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Abstract

We develop a new method to globally solve and calibrate search and match-
ing models with aggregate shocks and heterogeneous agents. We characterize
general equilibrium as a high dimensional partial differential equation with the
distribution as a state variable. We then use deep learning to solve and cal-
ibrate the model using the simulated method of moments. This allows us to
study search markets that are not “block recursive” and compute variables (e.g.
wages and prices) that were previously unattainable. In applications to labor
search models, we show that distribution feedback plays a more important role
when aggregate shocks have an asymmetric impact across agents. Positive as-
sortative matching weakens more in prolonged expansions, disproportionately
benefiting low-wage workers. In applications to over-the-counter markets, we
show how financial crises impact bond yields across different maturities.
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1 Introduction

Many important questions in macroeconomics and finance involve aggregate shocks
and agent heterogeneity in markets with search and matching frictions. However,
modeling these features has proven technically challenging. The existing literature
has either studied the deterministic steady state (e.g. Shimer and Smith (2000)) or
imposed contracting restrictions to ensure that individual decisions are not affected
by the cross-sectional distribution and thereby render the models “block-recursive”1

(e.g. Menzio and Shi (2011) and Lise and Robin (2017)). Both approaches limit
our ability to study crisis and business cycle dynamics in models with complex agent
heterogeneity. Developments in the deep learning literature have opened up the pos-
sibility to relax these restrictions. In this paper, we present a general formulation
of heterogeneous agent search and matching (SAM) models as a collection of high
dimensional partial differential equations (PDEs) with the agent distribution explic-
itly as a state variable. We then develop the first deep learning method for solving
these models and calibrating parameters using simulated method of moments, which
we refer to as DeepSAM. We apply our method to study the interaction between
aggregate shocks and distributional dynamics in a wide class of search and matching
models in labor and finance.

We focus on models with the following features. The economy is populated by
heterogeneous agents (e.g. workers or investors) and heterogeneous institutions (e.g.
firms or financial intermediaries) that can be matched or unmatched. Matches gen-
erate utility that depends upon the idiosyncratic agent and institution types and
an exogenous aggregate variable that follows a continuous time Markov chain. Un-
matched agents and institutions engage in random search to meet each other. Upon
meeting, they choose whether to accept the match and then bargain over the divi-
sion of the matching surplus. We show that the equilibrium for this economy can
be characterized recursively with a state space consisting of the exogenous aggregate
variable and the distribution of matches across types in the economy. The match dis-
tribution impacts agent decisions because the opportunity cost of accepting a match
depends upon which other agents are looking for matches and which institutions are
available to match. The equilibrium is then characterized by a “master” PDE for the

1Following Lise and Robin (2017), we call an equilibrium “block-recursive” if the agents’ value
and policy functions are independent of the endogenous distribution of agents across employment
states.
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surplus function, which includes high dimensional derivatives capturing the impact
of distributional changes on surplus.

We propose a new deep learning algorithm to solve this class of high dimensional
PDEs. We approximate the surplus function with a neural network and then train
the neural network parameters to minimize the average loss in the PDE on a random
collection of sample points. To our knowledge, we are the first to apply deep learning
to study search and matching models. In doing so, we face a number of technical
challenges. First, unlike for some competitive market models (e.g. Krusell and Smith
(1998)), the distribution does not enter the agent optimization problem exclusively
through aggregate prices. Instead, agents need to forecast the distribution of which
other agents they will meet and so the Master equation necessarily involves integrating
over the equilibrium surplus function weighted by the population match density and
the acceptance function. This makes the problem more difficult. Second, search and
matching models typically involve a free entry condition, which requires solving a
non-linear fixed point problem during each step of the PDE training. Third, we need
to stabilize the training algorithm for unusually shaped surplus functions and for
neural networks that include economic parameters as input variables. For such cases,
we use a “homotopy” approach combined with sampling in the economically relevant
part of the state space. This involves training the neural network parameters that
give low curvature and then gradually retraining the model with updated parameters.

We extend our solution algorithm to calibrate the model using the simulated
method of moments by building on the state-of-the-art practices in the deep learning
literature. Instead of solving the model repeatedly across different economic struc-
tural parameter values, we introduce these parameters as pseudo-state variables and
solve the resulting Extended Master Equations using deep learning. This provides
an explicit solution to the problem over a large range of structural parameter values.
We then use this solution to build a surrogate model mapping structural parameters
to simulated moments that we utilize to undertake for internal calibration.

