), (3), (4), (5) and (9), we get

L̄i,t = χi,tEt[mi,t|tA
1−1/ξ
i,t ]Y

1/ξ
t max{Li,t − φ, 0}1−1/ξ/Lζi,t
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or, substituting out θi,t = Et[mi,t|tA
1−1/ξ
i,t ]ξYt,

L̄i,t = χi,tθ
1/ξ
i,t max{L̄i,t − φ, 0}1−1/ξ/Lζi,t.

Conditional on L̄i,t being binding, we obtain

L̄
ξ(1+ζ)
i,t = χξi,tθi,t max{L̄i,t − φ, 0}ξ−1. (24)

Tracing out the steps above, the left-hand side of (24) corresponds to the asset price Qi,t, whereas

the right-hand side corresponds to the weighted expected value Et[mi,t|tPi,tYi,t]. For the equilibrium

to be stable in the sense that no single investor could profitably extend lending by paying a price

Qi,t above the equilibrium price, it therefore must be that

g(L̄) ≡ L̄ξ(1+ζ) − χξi,tθi,t(L̄− φ)ξ−1

is strictly positive for all L̄ larger than the equilibrium level. Let L̄′′ define the largest solution

to g(L̄) = 0. Clearly, limL̄→∞ g
′′(L̄) > 0 so that for all L̄ > L̄′′, we have g(L̄) > 0. Moreover, by

continuity, for any solution L̄′ < L̄′′ it must hold that there exist a L̄ > L̄′ such that g(L̄) < 0,

violating stability.

A.4 Proof of Proposition 1

Consider the threshold for operation, θ∗(χ), first. Following the proof of Lemma 2, equation (10)

has a solution L̄ > φ if and only if there exists a solution to g(L̄) = 0. Rearranging, the condition

reads

g̃(L̄i,t) ≡ (L̄i,t − φ)1−ξL̄
ξ(1+ζ)
i,t = χξi,tθi,t. (25)

The left-hand side of (25) defines a quasi-convex function g̃ in L̄ with the unique minimum

L̄0 =
1 + ζ

1 + ξζ
ξφ.

Hence, (25) has a solution if and only

θi,t ≥ θ∗(χi,t) ≡ χ−ξi,t g̃(L̄0) = χ−ξi,t λ
ξ−1

(
1 + ζ

1 + ξζ
ξφ

)1+ξζ

.

Moreover, since the largest solution to (10) corresponds to the upward-sloping arm of g̃, we have

that for all θi,t ≥ θ∗(χi,t), L̄ is increasing in θi,t.

Conditional on operating, the firm is constrained whenever Lopt
i,t > L̄i,t. From (7) and (10),
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define the inverse functions

(Lopt)−1(L) ≡ λξ(L− φ)Lξζ

L̄−1(L) ≡ χ−ξi,t (L− φ)1−ξLξ(1+ζ).

The two functions intersect on (φ,∞) if and only if χi,t > λ−1. Because both functions are

continuous on (φ,∞), it thus must hold that in the case where χi,t ≤ λ−1, active firms are either

always constrained or always unconstrained. To see which one is the case, compare L̄(θ∗) = L0 with

Lopt(θ∗). Specifically, since Lopt is increasing in θ, we have that Lopt(θ∗) ≥ L0 if and only if

(Lopt)−1(L0) ≤ θ∗

or, substituting for L0 and θ∗, if and only if χ ≤ 1, which holds by assumption. We conclude that

for χi,t < λ−1, the firm is always constrained.

In the case where χi,t ≥ λ−1, a unique intersection, L̄(θ) = Lopt(θ), exists and is given by

L∗∗ =
φ

1− (λχi,t)−1
θ∗∗ = λξ(1+ζ)χξζi,t

(
φ

λχi,t − 1

)1+ζξ

.

Using the implicit function theorem, we have

∂Lopt

∂θ
=

λ−ξL−ξζ

1 + ξζ(1− φ/L)

∂L̄

∂θ
=
χξi,t(L− φ)ξL−ξ(1+ζ) 1

ξ−1

−1 + λ(1− φ/L)
.

Comparing slopes at L∗∗, ∂Lopt(θ∗∗)/∂θ < ∂L̄(θ∗∗)/∂θ, and hence L̄(θ) ≥ Lopt(θ) if and only if

θ ≥ θ∗∗.
Summarizing the two cases, L̄i,t ≥ Lopt

i,t if and only if

θi,t ≥ θ∗∗(χi,t) =

λξ(1+ζ)χξζi,t

(
φ

λχi,t−1

)1+ζξ
if χi,t ≥ λ−1

∞ else.

