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Abstract

What is the impact of increasing the supply of bicycles on air pollution in cities?
Little is known about the impact of cycling on urban transport systems and their
environmental benefits. As a non-polluting alternative to public and private trans-
port, cycling has the potential to alleviate cities of the burdens of pollution and con-
gestion. This paper takes advantage a well-defined, both in time and space, cycling
policy to estimate the causal impacts of cycling on local air pollution. Using New
York’s gradual roll-out of bicycle-share, I map the areas treated by bicycle-share
and compare them to untreated areas, using difference-in-differences estimators
robust to variation in treatment timing. I find that air pollutants associated with
road traffic decrease faster in areas with bicycle-share compared to control areas.
These results are robust to alternative treatment definitions.
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1 Introduction

Air pollution is a major source of health issues around the world. Yearly excess deaths
caused by air pollution are estimated between 3.3 million (Lelieveld et al., 2015) and
10.2 million (Vohra et al., 2021). Air pollution is ranked as the fourth-worst risk factor
by the Global Burden of Disease yearly report (Abbafati et al., 2020), causing around 12
percent of all annual deaths. In addition to direct deaths, air pollution is behind a host
of negative impacts: chronic respiratory diseases such asthma (Guarnieri and Balmes,
2014), affecting the size and weight of newborns (Currie and Walker, 2011; Schembari
et al., 2015), worsening of mental health (Chen et al., 2018) and decreasing labor supply
(Hanna and Oliva, 2015; Aragón et al., 2017), to name a few.

In response to these challenges, governments and communities have implemented
a whole range of policies. Cities are particularly exposed, as they concentrate high vol-
umes of economic activity (including transport) in a relatively confined space, and do
register higher concentrations of air pollutants when compared to rural areas (Stros-
nider et al., 2017). A notable source of air pollution, especially in urban areas, is mo-
tor land vehicles powered by internal combustion engines, henceforth motor vehicles
(Nriagu, 2011). The reduction of this type of traffic is thus the focus of many of the
policies with the goal of alleviating air pollution.

One avenue explored to tackle urban motor traffic is the promotion of alternative
modes of transport, notably public (bus, subway) and active (walking, cycling) trans-
port. In the past 15 years, cities around the world have promoted the use of bicycles
through the implementation of affordable bicycle-share systems, which are public bi-
cycles docked at stations spread around the city. By making cycling accessible to many
andwith fewer constraints, these networks of public bicycles effectively reduce the price
of cycling in the city. The price reduction is identifiable both in space (the public bicy-
cles can only be used within the area that contains the stations) and time (the bicycles
are useable only after the system is implemented or expanded).

Following this price decrease, one might expect that some users of motor vehicles
or taxis in the area now served by the bicycle-share system switch to bicycles for some
trips. This switch would imply a decrease in pollution following the arrival of the bicy-
cle network in the service area. The objective of this paper is to assess whether pollu-
tion concentrations actually decrease in the service area following the introduction of
bicycle-share, and quantify the hypothetical reduction.

To evaluate the impact of bicycle-share, I combine a dataset of the universe of trips
made on New York City’s bicycle-share system Citi Bike with yearly high-resolution
spatial data on local pollution in New York City, from 2008 to 2018. Joining these, I am
able to identify which areas of the city are treated by bicycle-share each year, and link
that treatment status to the observed level of pollution.

I use a staggered difference-in-differences (DiD) strategy that leverages the prop-
erty described above: the impact of the bicycle-share on the relative price of cycling is
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identifiable both in time and space. In practice, this method compares the areas with
bicycle-share to those without, before and after the implementation of the system. Un-
der some key assumptions, this method retrieves the average treatment effect on the
treated and lets me causally evaluate the impact of bicycle-share on pollution concen-
trations.

Focusing on the pollutants most likely to originate from motor vehicles (black car-
bon, nitric oxide and particulate matter), this paper finds that the arrival of the bicycle-
share inNewYork City and its gradual expansion significantly decreased the concentra-
tion of black carbon and nitric oxide, while leaving particulate matter levels unaffected.
I show that these results remain stable when using complementary definitions of areas
served by the network (treated areas).

To the best of my knowledge, this paper provides the first causal estimates of the im-
pact of a bicycle-share system on measures of pollution. Previous literature has relied
on a range of assumptions to compute the expected impacts of bicycle-share: assump-
tions on the substitution rate between bicycles and motor vehicles; on the type of mo-
tor vehicle (e.g., fuel consumption) and commuting pattern (e.g., kilometers traveled);
on the number of bicycle trips and distances traveled on the system once opened; etc
(Pierce et al., 2013; Fishman et al., 2014, 2015; Hamilton and Wichman, 2018; Kou et al.,
2020). The present paper frees itself from making any of those assumptions by solely
relying on observational data to estimate the effect of bicycle-share on pollution.

Gendron-Carrier et al. (2021) assess the impact of the opening of subway lines on
urban particulate matter (PM) concentrations. They find that new lines decrease PM
in the most polluted cities and have important economic benefits for society, taking
advantage of high-resolution and frequent satellite measures of pollution. The present
paper carries on this important line of research evaluating the impact of large-scale
transport interventions on cities, using the case of New York City and its bicycle-share
system.

There are important reasons why one would like to empirically estimate the causal
impacts of bicycle-sharing on pollution. Measuring the decrease in pollution-induced
by bicycle-share lets us compute the associated health benefits on a much firmer ba-
sis than the assumptions used in other studies. These health benefit estimates become
key elements when it comes to compare pollution-reduction policies and evaluate their
relative cost-benefit ratio. More precise and accurate information on the different alter-
native policies available to policymakers is a clear enhancement over the current state
of knowledge, and could potentially help improve the living conditions of millions of
city dwellers around the world.

The next sections are organized as follow: section 2 presents urban air pollution
followed by bicycle-share systems; section 3 outlines the mechanisms through which
bicycle-share might impact urban air pollution and describes the treatment definitions;
section 4 describes the data sources and transformations necessary for the analysis; sec-
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tion 5 then lays down the empirical strategy and presents the paper’s results; finally,
section 6 concludes.

2 Setting

2.1 Urban air pollution

Air pollution is the idea that the air contains substances in concentration that may nega-
tively impact the health of those who breathe it. Many different types of pollutants can
be found in the air, coming from different sources andwith various health implications.
In this subsection, I will introduce the main air pollutants, where they come from, and
what are their impacts on human health.

Air pollutants may be divided into two broad categories: gases and particulates.
Nitrogen oxides (NOx), ozone (O₃), sulfur dioxides (SOx), carbon monoxide (CO) and
carbon dioxide (CO₂) are all gases found in various concentrations in ambient air. Par-
ticulate matter (PM), or aerosols, are solid elements in suspension in the air, commonly
subdivided by their size in microns (𝜇m): 2.5𝜇m or less (fine particles), 10𝜇m or less
(coarse particles). Black carbon (sometimes referred to as soot) is a type of fine partic-
ulate matter formed by the incomplete combustion of hydrocarbons. Volatile organic
compounds (VOCs) are molecules with low boiling points, such as methane, hydrocar-
bons and solvents, present in the air in vapor forms (Nriagu, 2011).

This paper focuses on the pollutants measured by the New York City Community
Air Survey (NYCCAS, see section 4.1). The NYCCAS is a unique pollution dataset for
its high spatial definition, but is limited to measuring concentrations of NO, NO₂, O₃,
SO₂, PM 2.5 and black carbon (BC). The remainder of this section will focus on these
pollutants.

The two main sources of anthropogenic air pollution are stationary (e.g., factories,
power stations, buildings, houses) and mobile (land, air and maritime vehicles). Pollu-
tion may also result from controlled burns, which is not a very relevant source in the
present urban setting.