In Section 3, we deploy our method to solve a “canonical” labor market search
model with two-sided heterogeneity that has been extended to include aggregate
shocks. This model can be thought of as either the Shimer and Smith (2000) model
with two-sided heterogeneity and aggregate shocks, or as the Mortensen and Pis-
sarides (1994) model with worker and firm heterogeneity. We test our solution in
a number of ways. We start by examining the neural network approximation to a
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model without aggregate shocks since the steady state of this model can be solved
with existing fixed point solution techniques. We show that the average squared dif-
ference between our solution and the fixed point solution is in the order of magnitude
of 10−6. For the model with aggregate shocks, there are no existing solutions to which
we can compare so we instead study the training error and stability of the solution.
We show that the average numerical error on the differential equation over the full
state space is in the order of 10−7. We interpret these results as strong evidence that
our neural network training algorithm can find an accurate solution.

We use our solution to the labor search model to study the role of distributional
feedback during the COVID-19 pandemic. We calibrate the model to include a crisis
state that generates the heterogeneous employment decline across worker skill groups
and firm industries that Cajner, Crane, Decker, Grigsby, Hamins-Puertolas, Hurst,
Kurz, and Yildirmaz (2020) estimate occurred during COVID. We then compute the
impulse response following a COVID shock and decompose the time path by compar-
ing the results to the “restricted” dynamics when agents make matching decisions un-
der the “myopic” belief that they are always at the ergodic employment distribution.
We find that in the full model unemployment falls approximately 30% faster during
the recovery than in the restricted model. This is because, in the full model, firms
understand that COVID disproportionately increases unemployment among low-skill
workers, which leads them to forecast a higher opportunity cost of waiting for a
high-type match and so offer jobs to a wider range of workers. We also consider a
counterfactual crisis where unemployment increases symmetrically across all agent
types and show that for this case the restricted dynamics closely approximate the full
dynamics. This illustrates that solving the model globally across the distribution is
particularly important for understanding large, asymmetric shocks such as COVID
or the Great Depression.

In Section 4, we introduce on-the-job search and endogenous separation into our
baseline labor search model. This builds on the framework used in Lise and Robin
(2017) but extends it to allow workers to possess positive bargaining power during
both initial and on-the-job search meetings. We use our deep learning approach to
calibrate the model to match empirical moments of the US labor market. The entire
solution and calibration process takes 4 hours and 19 minutes, where the model
is solved over the economic parameter space and simulated across 8000 parameter
combinations to build the surrogate model deployed for the simulated method of
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moments. Our calibrated model finds support for the Okun (1973) hypothesis that
low-wage workers benefit disproportionately from longer expansions. This occurs
because there is counter-cyclical sorting in our model that is more pronounced as
expansions and recessions are prolonged. During an expansion (recession) high-type
workers become increasingly scarce (plentiful) so high-type firms become less (more)
picky in their job offers. Consequently, longer expansions lead to greater weakening
of positive assortative matching, which benefits low-skilled workers.

From a technical perspective, our method allows us to study two features that the
labor literature has previously been unable to examine: business cycle dynamics in
two-sided heterogeneity models when workers have positive bargaining power and the
dynamics of the wage distribution. This is because Lise and Robin (2017) and subse-
quent papers impose zero worker bargaining power in initial meetings and Bertrand
competition in on-the-job meetings, which makes the surplus function block recursive
but does not make the division of the surplus block recursive. We show that unem-
ployment and vacancies are more responsive to business cycle shocks when worker
bargaining power is small, indicating that the assumptions required to generate block
recursivity are quantitatively important. We also show that the wages of low-type
workers are more procyclical over the business cycle.

In Section 5, we use DeepSAM to solve an over-the-counter bond market model
with heterogeneous investors, different bond maturities, and aggregate default risk.
This can be thought of as an extension to Duffie, Gârleanu, and Pedersen (2005) and
Weill (2008) that expands investor and asset heterogeneity and allows for aggregate
risk. From a technical point of view, relative to the labor models in the earlier sec-
tions, this model introduces type switching and asset trade. We use our model to
study how liquidity and institutional frictions impact bond prices at different maturi-
ties. We show that a financial crisis shock that increases the liquidity needs of hedge
funds and increases default risk has more impact on long-maturity bonds. This offers
a search-theoretic rationale for the volatility of the term structure.

Literature Review. Over the past three decades, there have been major advances
in solving search and matching models with heterogeneity and aggregate risk. One
advance is the Bertrand competition model of wage setting introduced in Postel-
Vinay and Robin (2002) and deployed in many papers (e.g. Cahuc, Postel-Vinay, and
Robin (2006); Lise and Robin (2017)). Another is the directed search block recursive
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structure introduced by Moen (1997); Menzio and Shi (2010, 2011). Both these
approaches impose contracting and entry assumptions that ensure agent decisions are
independent of the distribution of matches. Our paper relaxes these constraints and
solves a general class of models where the distribution may impact agents’ decision
making. Besides solving the search models with two-sided heterogeneity, which is
known to be very challenging, our approach can also be applied to solve complex
models with one-sided heterogeneity, for example models with endogenous separation,
among other features.