A.5 Proof of Proposition 2

From (15), the contour line is upward-sloping in µi,t, implying that the upper arm of the Σ-locus

(Σ = σ2
ε /(1− ρ2)) is overlapping with the lower arm (Σ = σ2

ε < Σ) for some µ ∈ [µ, µ]. Specifically,

from (15), µ = γ̃Σ + η and µ = γ̃Σ + η. Accordingly, both arms of the Σ-locus intersect the µ-locus

(µ = 0), if and only if

γ̃Σ + η ≤ 0 ≤ γ̃Σ + η
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or

−γ̃Σ ≤ η ≤ −γ̃Σ.

Summarizing, there are two steady states whenever η ∈ [η, η] with η = −γ̃σ2
ε and η = −γ̃σ2

ε /(1−ρ2).

Otherwise, there is a unique steady state at either Σ (for η < η) or at Σ (for η > η).

B Computational Appendix (for online publication)

In order to efficiently discretize the state space, we rewrite expectations (16) for all i /∈ Bt−1 in

terms of the last observed productivity, alasti,t ≡ logAi,t−k−1, and the number of consecutive periods

k prior to t that the firm was denied funding. Noting that (17) defines a deterministic sequence

{Σk}, we have

µi,t|k≥1 = ρk+1alasti,t + ρ(1− δk)(s̃εi,t + s̃ui,t), (26)

where δk = (1 + σ−2
u Σk−1)−2,

s̃εi,t = ρ
1− δk−1

1− δk
s̃εi,t−1 + εi,t−1 (27)

s̃ui,t = ρδk
1− δk−1

1− δk
s̃εi,t−1 + ui,t, (28)

and where s̃εi,t and s̃ui,t are initialized at zero for k = 1.

Our numerical implementation exploits that δk converges to a constant as k →∞, yielding

s̃εi,t|k→∞ = ρs̃εi,t−1 + εi,t−1 (29)

s̃ui,t|k→∞ = ρδ∞s̃
ε
i,t−1 + ui,t. (30)

To obtain a simple representation of the state space, we approximate (27) and (28) using (29)

and (30) for all k ≥ 1. To evaluate the loss from our approximation, we compute the expected

approximation error, finding that is quantitatively insignificant.34 Given the approximation, we

have

s̃εi,t|k→∞ = ai,t−1 − ρkalasti,t , (31)

allowing us to rewrite (µi,t,Σi,t) in terms of (ai,t−1, a
last
i,t , ki,t, s̃

u
i,t).

Adding χi,t, we can then solve our model on the following state space

{χi,t} × {ai,t−1} × {alasti,t } × {s̃ui,t} × {ki,t}. (32)

While the dimensionality of (32) is increased by 1 relative to {Si,t}, its complexity is significantly

34By construction, the error is zero for k ∈ {0, 1}. For k ≥ 2, the error peaks at k = 2 where the approximation
results in an expected 2.09 percent change in µi,t. For larger k, the error quickly diminishes, falling to less than 0.5
percent for k ≥ 7.
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reduced for two reasons. First, (26) and (31) converge in k at a rate of ρ and {Σk} converges at

a rate of ρ2. Accordingly, we can truncate k at some large number k̄ without changing any of

the dynamics. In our simulation, we set k̄ = 70. Second, s̃ui,t evolves exogenously to any of the

other variables (conditionally on being initialized at 0 for k = 1). Accordingly, we can efficiently

approximate both {ai,t} and {s̃ui,t} on a small grid using the usual Rouwenhorst approximation (c.f.,

Kopecky and Suen, 2010). In our simulation, we use a 5-point grid for {ai,t} and a 3-point grid for

{s̃ui,t}. Using finer grids has no significant impact on our results. Overall, this yields a manageable

grid consisting of 2× 5× 5× 3× 70 = 10500 states.