Source apportionment (i.e., the ability to measure each source’s share in pollutants’
emissions) of the pollutants is not straightforward. Nriagu (2011) provides some esti-
mates for the substances measured by the NYCCAS: in the United Kingdom (UK), an
estimated 50 percent of all NOx originates from motor vehicles. O₃ derives from decay-
ing NOx reacting with VOCs. It forms in the span of a few days, under stable and good
weather conditions, and is therefore uncommon around roads. Only an estimated 2
percent of SO₂ in the UK comes from vehicle exhaust, the industrial sector being the
main source. The majority of particles emitted by motor vehicles are PM 2.5, which
makes it a good marker of traffic pollution. Finally, BC principally derives from the
incomplete combustion of diesel fuel.

Long-term exposure to these pollutants has been shown to increase the risk of car-
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diovascular diseases, as well as respiratory system and lung ailments (Nriagu, 2011).
Short-term exposure may create respiratory irritation and other symptoms. The health
issues created by the pollutants have concrete public health consequences: several stud-
ies have shown that air pollution was associated with increased morbidity and mortal-
ity (Hoek et al., 2002; Chay and Greenstone, 2003; Currie and Walker, 2011; Lelieveld
et al., 2015; Kheirbek et al., 2016; Arceo et al., 2016; Knittel et al., 2016; Anderson, 2020),
Lelieveld et al. (2015) estimating that three million deaths every year can be attributed
to air pollution. A recent study by Vohra et al. (2021) focusing on PM 2.5 alone re-
vised previous estimates upwards, with long-term exposure to PM 2.5 causing more
than 10 million yearly deaths globally, among which 355 thousand in the United States,
representing about 13 percent of all deaths, a figure matched by the most recent Global
Burden of Disease report (Abbafati et al., 2020). In addition to the direct loss of lives, air
pollution decreases the quality of life of those most exposed to it, burdening themwith
chronic diseases such as asthma (Guarnieri and Balmes, 2014), affecting the size and
weight of newborns (Currie and Walker, 2011; Schembari et al., 2015), mental health
(Chen et al., 2018), and making the environment and the outdoors inhospitable, pre-
venting its enjoyment by inhabitants. Air pollution has also been shown to impact im-
portant economic outcomes such as labor supply (Hanna andOliva, 2015; Aragón et al.,
2017).

As will be discussed more in detail in section 4.1, the NYCCASmeasures concentra-
tions of NO, NO₂, O₃ (in summer only), SO₂ (in winter only), PM 2.5 and BC. Of those,
I select a subset that, from my reading of the literature, is the most likely to be related
to local road traffic. Since the NYCCAS measures concentrations at a high spatial defi-
nition and the empirical strategy specifically compares areas with the bicycle-share to
those without, the pollutants of interest must have been likely affected by the arrival of
the bicycle-share. In other words, measuring the change in pollutants that travel exten-
sively across space would not make sense, as pollution might be coming from outside
the bicycle-share area. I also exclude those pollutants weakly linked to motor vehicles.

I thus focus on NO, PM 2.5 and BC. NO₂ is the product of NO alteration after emis-
sion and may linger for some time in the atmosphere and thus travel from one area to
another. O₃ follows a similar pattern as it is the product of NOx oxidation after a few
days, in which case it likely traveled from the original emission location. Finally, SO₂,
as discussed earlier, mostly originates from stationary sources and is only measured in
winter when fewer bicycles are used.

2.2 Bicycle-share system

New York City opened its bicycle-share system Citi Bike in 2013 with 360 stations. In
2018, the system consisted of more than 800 stations in four of the city’s five boroughs.
This section describes the system, its implementation and expansion.

Bicycle-share systems are short-term rental bicycle schemes implemented in cities.
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Set up by city councils, sometimes in partnership with private capital, these systems
are generally cheaper than classic rental bicycles and are geared towards commuters as
well as visitors. The current generation of bicycle-share systems came to prominence in
Europe in the early 2000s, and most major cities around the world now have their own
network.

The majority of the systems are so-called third-generation bicycle-share systems,
characterized by automatic docking stations. To use a bicycle, users may either register
for an annual subscription plan, swipe their credit card at the station’s kiosk for a daily
pass, or use the Citi Bike app to purchase a single ride. The station then unlocks a
bicycle, which the user rides until she finds a free dock at her destination station. The
first 30 to 45 minutes (depending on the subscription plan) are included for each ride,
with additional costs per extra minute charged to users.

Fourth-generation “dockless” bicycles are taking root in many urban areas, but are
absent from the New York City landscape and are therefore not considered in the anal-
ysis.¹

Bicycle-share in NewYork City began in 2009with a feasibility study commissioned
to the city’s Department of City Planning (New York City Department of City Planning,
2009). The report was based on the experience gathered in the first large-scale systems
at the time: Paris’ Vélib, Barcelona’s Bicing, and Montreal’s Bixi, amongst others. From
these early systems, the Department of City Planning was able to define best practices
and key implementation parameters, such as station density per square-mile and sta-
tion placement.

New York City opened its bicycle-share system Citi Bike in 2013, delayed by a year
due to Hurricane Sandy damaging equipment, and issues with stations’ software. At
launch, 362 stations were installed in Lower Manhattan (south of Central Park) and
western Brooklyn (figure 1). The system did not expand in 2014, as the service provider
and the city’s Department of Transportation (NYCDOT) were focused on improving
the quality of the service. Expansion resumed between 2015 and 2017, with stations
installed further north on Manhattan, and deeper into Brooklyn and western Queens.
The service area did not expand in 2018, with NYCDOT focusing on filling in the ser-
vice area with more stations and adapting the system to demand. 2019 and 2020 saw
the bicycle-share system covering the entire island ofManhattan and reaching southern
parts of the Bronx, with continued expansion planned for the coming years. Unfortu-
nately, this last round expansion is not included in the analysis, as pollution data was
not yet available for these periods at the time of writing.

The bicycle-share system of New York City, like many others around the world,
is the result of a public-private partnership. Beyond the planning stages, no public
funds were spent on the implementation and operation of the system. Funding relies
on sponsors and revenue from subscriptions and short-term rentals. The main sponsor

¹A dockless system is planned for Staten Island, the city’s most isolated borough, but launch has been
delayed by the Covid-19 pandemic.
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is Citibank, while the operations are run by Motivate, a subsidiary of the ride-hailing
app Lyft. Public-private partnerships are not uncommon for this type of venture but
might raise questions about the incentives at play when expanding the system. Accord-
ing to the NYCDOT and private correspondence with current and past planners, the
private interests of sponsors and operators do not seem to play a role in the roll-out pro-
cess. The NYCDOT retains full autonomy on the roll-out process and is only limited in
the timing of the expansion by the funding constraints from private partners.

How are the bicycle-share stations placed inNewYork? We can identify two steps in
the process of deciding the location of stations. First is the definition of the service area,
i.e. the area where the city government wants stations implemented. In the case of New
York, this started with the area on Manhattan south of Central Park and the western
parts of Brooklyn. These areas were selected first because of their high concentration
potential riders, the location ofmajor business centers, transportation hubs, universities
and other high transport demand locations. The second step is the placement of stations
at their final location on the streets, within the defined service area, according to a
predefined station density per square mile. Final placement on the street is the result of
a participative process between local stakeholders and the NYCDOT, where residents
and local business associations provide proposals and feedback on potential station
locations (New York City Department of Transportation, 2013). In section 3.2, I exploit
these features to construct a set of treatment definitions.

3 Conceptual framework

This section discusses the relationship at play between bicycle use and air pollution and
then describes the different treatment definitions selected.

