Cycling towards cleaner cities? Evidence from New York City's bike share program

Vincent Thorne · Trinity College Dublin

PSE Micro-mobility in Cities Workshop

17 October 2022

Why do we care about air pollution?

- Air pollution is harmful
 - → In US: 100K–200K excess deaths annually (Tessum et al., 2019; Lelieveld et al., 2019)
 - → Non-lethal medical effects: chronic respiratory diseases (asthma), cardiovascular diseases, diabetes, size of newborns, (Guarnieri and Balmes, 2014; Rajagopalan and Brook, 2012; Ibald-Mulli et al., 2001)
 - → Decreases cognitive performance (test scores, graduation), productivity, alteration to decision-making (Lavy, et al., 2014; Hanna and Oliva, 2015; Shehab and Pope, 2019, Aguilar-Gomez et al., 2022)
 - \rightarrow Worse in cities: individuals are more exposed (Strosnider et al., 2017)

Manhattan, ©Lerone Pieters

The contribution of road transport to air pollution

- Road transport is a major source of air pollution
 - \rightarrow Most road vehicle are powered by internal-combustion engines and emit air pollutants
 - \rightarrow Transportation emits 30% of local air pollutants in New York City (NYC) (Matte et al., 2013)

The contribution of road transport to air pollution

- Road transport is a major source of air pollution
 - ightarrow Most road vehicle are powered by internal-combustion engines and emit air pollutants
 - \rightarrow Transportation emits 30% of local air pollutants in New York City (NYC) (Matte et al., 2013)
- Two strategies to reduce the impact of road transport
 - \rightarrow Make vehicles less polluting
 - $\rightarrow\,$ Reduce the number trips made with motor vehicles $\rightarrow\,$ substitute trips with less polluting transport modes

The potential of bike share

- Bike share (and other micromobility interventions) has the potential to substitute motor vehicle trips and reduce air pollution
 - $\rightarrow~$ Riding a bike does not pollute...
 - \rightarrow ... however, new cyclists might be substituting public transport and walking
 - $ightarrow \,$... or bike share creates new trips previously not made, inducing no substitution
- The impact of bike share on pollution is uncertain

This paper

Research question

Does bike share reduce local air pollution?

This paper

Research question

Does bike share reduce local air pollution?

- Evaluates the impact of bike share on local air pollution concentrations
 - \rightarrow Using the gradual roll-out of NYC's bike share program as identification strategy
 - ightarrow Combined with ten years of high-resolution, ground-level measures of air pollution
 - \rightarrow To estimate the causal impact of bike share using a staggered difference-in-differences (DD) analysis

Preview of results

- In areas served by bike share:
 - ightarrow 5–10% reduction in air pollutants associated with road traffic

Preview of results

- In areas served by bike share:
 - $\rightarrow~5\text{--}10\%$ reduction in air pollutants associated with road traffic
- In addition, I use taxi trips to examine substitution from road traffic to bike share
 - \rightarrow Suggestive evidence of fewer taxi trips in bike share areas

Contribution

Previous literature

- Environmental impact of other urban transportation interventions: e.g. underground expansion, congestion tolls, electric vehicles (Gendron-Carrier et al., 2018; Green et al., 2020, Basagaña et al., 2018; Levy et al., 2018; De Borger et al., 2013; Kheirbek et al., 2016)
- Environmental impacts of bike share based on hypothetical substitution rates (Fishman et al., 2014; Kou et al., 2020)

Contribution

Previous literature

- Environmental impact of other urban transportation interventions: e.g. underground expansion, congestion tolls, electric vehicles (Gendron-Carrier et al., 2018; Green et al., 2020, Basagaña et al., 2018; Levy et al., 2018; De Borger et al., 2013; Kheirbek et al., 2016)
- Environmental impacts of bike share based on hypothetical substitution rates (Fishman et al., 2014; Kou et al., 2020)
 - → First paper to estimate the causal impact of bike-share on air quality using high-resolution, ground-level measures of air pollution over ten years