Our paper is also connected to recent papers studying business cycle dynamics
in heterogeneous agent labor search models (e.g. Krusell, Mukoyama, Rogerson, and
Şahin (2017); Schaal (2017); Moscarini and Postel-Vinay (2018); Engbom (2021);
Fukui (2020); Baley, Figueiredo, and Ulbricht (2022); Alves (2022); Qiu (2023);
Moscarini and Postel-Vinay (2023); Birinci, Karahan, Mercan, and See (2024)). Our
DeepSAM approach offers a way to expand the range of models used in this literature
by enriching agent heterogeneity, relaxing block recursivity, departing from perfect
foresight, studying non-linear crisis dynamics, and potentially other extensions. We
demonstrate this by studying the labor market impact of the COVID-19 pandemic and
analyzing feedback mechanisms generated by alterations in the distribution, which in
turn influence agent decisions and aggregate dynamics.

We are part of a growing computational economics literature using deep learning
methods to solve economic models and overcome the limitations of traditional solu-
tion techniques. These papers have focused on solving heterogeneous agent macroeco-
nomic models with incomplete but competitive markets (e.g. Azinovic, Gaegauf, and
Scheidegger (2022), Maliar, Maliar, and Winant (2021), Han, Yang, and E (2021),
Kahou, Fernández-Villaverde, Perla, and Sood (2021), Fernández-Villaverde, Hur-
tado, and Nuno (2023), Gopalakrishna (2021), Sauzet (2021), Huang (2022), Gu,
Lauriere, Merkel, and Payne (2023), Azinovic and Žemlička (2023), Duarte, Duarte,
and Silva (2024), Huang (2024), among others, see the recent review by Fernández-
Villaverde, Nuno, and Perla (2024)). Our contribution is to show how to undertake
deep learning to solve search and matching models, which are workhorse models for
a large literature in macroeconomics and finance. What makes them difficult to solve
compared to many competitive incomplete market models (e.g. Krusell and Smith
(1998)) is that the shape of the distribution matters directly for the equilibrium. This
is because, as summarized in Table 1, the distribution impacts agents’ decisions via
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the matching probability with other types rather than through aggregate prices. This
imposes greater challenges on how we develop our numerical and sampling schemes
to get an accurate solution. Another reason why search and matching models are
difficult is that we have to impose the free entry condition, which typically involves
another fixed point iteration.

Distribution How distribution affect agents’ decisions
HAM Asset wealth and income Via aggregate prices

SAM Type (productivity) of agents
in two sides of matching

Via matching process
with other types

Table 1: How distribution matters in heterogeneous agent models (HAM) vs search
and matching (SAM) models.

Our calibration approach builds on the ideas of introducing structural parameters
as pseudo-state variables, first proposed by Norets (2012) and recently extended by
Chen, Didisheim, and Scheidegger (2023); Kase, Melosi, and Rottner (2024); Friedl,
Kübler, Scheidegger, and Usui (2023); Duarte and Fonseca (2024). Our PDE formu-
lation is related to the master equations in Bilal (2023); Alvarez, Lippi, and Sougani-
dis (2023). Finally, our training approach draws on the “Physics-informed neural
networks” (PINN) literature (e.g. Raissi, Perdikaris, and Karniadakis (2019)) in
computational science.

The paper is structured as follows. Section 2 describes our DeepSAM methodology
for solving and calibrating a general class of search and matching models. Section
3 applies DeepSAM to solve a canonical labor market search model with two-sided
heterogeneity and aggregate shocks, and studies the impact of the COVID-19 shock.
Section 4 applies DeepSAM to calibrate a richer model with on-the-job search and
endogenous separation. Section 5 applies DeepSAM to a search model of over-the-
counter bond markets with heterogeneous investors, different bond maturities, and
aggregate default risks. Section 6 concludes.

2 Methodology

In this section, we outline a general environment that nests search and matching
models from various strains of the search and matching literature. We then introduce
our deep learning algorithm, DeepSAM, to solve the model. Finally, we outline a
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method for using neural networks to undertake efficient calibration to match simulated
moments (a deep learning based “simulated method of moments”).

2.1 Environment

Setting: The economy is in continuous time with an infinite horizon. The economy
is populated by a continuum of infinitely lived agents (e.g. workers or investors) in-
dexed by type x ∈ X , and a continuum of institutions (e.g. firms or financial dealers)
indexed by type y ∈ Y . Agents are either employed in a match (e) or unmatched (u).
Institutions are either producing in a match (p) or vacant (v). The distribution of
matches between agents and institutions is endogenous, and determined by agent and
institution decisions. Agents and institutions have a discount rate ρ. The exogenous
aggregate state of the economy is indexed by zt ∈ Z, which follows a continuous time
Markov chain with transition matrix Σ.