3.1 Bicycle-pollution relationship

With the arrival of the bicycle-share network, the price of riding a bicycle significantly
decrease in the areas served by the system. From an economics perspective, consumers
of transport within the areas should respond to the change in relative cost between
transport options, and the marginal riders (i.e., those for which the relative price of
cycling is now lower than their current transport option) are expected to switch to rid-
ing a bicycle. I first describe the likely components of the price of urban cycling, then
describe how bicycle-share changes these price components, and what are the likely
consequences of these changes on the commuter’s choice of urban transport.

3.1.1 Costs and benefits of cycling

The price of acquiring or renting a bicyclemight be themost important cost, towhichwe
must add maintenance costs. Storing and securing the bicycle is another major expen-
diture, especially in cities where real-estate is expensive and flats tend to be smaller,
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making indoor bicycle storage more difficult. Security and the risk of robbery stem
from the previous cost item: buying a good lock is costly but doesn’t even guarantee
with absolute certainty that the bicycle will not be stolen. Storing a bicycle outdoors
because of lack of space in the household also increases maintenance costs as the bicy-
cle is subject to weather and degradation. Adding to the risk dimension, the hazards
associated with road accidents and increased exposure to pollution are perceived costs
for many riders. The inability to use travel time in other ways (e.g., working, reading,
listening to a podcast, making a phone call) represents an additional opportunity cost
of cycling versus other transport means. Exposure to bad weather during travel also
adds to the cost of riding.

Physical activity required to travel by bicycle and its corollaries (e.g., sweating) may
be both a cost (e.g., need to shower at destination, packing an extra set of clothes) and
a benefit (e.g., physical exercise improves health). Whether one effect dominates the
other will depend on the specific circumstances of each commuter (e.g., availability of
showers at destination, changing rooms, etc). Physical activity’s cost and benefit may
be muted down by the use of electric bicycles.

Social acceptability and culture may also play a role in the decision to ride. As
cycling becomes more prevalent in society (or within specific groups), the tendency to
imitate peers and/or pressure to conform to the group increase. The trend towards
more environmentally friendly lifestyles may also act as an underlying cultural trend
decreasing cycling’s implicit cost. In some communities, however, increased ridership
might have the opposite effect, with car drivers or pedestrians bitterly annoyed and
opposed to bicycle expansion.

3.1.2 Bicycle-share’s impact on cycling costs

Bicycle-share impacts the relative cost of riding a bicycle on several dimensions. First, it
substantially decreases the acquisition, rental and maintenance cost for frequent short
rides or infrequent longer ones. An annual subscription starts at $179 (excluding any
discounts) and comeswith unlimited 45-minute rides. In comparison, according to Bike
New York (a bicycle advocacy group), a refurbished secondhand bicycle costs around
$350, and an entry-level commuter bike around $400.² The entry cost for bicycle-share
is substantially lower, includes maintenance³ and makes locks or storage space unnec-
essary.

Second, as more bicycles are released on the streets, the more they are present in
daily traffic. Previous research has shown that bicycle-related fatalities are negatively
related to the number of bicycles in circulation (Jacobsen, 2003; Fishman and Schepers,
2016; Elvik and Bjørnskau, 2017). Moreover, more bicycles in public spaces added to
institutional endorsement by local governments can improve social acceptability, and

²https://www.bike.nyc/blog/news/the-real-cost-of-a-recycled-bicycle/
³Some commentators remark that this may come at the cost of lower general bicycle quality compared

to a privately owned bike due to user abuse.
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thus lower the relative cost. This creates a price-decreasing feedback loop as ridership
increases. If bicycle-share is shown to reduce pollution, it will imply a decrease in pol-
lution exposure, further strengthening the feedback loop. These effects would both
impact bicycle-share ridership but also private bicycle ridership.

Third, bicycle-share is often implemented alongside additional bicycle infrastruc-
ture improvements, such as the extension of the protected cycle lane network. Bicycle
infrastructure improvements have been shown to lower both the perceived and true
accident risk for riders, contributing making cycling more attractive (Reynolds et al.,
2009; Pucher et al., 2010; Winters et al., 2011; Buehler and Pucher, 2012).

Lastly, bicycle-share availability can be an issue if bicycles are not optimally dis-
tributedwithin the network and shortages of either bicycles or free docks prevent usage.
In these circumstances, private bicycle ownership offers more certainty and reliability.

3.1.3 Bicycle-share and other transport modes

To understand the relationship of bicycle-share with other transport modes and how
that relationship plays a role in cycling adoption, it is useful to think in terms of com-
plements and substitutes. Some of cycling’s comparative advantages are (1) faster than
walking, (2) may be faster than a car, motorcycle, taxi, or public transport on short dis-
tances (less than five kilometers) and congested roads, (3) cheaper than car, motorcycle,
taxi or public transport, (4) more flexible than public transport (no schedules, no pre-
defined routes), (5) physical activity. Bicycle-share enjoys most of these advantages,
with the limitations already discussed above. Reducing the price of cycling in the city
increases the salience of these advantages, and is expected to induce some degree of
substitution from other modes of transport to bicycle-share.

Simultaneously, cycling is an acknowledged complement of public transport (Krizek
and Stonebraker, 2010; Heinen and Bohte, 2014) and walking (which is itself a comple-
ment of public transport). Bicycles complement public transport well when it comes to
accessing the public transport departure station and from the arrival station to the final
commute destination. Commuters travel fast and safely on long distances using public
transport, but the last-mile connection to their final destination is (e.g., a few kilome-
ters) is often lacking or inefficient, in which case cycling can successfully bridge the
gap. The bicycle–public transport combination is itself a substitute to private cars, mo-
torcycles and taxis, with its own set comparative advantages: (1) speed and reliability
(depending on the route), (2) cost, (3) ability to use travel time for other activities.

3.1.4 Substitution and impact on pollution

The substitution rates between cycling and the bicycle–public transport combination on
one hand, and polluting modes of transport (i.e., cars, motorcycles, taxis) on the other
will determine the pollution reduction as the price of cycling decreases on account of
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the bicycle-share implementation and expansion. To the best of my knowledge, previ-
ous research has not estimated either substitution rates, although some surveys docu-
mented self-reported number of car trips replaced by bicycle-share users (Bührmann,
2007).

Quantitative estimates of substitution remain spotty and are likely highly depen-
dent on the transport landscape and culture unique to each city. However, bicycle-share
should in principle substitute some polluting modes of transport, and, if not directly
through current commuters (which appears unlikely), at least by means of the mod-
eling of transport habits of newcomers and their acceptance of cycling as a legitimate
transport option.

In the context of New York City, anecdotal evidence indicates that bicycle-share dis-
placed polluting transport traffic from taxis. In 2014 (one year after the launch of Citi
Bike), the New York City Taxi & Limousine Commission published its 2014 Taxicab
Fact Book (Taxi & Limousine Comission, 2014). The average distance traveled by cab
was 4.2 kilometers (20 percent of trips were less than 1.6 kilometers), a distance in the
range of a bicycle ride. Moreover, the demographic of taxi passengers was relatively
young, wealthy and based in Manhattan,⁴ three factors that match typical bicycle-share
demographics.⁵

More work is necessary to find out whether the bicycle-share–public transport com-
bination decreased the number of cars entering the city (and thus pollution), but the
arguments presented above do suggest that this has likely happened to some degree,
especially when considering the sizable price decrease of cycling that bicycle-share has
ushered.

3.2 Treatment definitions

Like any other type of transport infrastructure, bicycle-share is a fundamentally spatial
phenomenon: individuals have to be located around or come to the stations in order to
use the system and have a potential impact on pollution through their mobility choice.
With this in mind, it comes to no surprise that treatment definitions include an intrinsic
spatial dimension. The spatial dimension, however, may be defined in a variety of ways.
Taken together, these definitions help paint a more complete picture of the impact of
bicycle-share on urban pollution.