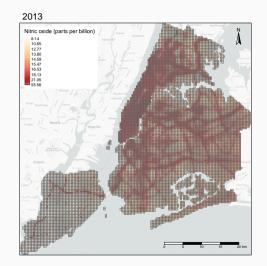
Data

Air pollution I

NYC Community Air Survey (NYCCAS), 2009–2019

- For 300-by-300 meters cells (units of analysis)
- Yearly annual average concentrations of six air pollutants

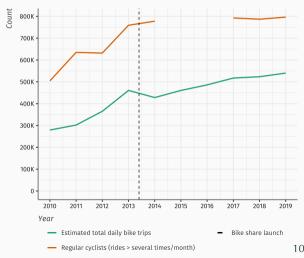
Air pollution I


NYC Community Air Survey (NYCCAS), 2009–2019

- For 300-by-300 meters cells (units of analysis)
- Yearly annual average concentrations of six air pollutants
- Pollutant selection: associated with road traffic + measured close to emission source
- Nitric oxide (NO) and nitrous dioxide (NO₂)
 - \rightarrow Common marker of vehicular traffic
 - \rightarrow 30% of emissions attributed to on-road traffic
 - \rightarrow NO marker of fresh combustion emissions: steeper gradient near busy roadways

Air pollution II

- Particulate matter (PM 2.5) and black carbon (BC)
 - $\rightarrow\,$ Significant proportions of PM 2.5 from outside the city, but local variation likely due to local emissions
 - ightarrow 35% of PM emissions attributed to traffic in high-traffic locations
 - $\rightarrow\,$ BC is a subset of PM 2.5 (4–11% in US cities), but up to 75% of PM 2.5 from diesel exhaust


Mapping air pollution · nitric oxide (NO) 2013

Cycling in NYC

- NYC DOT Mobility Survey: daily bike trips estimates
 - \rightarrow **2010** 280K trips
 - \rightarrow **2019** 520K trips (+85%)
- NYC Community Health Survey: rides at least several times a month
 - \rightarrow **2010** 504K cyclists
 - → **2019** 793K cyclists (+57%)

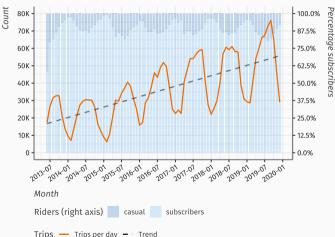
Cycling in NYC

NYC Cycling growth compared to peer cities

TRENDS OVER TIME			Cycling in the City
PEER CITIES Commute to Work - Rolling Three Year Average Comparing NYC to Other Cities *			s grown more than average (2014-2019)
60,000		Percer	nt Growth: 2014-2019
	52,696 50.893	 +26%	New York City
50,000	48,797	+5%	Peer City Average
44,976 41,789	45,821		
		21%	Los Angeles, CA
40,000 37,583		 +1%	Portland, OR
31.540		 +16%	Chicago, IL
8 30,000 8 23,541 24,430 24,988 9 29 29 20 20 20 20 20 20 20 20 20 20 20 20 20		 +4%	San Francisco, CA
23,541 24,430 24,988 19,953 20,888		 +9%	Seattle, WA
20,000 16,468		 +20%	Washington DC
		 +10%	Philadelphia, PA
10,000		-4%	Minneapolis, MN
		 +24%	Boston, MA
0 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015	2016 2017 2018 2019	OR; Seattle, WA; Minnea Washington, D.C.; Philao	ngeles, CA; San Francisco, CA; Portland, polis, MN; Chicago, IL; Boston, MA; lejohla, PA. * The latest American that is available comes from 2019.

Figure 1: Cycling in the City Report, 2020, NYC DOT

Bike share system in NYC


- Opened in May 2013
- Bicycles available at fixed docking stations 24/7
- Membership plans or single-use pricing
- First 45 minutes free

Bike share statistics

- Stations and bikes
 - \rightarrow **2013** 332 stations, 6,000 bikes
 - → **2019** 780 stations, 13,000 bikes
- Average daily bike share trips
 - \rightarrow **2013** 22K trips
 - → **2019** 56K trips (+154%)
- Seasonal variation
- Mostly subscribers, especially in winter

Bike share in NYC

Bike share system roll-out

Conceptual framework

- Bike share reduces the price of, and improves the accessibility to, cycling
- This change in the relative attractiveness of cycling vs other transport modes leads some individuals to switch to cycling