C Data Appendix (for online publication)

Our dataset is a yearly panel of public US firms. Forecast data is extracted from the Institutional

Brokers Estimate System (IBES). Returns are obtained from the CRSP database and are adjusted

for splits and dividends. All balance sheet data is from the COMPUSTAT database. From the

original sample, we exclude all financial firms (SIC codes between 6000 and 6799) and firms in the

electricity sector (SIC codes between 4900 and 4999). The resulting dataset ranges from 1976 to

2016 and covers, on average, 1979 firms per year.35 All variables are winsorized at the 1 percent

level.

Units of observation are defined by firm i and year t, where t refers to the year in which earnings

are realized. Let mi,t denote the fiscal-year end month of firm i. All balance sheet data and realized

earnings per share (EPS) for observation (i, t) are extracted at mi,t. As in Senga (2016), we match

each observation (i, t) with analysts’ EPS-forecasts, µEPS
ij,t , extracted 8 months prior to mi,t. That is,

if in 2007, firm i’s fiscal-year ends in March, then µEPS
ij,2007 would be extracted in July 2006. Similarly,

returns are synced with the fiscal-year end month of each observation, computed from 12 months

prior to mi,t to mi,t.

The variables used for our empirical exploration are defined in the main body of the paper.

The KZ-index underlying our classification of financial constraints is based on Kaplan and Zingales

(1997) and Lamont, Polk and Saá-Requejo (2001). Specifically,

kzi,t = −1.001909× cashflowi,t

ki,t−1
+ 0.2826389×Qi,t + 3.139193× debti,t

total capitali,t
−

− 39.3678× dividendsi,t
ki,t−1

− 1.314759× cashi,t
ki,t−1

,

where cashflowi,t is the sum of COMPUSTAT items “income before extraordinary items” and

“depreciation and amortization”, Qi,t is (“market capitalization” + “total shareholder’s equity” −
“book value of common equity” − “deferred tax assets”)/“total shareholder’s equity”, debti,t is

“long-term debt” + “debt in current liabilities”, total capitali,t is “long-term debt” + “debt in current

liabilities” + “stockholders equity“, and ki,t is “total property, plants and equipment” (see the

35Due to incomplete balance sheet data and firms with less than 2 forecasters for which σfce
i,t is not defined, the

effective number of observations is reduced for some of our empirical tests.
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Table 4: Alternative specifications

(1) (2) (3) (4) (5) (6) (7) (8)

Dependent variable is σcross
i,t Dependent variable is Ri,t

Panel a: Financial conditions measured by dividends

Effect of constraint .030 .026 .018 -.003 .009 .016 .006 .077

(.002) (.002) (.003) (.002) (.005 ) (.005 ) (.006 ) (.012 )

Observations 58 737 58 737 58 735 57 215 65 528 65 528 65 525 64 046

Adj. R-sq. 0.009 0.022 0.072 0.700 0.000 0.117 0.118 0.123

Panel b: Financial conditions measured by leverage

Effect of constraint .016 .014 .015 .003 .062 .060 .061 .140

(.005) (.005) (.004) (.007) (.020) (.019) (.019) (.027)

Observations 58 641 58 641 58 639 57 124 65 378 65 378 65 375 63 902

Adj. R-sq. 0.000 0.015 0.070 0.706 0.000 0.118 0.118 0.123

Year × month FE no yes yes yes no yes yes yes

Sector FE (4 digit) no no yes no no no yes no

Firm FE no no no yes no no no yes

Note: Standard errors clustered at the firm-level are in parenthesis.

Appendix to Lamont, Polk and Saá-Requejo, 2001 for a listing of the corresponding COMPUSTAT

items).

D Robustness of the empirical analysis (for online publication)

In Table 4 we show additional results using two common alternative measures for financial constraints.

The first is an indicator for whether dividend payouts are zero (Panel a), the second an indicator

for whether the debt to capital ratio (which is a monotone function of leverage) is in the top 5% in

a given year (Panel b).

The results are qualitatively similar to the ones in Table 2. The point estimates are somewhat

similar across columns (1)–(3) but are significantly smaller when firm fixed effects are included,

which, as we argued above, takes away a lot of variation in the financial constraint variables.

Similarly, the estimates are somewhat similar in columns (5)–(7) and jump up in column (8), as

they did in Table 2.

The magnitues in Table 4 are somewhat smaller compared to those in Table 2. This is not

surprising given that one may think of the KZ indicator as a (more or less) optimized indicator

which already includes dividend payouts and leverage in its composition; and thus dividends and

leverage are both relatively more noisy measures of financial constraints and therefore subject to

greater attenuation bias.
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