In this section, I present the set of treatment definitions used in the analysis. For
the sake of clarity, is worth briefly describing the bicycle-share system’s raw data (sec-
tion 4.2 gives full details). The raw data are the universe of trips made on the system
since the opening. Each row includes the date, time and location of both the trip’s start

⁴70 percent of taxi passengers are aged 35 or below, while only representing 50 percent of New York
City’s population. 42 percent of taxi passengers have an annual household income of $100,000 or higher,
while that proportion in city population is 24 percent.

⁵https://rstudio-pubs-static.s3.amazonaws.com/562792_a5e5d1698c3b4574b7a7fd093465ccd0.
html. See also Hosford et al. (2018).
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Figure 1: Map of station treatment in 2016 with stations points. Close-up on the treated
area. Cells are given by the NYCCAS pollution maps and are the units of observation.

and end, as well as type of rider (subscriber or one-off customer), age and gender (only
if the rider is a subscriber). The treatment definitions are based on two complemen-
tary attributes of the raw bicycle-share data: stations’ locations and routes between any
given pair of stations (and the associated number of trips taken on each route) com-
puted with a routing algorithm. Both attributes are complementary and shed light on
different aspects of bicycle-share’s impact.

A word on the spatial scale: this paper uses cells measuring 300m by 300m from a
grid covering the entire city as its units of analysis. The grid is given by the pollution
data source, which will be thoroughly described in section 4.1. For the present section,
suffice to say that treatment will be defined at the cell level, even though the underlying
data is defined in different spatial units (e.g., points, lines).

To better understand the treatment effects’ interpretations described below, it is also
worth bearing in mind the empirical strategy that will use these treatment definitions.
In a nutshell, this paper will use staggered DiD to estimate the average treatment effect
on the treated cells. This approach effectively compares treated cells before and after
the treatment with never-treated cells. The empirical strategy is presented thoroughly
in section 5.1.
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NDichotomous treatment definitions
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Routes−only treatment
Both routes and convex hull treatment

Bicycle−share stations
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Figure 2: Map of dichotomous treatments in 2016 with stations and the convex hull.
Cells are given by the NYCCAS pollution maps and are the units of observation.

3.2.1 Stations

The first attribute taken into account is the locations of stations. Locations of stations
are arguably the simplest (and computationally light) proxy to examine the effect of
bicycle-share at the very local level. The surroundings of the stations are the areas that
have the easiest access to the bicycle-share network, and thus provide an approximation
of the locations where individuals might substitute their transport choices out of cars
and taxis to bicycle-share.

I start by plotting, for each year, all the system’s active stations (see section 4.2 for
the criteria for active stations) and overlay the grid given by the pollution data. From
there, I identify three treatment definitions that I will develop in the next paragraphs:
dichotomous, count and service area.

The dichotomous treatment defines treated cells as containing at least one station.
The cell containing a station represents the area immediately adjacent to the station,
and thus the one that has the best access to it. To capture the magnitude of bicycle-
share accessibility, I count the number of stations present in each cell: this is the second
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Figure 3: Map of trips-per-cell treatment intensity. Close-up on the treated area. Cells
are given by the NYCCAS pollution maps and are the units of observation.

treatment definition. Both treatment definitions for 2016 are depicted in figure 1 (2013
and 2018 can be found in appendix A).

How to interpret the coefficients from those treatments? The dichotomous indicator
of station presence estimates the difference in pollution due to bicycle-share stations of
treated cells, before and after the arrival of stations in the cells. The count treatment
estimates the impact of one additional station on the pollution level of treated cells.

The dichotomous and count treatment definitions are simple to visualize and com-
pute. However, they might imperfectly capture the areas effectively impacted by the
arrival of bicycle stations. One might think that cells without stations but surrounded
by cells with stations might equally well access the bicycle-share system. As a result,
one might expect their pollution levels to decrease as the result of some degree of sub-
stitution out of cars and taxis. To capture these cells within what I name the service area,
I define as treated all the cells that are in-between stations (figure 2).

In technical terms, I build a polygon that encompasses all the cells that have at least
one station, and consider all the cells within that polygon to be treated. This polygon is
the smallest convex polygon containing all the stations, and is also known as the convex
hull of the set of stations. Here is another way to visualize the convex hull: if one were
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to travel in a hypothetical straight line between any pair of stations (i.e., ignoring streets
and buildings), that line would always fall within the convex hull polygon. Taken to-
gether, those straight lines between stations, especially the ones linking the stations at
the edges of the network, would actually delineate the service area and define it as a
convex polygon.

With the yearly locations of stations describe earlier, I construct the convex hull for
each year, and define as treated by the bicycle-share system all the cells falling within
it. The set of treated cells for a particular year constitute that year’s service area.

The interpretation of this treatment definition is similar to the dichotomous treat-
ment: the coefficient of the service area captures the average effect of bringing the
bicycle-share system to the treated cells on these cells’ pollution level. The only dif-
ference is the extent to which we deem a station can treat cells: in the dichotomous
treatment, the extent was limited to the area of the cell containing the station; in the
service area definition, the extent covers all cells that are surrounded by stations, i.e.,
the convex hull of stations.

3.2.2 Routes

The service area is an elegant and practical measure of the extent of the bicycle-share’s
area of influence at a given period. I hinted earlier that this definition assumes a straight
line of travel between any pair of stations. This assumption, however, might not be a
good representation of travel within the city, with its specific network of streets, build-
ings blocks, parks and rivers. In other words, taking into account the geography and
road network of the city lets me build a more precise picture of the areas affected by
the bicycle-share system.

Moreover, the service area definition assumes a constant intensity of treatment across
treated cells; a simple attribute of dichotomous variables. Yet, we might want to assess
the intensive margin of bicycle-share: does riding more bicycles in a certain area lead
to a higher decrease in pollution? To answer this question, we can make full use of the
raw bicycle-share trip data and count the number of trips taken within each cell, and
estimate the impact of an additional bicycle trip on pollution. This section describes
this exercise and the treatment definitions that it enables.

Taking into account the city’s streets and natural obstacles, I am able to more pre-
cisely map the influence area of bicycle-share. Instead of assuming straight lines of
travel between stations, I use the actual network of roads to compute the routes and
map these routes onto cells. Using the universe of bicycle-share trips for a given year,
I reduce the dataset to unique origin-destination pairs of stations with at least one trip
between them, adding a variable counting the number of trips for each pair. By only
selecting stations’ pairswith at least one trip, I also drop the assumption that the bicycle-
share system’s impact area extends between all pairs of stations: during a given year,
it might be the case that two stations did not “exchange” any bicycles, leaving the area
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between them untreated, whereas that area would have been mechanically coded as
treated under the service area definition.

Once the pairs of “exchanging” stations are established, I feed the origin-destination
locations to the r5r routing engine (Pereira et al., 2021), which outputs the route between
the stations using a specified transport mode (more on that later), taking into account
the road network in use that year. The route is provided as a vector line, an arguably
narrow definition of the area affect by the passage of a bicycle or car: I therefore add
a 150-meter buffer around the line. I then compute, for each cell, all the routes that
intersect it. For each cell, I now have the list of all intersecting routes, and the number
of bicycle-share trips associated with each of them. The final step is to construct, for
each cell, two treatment variables: a routes-dichotomous variable equal to one if the
cell is crossed by at least one route and zero otherwise (figure 2 for 2016, other years in
appendix A), and a trips-per-cell count variable that sums the bicycle-share trips from
all the routes crossing the cell (figure 3). I end up with two new variables: the equiv-
alent of an enhanced service area treatment (routes-dichotomous), and an intensity of
treatment (trips-per-cell).