- Bike share reduces the price of, and improves the accessibility to, cycling
- This change in the relative attractiveness of cycling vs other transport modes leads some individuals to switch to cycling
- Bike share reduces pollution if bike share trips replace (i.e., are substitutes of) trips by motor vehicles
 - ightarrow We expect pollution to reduce where motor vehicles are not driven anymore

Construction of treatment

- I construct a spatial variable measuring the potential reduction in motor vehicle trips due to bike share
- For each year:
 - 1. Identify active bike share stations
 - 2. Compute optimal car route between each pair of stations

▶ Routing

- 3. Impute the number of bike share trips on each route
- 4. Aggregate at the cell level

Construction of treatment

- I construct a spatial variable measuring the potential reduction in motor vehicle trips due to bike share
- For each year:
 - 1. Identify active bike share stations
 - 2. Compute optimal car route between each pair of stations
 - 3. Impute the number of bike share trips on each route
 - 4. Aggregate at the cell level
- Captures the areas where we expect pollution to reduce after bike share

Bike share treatment

Estimation strategy

Identification strategy

- Ideal experiment
 - \rightarrow Randomly place bike share stations across the city
- Reality
 - \rightarrow The location of bike share stations is not random
- Solution
 - $\rightarrow\,$ Exploit the timing of the staggered roll-out of stations

Estimating equation

Staggered difference-in-differences: comparing cells treated by bicycle share with untreated ones, before and after the treatment (Two-Way Fixed Effects):

$$Y_{ct} = \beta Treat_{ct} + year_t + cell_c + C_{ct} + \varepsilon_{ct}, \qquad (1$$

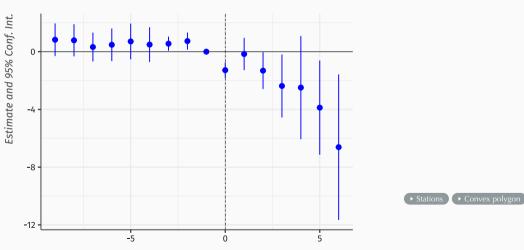
for cell *c* at year *t*

- *Y_{ct}*: a pollutant's concentration
- *Treat_{ct}*: one of the treatment definition
- $year_t + cell_c$: year and cell fixed effects
- *C*_{ct}: vector of control variables

Standard errors clustered at the community district level (neighbourhood).

Estimation parameters

- Panel dataset
 - \rightarrow **units** grid cells (9,171)
 - \rightarrow time years (10, 2010–2019)
 - \rightarrow treatment cell treated by bike share: crossed by traffic footprint
- Covariates
 - \rightarrow population (American Community Survey)
 - \rightarrow fraction of college graduates (ACS)
 - $\rightarrow~$ household income (ACS)
 - \rightarrow meters of bicycle lanes (NYCDOT)
 - \rightarrow built surface (NYC Department of City Planning)


Results

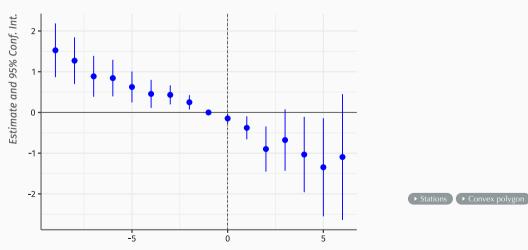
$\textbf{ATT} \cdot \textbf{Nitric Oxide}$

	NO	
	(1)	(2)
Car route	-2.3026***	-1.9849**
	(0.8387)	(0.8968)
Controls		\checkmark
Cell	\checkmark	\checkmark
Year	\checkmark	\checkmark
Mean out. pre-treat.	20.242	20.277
Perc. of mean out. pre-treat.	-11.375	-9.789
Observations	96,700	95,678
\mathbb{R}^2	0.913	0.914
Within R ²	0.105	0.119

Clustered (Community district) standard-errors in parentheses Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Event study · Nitric Oxide

"Traffic footprint" treatment, incl. controls


Periods to treatment (years)