These two new treatment variables take into account the city’s geography to pro-
vide more spatially accurate treatment definitions. In addition, the trip-per-cell vari-
able fully exploits the bicycle-share trip data and lets me account for the magnitude
of bicycle-share trips going through a given area of the city. This last point raises the
issue of which routes should we be computing. In and of themselves, bicycles do not
produce clean air: as detailed in the previous section, cycling reduces pollution only
through the substitution of a polluting mode of transport (either a car or taxi trip) it
may induce. Moreover, between any given origin-destination point in the city, cars and
taxis may not follow the exact same route as bicycles, due to traffic restrictions, tunnels
or bridges, one-way streets and cycle lanes, for example.

To measure the impact of bicycle-share on pollution, the case can be made that the
car rather bicycle routes between the pairs of stations better capture the reduction in
pollution induced by the substitution. When and if bicycles replace cars, the pollution
decreases in the areas where cars would have driven under the status quo. Therefore,
we should take car routes into account when mapping out the routes between stations,
as we assume that a fraction of the bicycle-share trips substitute for car or taxi trips,
therefore decreasing pollution in areas previously traveled by cars and taxis.⁶

The interpretation of the routes-dichotomous treatment definition is: we assume
that, for each pair of stations, the area where pollution is most likely to decrease is the
cells crossed by the optimal car route between the stations. The opening of a new pair
of stations might treat new cells, which then are expected to be more likely to see their

⁶Note that it is not assumed that all bicycle-share trips are substituting car or taxi trips, simply that the
area affected, if any, is most likely the one on the routes taken by cars to travel from one bicycle-share station
to another. The rate of substitution does not need to be assumed either: the observational data speak for
themselves.
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Table 1: Treatment definitions summary

Type Treatment Data

Dichotomous Station present Cell contains at least one station

Service area Cell is within the smallest convex polygon con-
taining all the stations

Routes Cell is crossed by a car route (or its 150m buffer)
going from a station to another, the pair of sta-
tion having at least one trip between each other

Intensity Station count Number of stations within a cell

Trips per cell Number of bicycle-share trips converted into
car trips passing through a cell when summing
trips from all routes between all stations

pollution concentrations decrease. The trips-per-cell definition starts from the same
premise but takes into account the volume of bicycle trips between each pair of stations
to measure the expected substitution’s impact on pollution. The coefficient’s interpre-
tation, in this case, is the marginal effect of one additional bicycle-trip on pollution
measures (to make tables more readable, in the result section I report the effect for ten
thousand trips).

The treatment definitions are summarized in table 1. There are three dichotomous
(i.e., binary) treatments: stations present, within service area (convex hull) and crossed
by car route. Two treatment definitions capture bicycle-share intensity: stations count
and car trips per cell. The preferred treatment definition is the routes-dichotomous: it
takes into account the area most susceptible to have its pollution decrease and makes
use of the raw bicycle-share trip data. However, all definitions are useful to shed light
on the issue at hand, and section 5.2will present the impact of each of themon pollution
measures.

4 Data

In this section, I present the data used to run the present analysis. The outcome vari-
able is the average yearly concentration of a range of air pollutants, and is obtained from
the NYCCAS from the New York City Department of Health and Mental Hygiene. The
main variables of interest are bicycle-share stations’ locations, and bicycle-share service
area and usage data. Both are sourced from Citi Bike’s operator, which releases pub-
licly the universe of trips made on the system. Additional data is obtained from the
American Community Survey.
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4.1 Pollution data

High-resolution pollution data is hard to come by. Many measurements done by reg-
ulatory bodies are made at discrete locations and do not provide a detailed account
of pollutants distribution across space. Thankfully, the New York City Department of
Health and Mental Hygiene initiated in 2008 a program to tackle the issue of local air
pollution variation, the NYCCAS. The survey is built upon numerous measurement lo-
cations coupled with statistical inference methods to deliver a high-resolution map of
pollutants’ concentrations across New York City.

The NYCCAS started in 2008 and monitors concentrations of the following pollu-
tants: PM 2.5, BC, NO, NO₂, O₃ (in summer only), and SO₂ (in winter only). Details on
the NYCCAS methods can be found in Matte et al. (2013) and Clougherty et al. (2013),
which the following paragraph summarizes.

In order to produce a detailed picture of pollution across the city, the NYCCAS fol-
lows a rigorous protocol, using a total of 150 measurement stations surveyed through-
out the year. 120 of them are randomly placed across the city’s territory, stratified on
traffic and building density, i.e., oversampling areas with higher traffic and building
density. They then place 30 measuring stations at purposeful sites, i.e., sites with de-
fined characteristics, to ensure good representativity. The NYCCAS team then uses
these measures and land use regression to interpolate yearly average concentrations
in each and every of the 300 meters (m) by 300m cells that form a grid map overlaid
over the city (see figure 2). I use this product to determine the pollutants’ concentra-
tions in specific locations across the city and throughout the years. It is worth noting
that the NYCCAS is specifically designed to record street-level pollution and enable
cross-locations comparisons (Clougherty et al., 2013; Matte et al., 2013).

I select three pollutants for the remaining of the analysis: PM 2.5, BC andNO. These
air pollutants are those most likely to emanate from local traffic. Moreover these pol-
lutants, because of their chemical properties, tend to stay localized around their emis-
sion source, transforming to other substances with time (Nriagu, 2011). These charac-
teristic make them suitable candidates to measure the impact of bicycle-share. BC in
absorbance units (abs), NO in parts per billion (ppb) and PM 2.5 is measured in micro-
grams per cubic meter (𝜇g/m³).

4.2 Bicycle-share data

From the Citi Bike website, I obtain the universe of trips made on the system since its
launch in June 2013. The raw data contains the following variables for each trip: start
date and time, end date and time, duration, start and end station address, start and
end station longitude and latitude coordinates, a dummy if the rider holds a subscrip-
tion, and if she does, her year of birth and gender. About 100 million such trips were
recorded from launch to the end of 2018. These data are the basis of the treatment
definitions presented in section 3.2.
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For the analysis, we want to keep all the trips made from and to active stations
available to the public and that actually resulted in the transport of a person from one
location to another. We also want to keep only trips that we are able to map. With these
criteria in mind, I cleaned the data in two stages. First, I discarded all the trips of less
than 3 minutes, as they are likely “false starts” (e.g., faulty bicycle), as well as round
trips (i.e., from station A back to A), as we cannot map through which areas of the city
these trips have likely gone through. Secondly, I discard all the trips that have origin
or destination station names identified as provisional or for maintenance: we want to
keep only the trips actually done by riders to transport themselves, not the artifact trips
from the moving and maintenance of bicycles.

4.3 Census data

The American Community Survey (ACS) released by the Census Bureau provides the
control variables that might impact both pollution concentration and bicycle-share us-
age. The ACS is conducted yearly on a sample of the United States’ population (about
three million respondents every year) and asks socio-economic questions similar to
those in the decennial census. Thanks to its yearly frequency, the Census Bureau is
able to construct estimates of each variable for different geographic units by combining
different years of data: using the last three years of data, the Bureau publishes the ACS-
3, and using the last five years, the ACS-5. ACS-5 estimates are available for smaller
geographical areas down to the census tract level because not every census tract is sur-
veyed each year.

I use the yearlyACS-5 estimates to proxypopulation,median household income and
educational attainment for census tracts in NYC. I then spatially interpolate these data
to cells, under the assumption that these data are homogeneously distributed across the
census tracts. In practice, the cell’s value for a given measure is the weighted average
of the measure for all census tracts it contains, where the weights are the proportional
area covered by each census tract within a given cell.

4.4 Data transformations and final dataset

The data presented above are available for different geographic units. I decided to ho-
mogenize the spatial variables at the cell-level, where the grid of cells is given by the
NYCCAS pollution dataset. The grid is an appropriate level of analysis because it is ag-
nostic to political and administrative divisions within the city, while also retaining sta-
ble spatial features (extent, number of neighboring cells, high spatial resolution, etc).
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5 Analysis

5.1 Empirical strategy

This subsection describes the empirical strategy employed in the analysis, and discusses
the main assumptions necessary for the strategy to be valid.