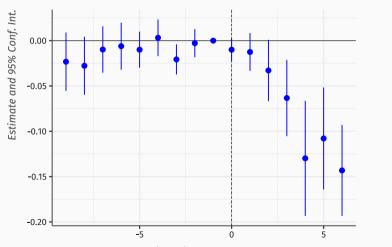
$\textbf{ATT} \cdot \textbf{Nitric Dioxide}$

	NO2	
	(1)	(2)
Car route	-0.8558***	-0.6770**
	(0.2701)	(0.2891)
Controls		\checkmark
Cell	\checkmark	\checkmark
Year	\checkmark	\checkmark
Mean out. pre-treat.	19.850	19.911
Perc. of mean out. pre-treat.	-4.311	-3.400
Observations	96,700	95,678
R^2	0.980	0.980
Within R ²	0.126	0.150

Clustered (Community district) standard-errors in parentheses Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Event study · Nitric Dioxide

"Traffic footprint" treatment, incl. controls

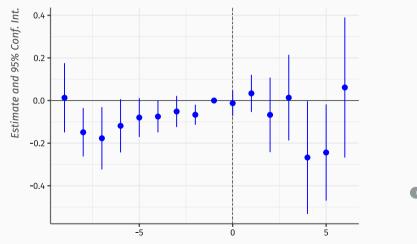

Periods to treatment (years)

$\textbf{ATT} \cdot \textbf{Black carbon}$

	ВС	
	(1)	(2)
Car route	-0.0567***	-0.0544***
	(0.0151)	(0.0146)
Controls		\checkmark
Cell	\checkmark	\checkmark
Year	\checkmark	\checkmark
Mean out. pre-treat.	1.004	1.006
Perc. of mean out. pre-treat.	-5.650	-5.401
Observations	96,700	95,678
R^2	0.926	0.926
Within R ²	0.038	0.041

Clustered (Community district) standard-errors in parentheses Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Event study · Black carbon


"Traffic footprint" treatment, incl. controls

ATT · PM 2.5

	PM	
	(1)	(2)
Car route	-0.0818	-0.0518
	(0.0671)	(0.0711)
Controls		\checkmark
Cell	\checkmark	\checkmark
Year	\checkmark	\checkmark
Mean out. pre-treat.	9.387	9.397
Perc. of mean out. pre-treat.	-0.871	-0.551
Observations	96,700	95,678
R^2	0.979	0.979
Within R ²	0.026	0.040

Event study · PM

"Traffic footprint" treatment, incl. controls

Periods to treatment (years)

Convex polygon

Robustness checks

• Done

- \rightarrow Alternative treatment definitions \bullet Stations \bullet Service area
- \rightarrow Intensity of treatment \bigcirc NO \bigcirc NO2 \bigcirc BC \bigcirc PM
- → New DD estimation robust to variation in treatment timing and heterogenous treatment effects (Callaway & Sant'Anna (CS), 2021) • Plots
- ightarrow "Not-yet-treated" units as control group with CS estimator ightarrow Plots
- \rightarrow Borusyak, Jaravel and Spiess (2022) estimator \bigcirc Plots

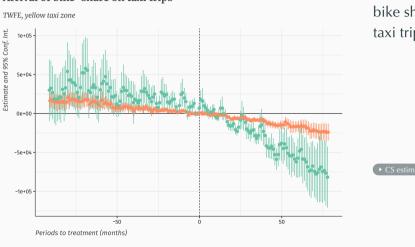

Taxis in NYC

- Taxis are a popular transport mode in NYC. In 2014:
 - \rightarrow 485K trips/day, 55% of trips < 3km, average price \$4/km
 - $\rightarrow~70\%$ of passengers ${\leqslant}35$ years old, 55% male
 - $\rightarrow~$ In Midtown, >50% of all vehicles are taxis

Taxis in NYC

- Taxis are a popular transport mode in NYC. In 2014:
 - \rightarrow 485K trips/day, 55% of trips < 3km, average price \$4/km
 - $\rightarrow~70\%$ of passengers ${\leqslant}35$ years old, 55% male
 - $\rightarrow~$ In Midtown, >50% of all vehicles are taxis
- Bike share trips are comparable to many taxi trips
 - \rightarrow Most trips are less than 3km
 - \rightarrow Median age is 33 years old, 70% male