As described above, the bicycle-share systemwas gradually rolled-out across differ-
ent areas of the city. I exploit the staggered nature of the expansion by using a staggered
DiD estimation strategy. The staggered DiD effectively compares treated units with
control units, before and after the treatment. In the present setting, this translates to
comparing grid cells with at least one bicycle-share station (or within the bicycle-share
service area) with grid cells without stations (or outside the service area), before and
after the arrival of the first bicycle station (or the inclusion in the service area).

5.1.1 Estimation model

The estimation model is a simple two-way fixed effect model, as described in equation
1:

𝑌𝑐𝑡 = 𝛽Treatment 𝑐𝑡−1 + year 𝑡 + cell 𝑐 + 𝜀𝑐𝑡 , (1)

for cell 𝑐 at year 𝑡.

5.1.2 Assumptions

The estimation model laid out in equation 1 rests upon important assumptions regard-
ing the nature of the treatment and the relationship between variables. Specifically, the
data should be checked for parallel trends in the outcome variable before treatment, the
exogeneity of treatment with respect to the outcome variable, and that no other omitted
variables are influencing both the outcome and the treatment. This section explores the
most important of these assumptions, parallel trends.

Parallel trends For a DiD strategy to be valid, parallel trends of the outcome vari-
able between treated and control groups before treatment must be established. In the
present setting, this means that air pollutants’ concentrations should display parallel
trends before treatment in both control and to-be-treated cells. In other words, pollu-
tion should be following a similar trend between treated and control cells before the
arrival of bicycle stations in treated cells.

Awell-established approach to check the difference in pre-treatment trends is to plot
the full dynamic treatment effects, also known as event study. The event study plots the
interaction of treatment status with the periods before and after the treatment. Parallel
trends are observed when there is no significant effect of the treatment on the level of
the outcome variable before treatment. Equation 2 formalizes the tested relationship
and includes two-way fixed effects (i.e., for both time and unit):
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Figure 4: Event study for PM2.5, route-present treatment definition. Cell and year fixed
effects, standard errors clustered at the community district level.
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Figure 5: Event study for black carbon, route-present treatment definition. Cell and
year fixed effects, standard errors clustered at the community district level.
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Figure 6: Event study for black carbon, route-present treatment definition. Cell and
year fixed effects, standard errors clustered at the community district level.

𝑌𝑐𝑡 =
5∑

𝑘≠−1

𝛽𝑘Treatment 𝑐 × RelYear 𝑘 + year 𝑡 + cell 𝑐 + 𝜀𝑐𝑡 . (2)

We then run the regression, clustering the standard errors at the community district
level, and plot the coefficients 𝛽𝑘 alongside their 95 percent confidence intervals. Fig-
ures 4 to 6 show the results for PM 2.5, BC and NO when considering the trips-per-cell
dichotomous treatment definition, while figures 16 to 18 in appendix B present results
for the service-area treatment definition.

For these three pollutants and both treatment definitions, the parallel trends as-
sumption is broadly satisfied. There is an indication of different trends of NO levels
in the pre-treatment period under the trips-per-cell dichotomous treatment, but these
are absent under the service-area definition, and follow the same patterns, which gives
support to the parallel trend assumption.

5.2 Results

This section presents the estimated treatment effects of bicycle-share on pollution mea-
sures. The results reported estimate equation 1 for the three air pollutants selected
and the five treatment definitions presented in section 3.2. I present the results for each
pollutant in turn, first for dichotomous treatment definitions and then intensity of treat-
ment measures.
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Table 2: Dependent variable: black carbon, dichotomous treatments

(1) (2) (3) (4) (5) (6)

Station present -0.0675∗∗∗ -0.0575∗∗∗
(0.021) (0.019)

Service area -0.0597∗∗∗ -0.0514∗∗∗
(0.018) (0.017)

Car route present -0.0481∗∗∗ -0.0382∗∗∗
(0.016) (0.014)

Control mean .84 .86 .84 .86 .84 .86
Year FE ✓ ✓ ✓ ✓ ✓ ✓
Cell FE ✓ ✓ ✓ ✓ ✓ ✓
Population ✓ ✓ ✓
Median income ✓ ✓ ✓
Bachelor grads ✓ ✓ ✓
N 77,360 66,583 77,360 66,583 77,360 66,583
R-sq 0.929 0.958 0.930 0.958 0.929 0.957
Standard errors in parentheses
∗ 𝑝 < 0.10, ∗∗ 𝑝 < 0.05, ∗∗∗ 𝑝 < 0.01

Note: Standard errors clustered at the community district level.

Table 3: Dependent variable: black carbon, treatment intensities

(1) (2) (3) (4) (5) (6)

Station count -0.0446∗∗∗ -0.0372∗∗∗
(0.014) (0.012)

Trips per cell -0.00162∗∗∗ -0.00143∗∗∗
(0.00030) (0.00023)

Trips per cell, IHS -0.00507∗∗∗ -0.00423∗∗∗
(0.0016) (0.0014)

Control mean .84 .86 .84 .86 .84 .86
Year FE ✓ ✓ ✓ ✓ ✓ ✓
Cell FE ✓ ✓ ✓ ✓ ✓ ✓
Population ✓ ✓ ✓
Median income ✓ ✓ ✓
Bachelor grads ✓ ✓ ✓
N 77,360 66,583 77,360 66,583 77,360 66,583
R-sq 0.929 0.957 0.930 0.958 0.929 0.958
Standard errors in parentheses
∗ 𝑝 < 0.10, ∗∗ 𝑝 < 0.05, ∗∗∗ 𝑝 < 0.01

Note: Standard errors clustered at the community district level. For clarity, the coefficient for
Trips per cell is given for ten thousand trips. Trips per cell, IHS is the inverse hyperbolic sine
(IHS) transformation of Trips per cell, a type of log transformation which preserves zeros (see
appendix D for details).
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5.2.1 Black carbon

BC appears to be significantly impacted by the roll-out of the bicycle-share in NewYork
City. Starting with table 2 and dichotomous treatments, we observe that the arrival
of bicycle-share significantly decreases BC concentrations under all three definitions.
When a cell switches from no bicycle-share station to at least one (columns 1 and 2),
BC falls by 0.0575 abs, which represents a 6.69 percent decrease from the mean BC
concentration in the control cells. Including the cells in the service area (columns 2 and
4), the reduction stays stable at 0.0514 abs (5.98 percent of the control group’s mean).
We observe a slight decrease when including cells crossed by the car-equivalent routes
(columns 5 and 6): 0.0382 abs reduction, 4.44 percent from the mean of the controls.

Table 3 reports the treatment effect coefficients when taking into account the inten-
sity of the bicycle-share intervention. One additional bicycle-share station (columns 1
and 2) decreases BC concentration by an additional 0.0372 abs, or 4.43 percent. Trips
per cell also seem to lead to a significant decrease: for each additional 10 thousand car-
equivalent trips going through a cell, the concentration of BC decreases by 0.00143 abs.
Given that the median number of trips per cell with at least one trip is 45,124 (average:
187,291), themedian cell will see a reduction of 0.064 abs, which represents a 2.7 percent
reduction from the mean pollution level of the control group.

I then take the inverse hyperbolic sine of trips per cell and report the results in
columns 5 and 6. The IHS is a type of log transformation that preserves zero values
(abundant in the case of trips-per-cell, as most of the cells are controls with zero trips)
while still appreciably linearizing the variable (seeMacKinnon andMagee (1990); Belle-
mare et al. (2013) and appendix D for details). For BC, a one percentage point increase
in trips per cell leads to a 0.00423 abs reduction in pollution, 0.5 percent of the controls’
mean.