NYC 2019 Mobility Report


Testing the substitution mechanism

- Previous research
 - → Taxis ridership increases when bike share station out of service in NYC (Molnar and Ratsimbazafy, 2017)
 - \rightarrow Taxis are a good approximation of motor traffic in general (Castro et al., 2012; Peng et al., 2016)

Testing the substitution mechanism

- Previous research
 - → Taxis ridership increases when bike share station out of service in NYC (Molnar and Ratsimbazafy, 2017)
 - \rightarrow Taxis are a good approximation of motor traffic in general (Castro et al., 2012; Peng et al., 2016)
- This paper
 - ightarrow Use the universe of NYC taxi trips: geolocated, timestamped, measure of distance
 - ightarrow Identify most substitutable taxi trips
 - 85% of bike share trips are less than 5km
 - distinguish short (<5km) taxi trips from long (>5km) ones
 - ightarrow Same identification strategy: does the staggered roll-out of bike share reduce short taxi trips?

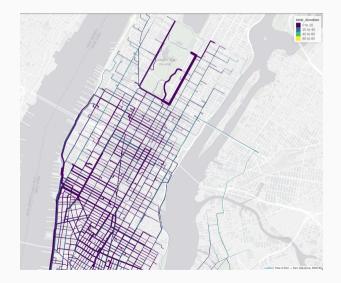
Mechanism · results

Arrival of bike-share on taxi trips

taxi trips < 5km 🔺 taxi trips > 5km group

Suggestive evidence that bike share substitutes short taxi trips.

Conclusion


This paper

- Estimated the causal impacts of bike-share on air quality
- Found that bike-share decreased the concentrations of air pollutants by 5 to 10% compared to average concentrations before bike share
- Shed light on the substitution mechanism by showing that short taxi trips decreased faster in bike share areas after the arrival of bike share compared to long taxi trips

Thank you

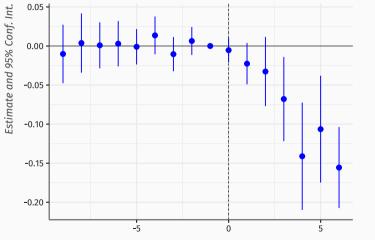
thornev@tcd.ie

Routing illustration

NYCCAS details

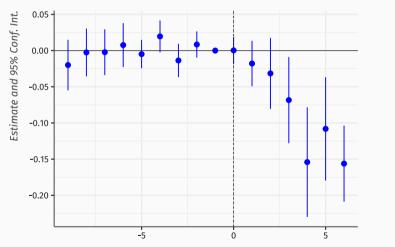
Concentrations of PM 2.5, black carbon, nitrogen oxides (NO and NO²), sulfur dioxide (SO²) and ozone (O³)

- 150 measurement stations: 120 randomly placed, 30 at purposeful sites
- Overlays a grid over the city made up of square cells 300m wide
- For each cell, estimates the annual average concentration of pollutant using a land-use regression (LUR) model


Land-use regression (LUR) model:

 $Concentration_{it} = \beta_0 + \beta_1 RefStation_{it} + \beta_2 Source1_i$ $+ \beta_3 Source2_i + \beta_3 Source1_i \times SiteCharac_{it} + \varepsilon_{it}$

Event study · Black carbon

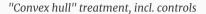

"Convex hull" treatment, incl. controls

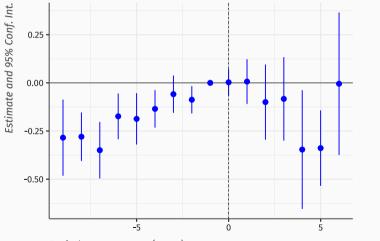
► Back

Periods to treatment (years)

Event study · Black carbon

▶ Back

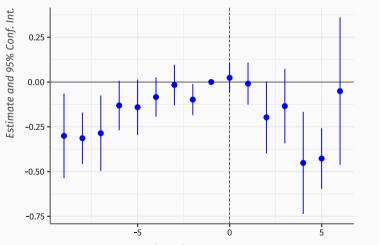

"Stations < 300 m" treatment, incl. controls


Periods to treatment (years)

ATT · Black Carbon

	BC	
	(1)	(2)
Trips (10k)	-0.0567***	-0.0544***
	(0.0151)	(0.0146)
Controls		\checkmark
Cell	\checkmark	\checkmark
Year	\checkmark	\checkmark
Mean out. pre-treat.	1.004	1.006
Perc. of mean out. pre-treat.	-5.650	-5.401
Observations	96,700	95,678
R ²	0.926	0.926
Within R ²	0.038	0.041

Event study · PM

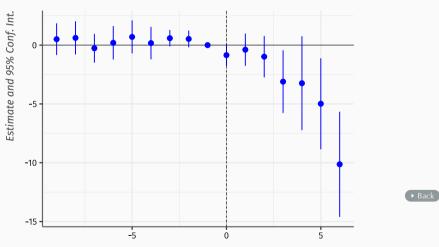


► Back

Periods to treatment (years)

Event study · PM

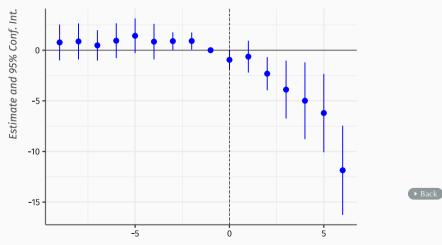
► Back


"Stations < 300 m" treatment, incl. controls

Periods to treatment (years)

$\textbf{ATT} \cdot \textbf{PM}$

	PM	
	(1)	(2)
Trips (10k)	-0.0818	-0.0518
	(0.0671)	(0.0711)
Controls		\checkmark
Cell	\checkmark	\checkmark
Year	\checkmark	\checkmark
Mean out. pre-treat.	9.387	9.397
Perc. of mean out. pre-treat.	-0.871	-0.551
Observations	96,700	95,678
R^2	0.979	0.979
Within R ²	0.026	0.040

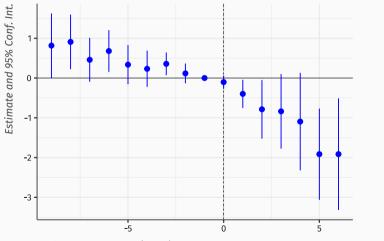

Event study · Nitric oxide

"Convex hull" treatment, incl. controls

Periods to treatment (years)

Event study · Nitric oxide

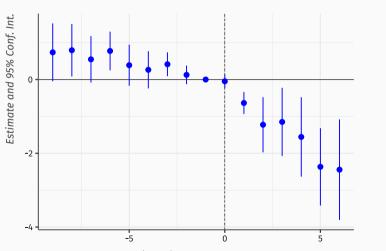
"Stations < 300 m" treatment, incl. controls


Periods to treatment (years)

ATT · Nitric Oxide

	NO	
	(1)	(2)
Trips (10k)	-2.3026***	-1.9849**
	(0.8387)	(0.8968)
Controls		\checkmark
Cell	\checkmark	\checkmark
Year	\checkmark	\checkmark
Mean out. pre-treat.	20.242	20.277
Perc. of mean out. pre-treat.	-11.375	-9.789
Observations	96,700	95,678
R ²	0.913	0.914
Within R ²	0.105	0.119

Event study · Nitric dioxide


"Convex hull" treatment, incl. controls

► Back

Periods to treatment (years)

Event study · Nitric Dioxide

"Stations < 300 m" treatment, incl. controls

▶ Back

Periods to treatment (years)

ATT · Nitric Dioxide

	NO2	
	(1)	(2)
Trips (10k)	-0.8558***	-0.6770**
	(0.2701)	(0.2891)
Controls		\checkmark
Cell	\checkmark	\checkmark
Year	\checkmark	\checkmark
Mean out. pre-treat.	19.850	19.911
Perc. of mean out. pre-treat.	-4.311	-3.400
Observations	96,700	95,678
\mathbb{R}^2	0.980	0.980
Within R ²	0.126	0.150