The coefficients reported in table 3 also enable us to look at the effect of bicycle-share
at different treatment intensities. Taking the cells at the 80th percentile of trips per cell,
the reduction is equivalent to 5.27 percent of the control group’s mean. Coefficients for
BC are statistically significant across all definitions, which suggests that bicycle-share
does have an impact on BC concentration.

5.2.2 Nitric oxide

Dichotomous treatment results (table 4) indicate that bicycle-share has a consequential
impact on NO: cells with a station experienced a close-to 20 percent decrease with re-
spect to the control group’s mean NO concentration after stations arrived (-3.268 ppb).
The decrease when accounting for cells in the service area lowers to 13 percent of the
control groups’ mean (-2.202 ppb), and is significant at the five percent significance
level. For cells located on the car routes, the NO concentration reduces by 10 percent
from the controls’ mean value. NO reductions are substantive, but lose statistical sig-
nificance as we progress towards more sophisticated treatment area definitions.
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Table 4: Dependent variable: NO, dichotomous treatments

(1) (2) (3) (4) (5) (6)

Station present -3.760∗∗∗ -3.268∗∗∗
(1.20) (1.18)

Service area -2.430∗∗ -2.202∗∗
(0.97) (1.02)

Car route present -1.992∗∗ -1.777∗
(0.85) (0.90)

Control mean 16.47 16.65 16.47 16.65 16.47 16.65
Year FE ✓ ✓ ✓ ✓ ✓ ✓
Cell FE ✓ ✓ ✓ ✓ ✓ ✓
Population ✓ ✓ ✓
Median income ✓ ✓ ✓
Bachelor grads ✓ ✓ ✓
N 77,360 66,583 77,360 66,583 77,360 66,583
R-sq 0.938 0.939 0.937 0.938 0.936 0.938
Standard errors in parentheses
∗ 𝑝 < 0.10, ∗∗ 𝑝 < 0.05, ∗∗∗ 𝑝 < 0.01

Note: Standard errors clustered at the community district level.

Table 5: Dependent variable: NO, treatment intensities

(1) (2) (3) (4) (5) (6)

Station count -2.630∗∗∗ -2.261∗∗∗
(0.77) (0.74)

Trips per cell -0.121∗∗∗ -0.113∗∗∗
(0.015) (0.015)

Trips per cell, IHS -0.256∗∗∗ -0.229∗∗
(0.087) (0.088)

Control mean 16.47 16.65 16.47 16.65 16.47 16.65
Year FE ✓ ✓ ✓ ✓ ✓ ✓
Cell FE ✓ ✓ ✓ ✓ ✓ ✓
Population ✓ ✓ ✓
Median income ✓ ✓ ✓
Bachelor grads ✓ ✓ ✓
N 77,360 66,583 77,360 66,583 77,360 66,583
R-sq 0.938 0.939 0.945 0.946 0.938 0.940
Standard errors in parentheses
∗ 𝑝 < 0.10, ∗∗ 𝑝 < 0.05, ∗∗∗ 𝑝 < 0.01

Note: Standard errors clustered at the community district level. For clarity, the coef-
ficient for Trips per cell is given for ten thousand trips. Trips per cell, IHS is the inverse
hyperbolic sine (IHS) transformation of Trips per cell, a type of log transformation
which preserves zeros (see appendix D for details).
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Table 6: Dependent variable: PM 2.5, dichotomous treatments

(1) (2) (3) (4) (5) (6)

Station present -0.213∗∗ -0.181∗∗
(0.086) (0.087)

Service area -0.117 -0.0927
(0.078) (0.085)

Car route present -0.0601 -0.0380
(0.072) (0.078)

Control mean 8.26 8.33 8.26 8.33 8.26 8.33
Year FE ✓ ✓ ✓ ✓ ✓ ✓
Cell FE ✓ ✓ ✓ ✓ ✓ ✓
Population ✓ ✓ ✓
Median income ✓ ✓ ✓
Bachelor grads ✓ ✓ ✓
N 77,360 66,583 77,360 66,583 77,360 66,583
R-sq 0.982 0.982 0.982 0.982 0.982 0.982
Standard errors in parentheses
∗ 𝑝 < 0.10, ∗∗ 𝑝 < 0.05, ∗∗∗ 𝑝 < 0.01

Note: Standard errors clustered at the community district level.

Looking at treatment intensities (table 5), here again reductions are significant in
magnitude: for a cell with the median number of trips, NO falls by 3 percent compared
to the control group’s mean. The reduction hikes up to 21.8 percent for cells at the 80th
percentile of trips per cell. Coefficients for the IHS-transformed treatment are slightly
less statistically significant (5 percent level).

5.2.3 Particulate matter < 2.5 microns

The impact of bicycle-share on PM 2.5 appears to be limited. Under the dichotomous
treatment definitions (table 6), I find that PM 2.5 significantly decreases in cells where
stationswere placed (column 1 and 2), but the significance disappears whenwe include
cells from the service area (column 3 and 4) or in dichotomous-routes definitions (col-
umn 5 and 6), although they retain the expected negative sign.

In terms ofmagnitude, the coefficient in column2 indicates a decrease of 0.181𝜇g/m³
after a station opened in a given cell, which corresponds to a 2.17 percent decrease with
respect to the control group’s mean.

When taking into account treatment intensities (table 7), bicycle-share does seem
to have an impact on PM 2.5 concentrations: for each additional station opened per
cell, PM 2.5 falls by 0.133𝜇g/m³, the equivalent of 1.60 percent of the control group’s
mean. Trips per cell also seem to significantly decrease concentrations: for each addi-
tional 10 thousand car-equivalent trips going through a cell, the concentration of PM
decreases by 0.00709𝜇g/m³. The cell at the median level of trips will see a reduction of
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Table 7: Dependent variable: PM 2.5, treatment intensities

(1) (2) (3) (4) (5) (6)

Station count -0.154∗∗∗ -0.133∗∗
(0.058) (0.058)

Trips per cell -0.00749∗∗∗ -0.00709∗∗∗
(0.0016) (0.0017)

Trips per cell, IHS -0.0121∗ -0.00977
(0.0070) (0.0074)

Control mean 8.26 8.33 8.26 8.33 8.26 8.33
Year FE ✓ ✓ ✓ ✓ ✓ ✓
Cell FE ✓ ✓ ✓ ✓ ✓ ✓
Population ✓ ✓ ✓
Median income ✓ ✓ ✓
Bachelor grads ✓ ✓ ✓
N 77,360 66,583 77,360 66,583 77,360 66,583
R-sq 0.982 0.982 0.983 0.983 0.982 0.982
Standard errors in parentheses
∗ 𝑝 < 0.10, ∗∗ 𝑝 < 0.05, ∗∗∗ 𝑝 < 0.01

Note: Standard errors clustered at the community district level. For clarity, the coeffi-
cient for Trips per cell is given for ten thousand trips. Trips per cell, IHS is the inverse
hyperbolic sine (IHS) transformation of Trips per cell, a type of log transformation which
preserves zeros (see appendix D for details).

0.319𝜇g/m³, which represents a 2.7 percent reduction from the mean pollution level of
the control group.

The significance of the results fades away with the IHS transformation, with a PM
2.5 reduction of 0.00977𝜇g/m³(but statistically insignificant) for a one percent increase
in bicycle-share trips. On the whole, bicycle-share seems to have a fairly limited if not
null impact on PM 2.5 concentrations.