$\textbf{ATT} \cdot \textbf{Nitrous Oxide}$

	NO	
	(1)	(2)
Station	-3.4934***	-3.2624***
	(1.0064)	(1.0450)
Controls		\checkmark
Cell	\checkmark	\checkmark
Year	\checkmark	\checkmark
Mean out. pre-treat.	20.242	20.277
Perc. of mean out. pre-treat.	-17.258	-16.089
Perc. of SD outcome	-51.631	-48.084
Observations	96,700	95,678
R ²	0.920	0.921
Within R ²	0.183	0.191

$\textbf{ATT} \cdot \textbf{Nitric Dioxide}$

	NO2	
	(1)	(2)
Station	-1.2417***	-1.0697***
	(0.2898)	(0.3075)
Controls		\checkmark
Cell	\checkmark	\checkmark
Year	\checkmark	\checkmark
Mean out. pre-treat.	19.850	19.911
Perc. of mean out. pre-treat.	-6.256	-5.372
Perc. of SD outcome	-25.267	-21.878
Observations	96,700	95,678
\mathbb{R}^2	0.980	0.981
Within R ²	0.152	0.172

ATT · Black Carbon

	ВС	
	(1)	(2)
Station	-0.0605***	-0.0571***
	(0.0194)	(0.0189)
Controls		\checkmark
Cell	\checkmark	\checkmark
Year	\checkmark	\checkmark
Mean out. pre-treat.	1.004	1.006
Perc. of mean out. pre-treat.	-6.026	-5.674
Observations	96,700	95,678
\mathbb{R}^2	0.925	0.925
Within R ²	0.037	0.039

ATT · PM 2.5

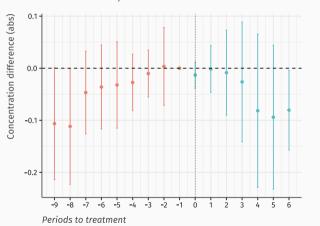
	PM	
	(1)	(2)
Station	-0.1695**	-0.1419**
	(0.0660)	(0.0704)
Controls		\checkmark
Cell	\checkmark	\checkmark
Year	\checkmark	\checkmark
Mean out. pre-treat.	9.387	9.397
Perc. of mean out. pre-treat.	-1.806	-1.511
Perc. of SD outcome	-11.433	-9.570
Observations	96,700	95,678
R ²	0.979	0.980
Within R ²	0.046	0.057

$\textbf{ATT} \cdot \textbf{Nitrous Oxide}$

	NO	
	(1)	(2)
Convex polygon	-2.6243***	-2.3084**
	(0.9449)	(0.9945)
Controls		\checkmark
Cell	\checkmark	\checkmark
Year	\checkmark	\checkmark
Mean out. pre-treat.	20.242	20.277
Perc. of mean out. pre-treat.	-12.965	-11.385
Perc. of SD outcome	-38.786	-34.024
Observations	96,700	95,678
R^2	0.916	0.917
Within R ²	0.140	0.152

$\textbf{ATT} \cdot \textbf{Nitric Dioxide}$

NO2	
(1)	(2)
-0.9401***	-0.7589**
(0.3062)	(0.3254)
	\checkmark
\checkmark	\checkmark
\checkmark	\checkmark
19.850	19.911
-4.736	-3.811
-19.130	-15.521
96,700	95,678
0.980	0.980
0.116	0.143
	 (1) -0.9401*** (0.3062) ✓ ✓ 19.850 -4.736 -19.130 96,700 0.980

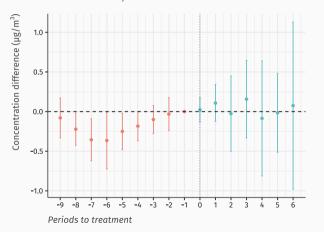

ATT · Black Carbon

	ВС	
	(1)	(2)
Convex polygon	-0.0586***	-0.0557***
	(0.0173)	(0.0168)
Controls		\checkmark
Cell	\checkmark	\checkmark
Year	\checkmark	\checkmark
Mean out. pre-treat.	1.004	1.006
Perc. of mean out. pre-treat.	-5.832	-5.538
Observations	96,700	95,678
R ²	0.925	0.925
Within R ²	0.037	0.039