5.2.4 Summary of results

I identify three main take-aways from these results. First, BC seems to be the pollutant
most robustly affected by the roll-out of the bicycle-share system. Its coefficients are
consistently statistically significant, and reductions are sizable, up to six percent for di-
chotomous treatments and 5.27 percent at the 80th percentile of trips per cell. Second,
NO shows the biggest drops in concentrations, above 10 percent reductions for dichoto-
mous treatments, but these reductions are slightly less statistically robust. Finally, PM
2.5 does not seem systematically impacted by the introduction of the bicycle-share, es-
pecially when considering our preferred treatment definitions.
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5.3 Robustness checks

Staggereddifference-in-differences strategies andmore generally difference-in-differences
with differential treatment timing have come under intense scrutiny in the past two
years. Seminal papers by de Chaisemartin andD’Haultfœuille (2020), Goodman-Bacon
(2018), Callaway and Sant’Anna (2020), Sant’Anna and Zhao (2020), Sun and Abraham
(2020) and Athey and Imbens (2021) have shed light on howe traditional two-way fixed
effects estimators might be biased when both treatment time and effects vary across
cohorts. Appendix C reports in-progress work addressing these issues.

6 Conclusion

This paper set about investigating the impact of the deployment of a bicycle-share sys-
temon local pollution concentrations inNewYorkCity. It aimed to understandwhether
the sharp, sudden andwell-defined in both time and space decrease in the relative price
of cycling in the city would lead to a reduction in pollution through the partial substi-
tution out from cars and taxis towards bicycles.

To answer this question, I used detailed data on the usage of the bicycle-share sys-
tem and high-resolution measures of pollution. Thanks to the discrete and sudden
implementation and expansions of the system, I was able to use a staggered difference-
in-difference estimation strategy. Under the important assumption of parallel trends
pre-treatment (which I show is broadly satisfied), this strategy yields average treatment
effects of the areas treated by the bicycle-share. I defined five such treatment definitions,
including measures of the intensity bicycle-share use.

I found that bicycle-share’s implementation in New York City has significantly de-
creased the BC and NO concentrations of treated areas after the arrival of the system.
The results are particularly substantial for NO, where treated areas may decrease their
concentration of the pollutant by up to 20 percent from the concentration found in the
control group. PM 2.5 did not seem to be significantly affected by bicycle-share, how-
ever.

6.1 Next steps

The next steps for this paper include few additional key components. First, although
parallel trends have been checked, additional tests of the DiD assumptions are neces-
sary, such as checking for the exogeneity of treatment with respect to the outcome vari-
able, omitted variables’ bias and running placebo tests. Second, de Chaisemartin and
D’Haultfœuille (2020) and Goodman-Bacon (2018) have shown that staggered DiD and
two-way fixed effects regressions in general may yield biased estimates under specific
circumstances. Checking whether the present analysis suffers from those biases and
computing the robust estimator alongside the Goodman-Bacon decomposition will be
an unavoidable and important next step. Finally, I will compute the health benefits
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derived from the bicycle-share intervention. This will greatly improve the paper’s sig-
nificance and relevance to a broader audience.
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Appendices

A Treatment definitions maps

Additional treatment definitions maps for the first year of the bicycle-share (2013) and
last year of the sample period (2018).

2013

0 5 10 15 20 km

NDichotomous treatment definitions
No treatment
Convex−hull−only treatment
Routes−only treatment
Both routes and convex hull treatment

Bicycle−share stations

Convex hull

Figure 7: Map of dichotomous treatments in 2013 with stations and the convex hull.
Cells are given by the NYCCAS pollution maps and are the units of observation.
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2013
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Bicycle−share stations

Figure 8: Map of station treatment intensity in 2013 with stations points. Close-up on
the treated area. Cells are given by the NYCCAS pollution maps and are the units of
observation.
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Figure 9: Map of trips-per-cell treatment intensity. Close-up on the treated area. Cells
are given by the NYCCAS pollution maps and are the units of observation.
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2018
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Figure 10: Map of dichotomous treatments in 2018 with stations and the convex hull.
Cells are given by the NYCCAS pollution maps and are the units of observation.
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Figure 11: Map of station treatment intensity in 2018 with stations points. Close-up on
the treated area. Cells are given by the NYCCAS pollution maps and are the units of
observation.
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Figure 12: Map of trips-per-cell treatment intensity. Close-up on the treated area. Cells
are given by the NYCCAS pollution maps and are the units of observation.
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B Event study plots

Additional event study plots are presented here for the other dichotomous treatment
definitions: station present, routes dichotomous.

B.1 Station present
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Figure 13: Event study for PM 2.5, station-present treatment definition. Cell and year
fixed effects, standard errors clustered at the community district level.
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Figure 14: Event study for black carbon, station-present treatment definition. Cell and
year fixed effects, standard errors clustered at the community district level.
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Figure 15: Event study for black carbon, station-present treatment definition. Cell and
year fixed effects, standard errors clustered at the community district level.
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B.2 Convex hull
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Figure 16: Event study for PM 2.5, service-area treatment definition. Cell and year fixed
effects, standard errors clustered at the community district level.
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Figure 17: Event study for black carbon, service-area treatment definition. Cell and
year fixed effects, standard errors clustered at the community district level.
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Figure 18: Event study for black carbon, service-area treatment definition. Cell and
year fixed effects, standard errors clustered at the community district level.
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C Robust staggered difference-in-differences

Difference-in-differences with staggered adoption, variation in treatment timing, mul-
tiple time periods and heterogenous treatment effects has been the topic of small revo-
lution in the causal inference community in the past two years. A new strand of the lit-
erature has emerged, led by seminal work such as de Chaisemartin and D’Haultfœuille
(2020), Goodman-Bacon (2018), Callaway and Sant’Anna (2020), Sant’Anna and Zhao
(2020), Sun and Abraham (2020) and Athey and Imbens (2021).

This appendix reports in-progress work to conform to this new literature and ap-
ply the recommended procedures tomake difference-in-differences robust to the issues
pointed out in these studies.

C.1 Callaway and Sant’Anna (2020) adjustments

Below are the results for the Callaway and Sant’Anna (2020) estimator, yielding robust
difference-in-differences for multiple time periods and heterogenous treatment effects.
Figures 19 to 21 show the dynamic average treatment effects for the service area treat-
ment definition on the three pollutants of interest.
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Figure 19: Dynamic average treatment effects of treatment on black carbon, service-
area treatment definition. Cell and year fixed effects, standard errors clustered at the
community district level. Callaway and Sant’Anna (2020) estimator.
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Figure 20: Dynamic average treatment effects of treatment on nitric oxide, service-area
treatment definition. Cell and year fixed effects, standard errors clustered at the com-
munity district level. Callaway and Sant’Anna (2020) estimator.
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Figure 21: Dynamic average treatment effects of treatment on particulate matter,
service-area treatment definition. Cell and year fixed effects, standard errors clustered
at the community district level. Callaway and Sant’Anna (2020) estimator.

D Inverse hyperbolic sine

The inverse hyperbolic sine (IHS) is a type of log transformation, particularly suited
for variables with a large share of zeros (MacKinnon and Magee, 1990; Bellemare et al.,
2013). IHS is computed with the following formula:

IHS(𝑥) = 𝑙𝑛
(
𝑥 +

√
𝑥2 + 1

)
. (3)

46


	Introduction
	Setting
	Urban air pollution
	Bicycle-share system

	Conceptual framework
	Bicycle-pollution relationship
	Costs and benefits of cycling
	Bicycle-share's impact on cycling costs
	Bicycle-share and other transport modes
	Substitution and impact on pollution

	Treatment definitions
	Stations
	Routes


	Data
	Pollution data
	Bicycle-share data
	Census data
	Data transformations and final dataset

	Analysis
	Empirical strategy
	Estimation model
	Assumptions

	Results
	Black carbon
	Nitric oxide
	Particulate matter < 2.5 microns
	Summary of results

	Robustness checks

	Conclusion
	Next steps

	References
	Treatment definitions maps
	Event study plots
	Station present
	Convex hull

	Robust staggered difference-in-differences
	Callaway2020 adjustments

	Inverse hyperbolic sine