ATT · PM 2.5

	PM	
	(1)	(2)
Convex polygon	-0.1234*	-0.0924
	(0.0692)	(0.0733)
Controls		\checkmark
Cell	\checkmark	\checkmark
Year	\checkmark	\checkmark
Mean out. pre-treat.	9.387	9.397
Perc. of mean out. pre-treat.	-1.314	-0.983
Perc. of SD outcome	-8.321	-6.228
Observations	96,700	95,678
R ²	0.979	0.979
Within R ²	0.037	0.052

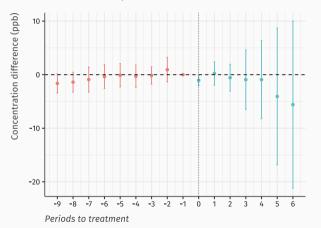
Dynamic effects · Black carbon



"On-car-route" treatment, incl. controls

Back robustness

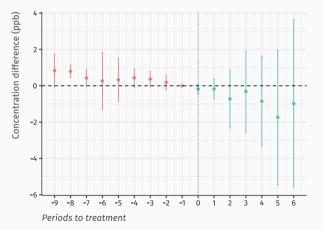
Dynamic effects · PM


"On-car-route" treatment, incl. controls

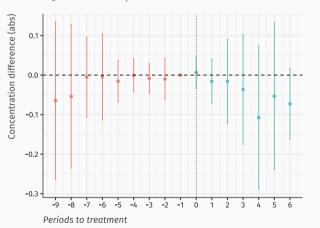
▶ Back robustness

Dynamic effects · NO

Back robustness



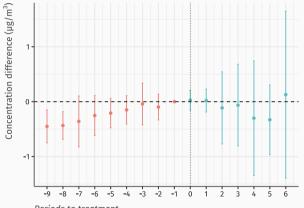
"On-car-route" treatment, incl. controls


Dynamic effects · NO2

► Back robustness

"On-car-route" treatment, incl. controls

Dynamic effects · Black carbon

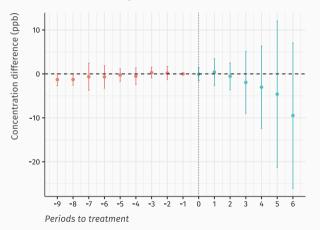

"Station < 300m" treatment, incl. controls

Back robustness

Dynamic effects · PM

Back robustness

"Station < 300m" treatment, incl. controls

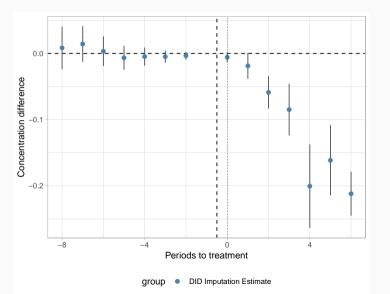


Periods to treatment

Dynamic effects · NO

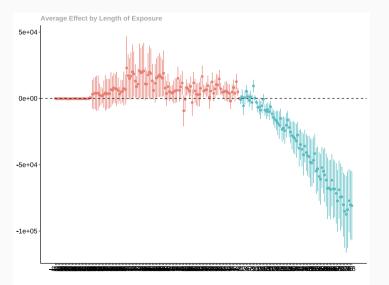
► Back robustness

"Station < 300m" treatment, incl. controls

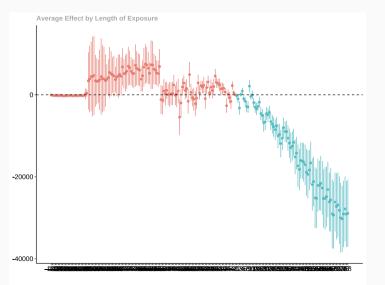

Dynamic effects · NO2

Concentration difference (ppb) 3 -0 -3 --6 -9 -2 -1 5 6 -9 -8 -7 -6 -5 -4 -3 ò 1 2 3 4 Periods to treatment

▶ Back robustness


"Station < 300m" treatment, incl. controls

BC · Borusyak, Jaravel, Spiess estimator


→ Back

Mechanism · CS estimator, short taxi trips

Mechanism · CS estimator, long taxi trips