Match utility: If an agent is unmatched (unemployed), they get flow utility b. Agents
match with institutions but not with each other. If an agent of type x is matched
with an institution of type y, then they generate transferable utility F (x, y, z), where
F is increasing in each variable and twice differentiable with uniformly bounded first
partial derivatives on Z × X × Y . Matches are destroyed at exogenous rate δ(x, y, z)
that potentially depends upon the match and the aggregate state.

Distributions: Let gw
t (x) denote the population function of agents. Let gf

t (y) denote
the population function of institutions. For expositional simplicity, here we focus
on the case with an exogenous and time invariant gw and an entry condition that
determines gf

t .2 Formally, new firms can enter the economy with a draw of y from
the uniform distribution U(0, 1). They pay a flow cost c per period. Let gt(x, y)
denote the function of matched workers. Let ge

t (x) denote the function of employed
agents. Let gu

t (x) denote the function of unemployed agents. Let gp
t (y) denote the

function of producing institutions. Let gv
t (y) denote the function of vacant institu-

tions. The relationships between the densities are given in Table 2 below. We define
the aggregate agent employment by Et :=

∫
ge

t (x)dx, aggregate agent unemployment
by Ut :=

∫
gu

t (x)dx, aggregate producing institutions by Pt :=
∫
gp

t (y)dy, and ag-
2Our method can also handle endogenous gw

t . For example, in Section 5, we solve an OTC model
with investor type switching.
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gregate vacant institutions by Vt :=
∫
gv

t (y)dy. Later we will show we can calculate
all densities from gt and so (zt, gt) is a sufficient aggregate state space for the economy.

Description Function Conditional Density
Matches gt(x, y)
Employed workers ge

t (x) =
∫
gt(x, y)dy ge

t (x)/Et

Unemployed workers gu
t (x) = gw

t (x) − ge
t (x) gu

t (x)/Ut

Producing firms gp
t (y) =

∫
gt(x, y)dx gp

t (y)/Pt

Vacant firms gv
t (y) = gf

t (y) − gp
t (y) gv

t (y)/Vt

Table 2: Summary of distributions

Search and Matching Technology: Only and all unmatched agents engage in ran-
dom search. We generalize to include “on-the-job” search in Section 4. A function
m : R+ × R+ → R+, (Ut,Vt) 7→ m(Ut,Vt) takes the current level of unemployment
and vacancies and generates meetings. The rate at which a worker meets a potential
institution is given by Mu

t := m(Ut,Vt)/Ut, while the rate at which a vacant firm
meeting a potential hire is Mv

t := m(Ut,Vt)/Vt. The rate at which that an agent
meets any institution y ∈ Y ⊂ Y equals Mu

t (
∫

Y (gv
t (y)/Vt)dy), where gv

t (y)/Vt is the
density conditional on being vacant. The rate at which an institution meets any
worker x ∈ X ⊂ X equals Mv

t (
∫

X(gu
t (x)/Ut)dx, where gu

t (y)/Ut is the density condi-
tional on being unemployed.

Surplus division: We impose that agents negotiate according to a generalized Nash
Bargaining protocol so that agents get a fraction β of surplus and institutions get the
remaining fraction 1 − β. The contract is implemented by providing w(x, y, z, g) flow
utility to the agent and f(x, y, z) − w(x, y, z, g) flow utility to the institution.

2.2 Recursive Characterization of Equilibrium

We now define and characterize a recursive equilibrium. The aggregate states are
(z, g), where z is the aggregate productivity and g is the distribution of matches.3

3The mean field game literature has studied the mathematical difficulties involved in defining
a recursive equilibrium with an infinite dimensional state (e.g. Cardaliaguet, Delarue, Lasry, and
Lions (2015)). However, there is debate about whether these characterizations are appropriate for
economic models. Numerically, we are always working with a finite type space so the only relevant
mathematical question is whether a limit exists as the type space becomes continuous.
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We guess (and later verify) that the law of motion for g takes the form:

dgt(x, y) = µg(x, y, z, g)dt.

2.2.1 Surplus Division

Let V u(x, z, g) denote the value of unemployment for a worker of type x. Let
V e(x, y, z, g) denote the value of worker of type x employed at an institution of type
y. Let V v(y, z, g) denote the value of a vacancy for firm y. Let V p(x, y, z, g) denote
the value of firm y employing a worker of type x. The surplus of a match is defined
as:

S(x, y, z, g) := V p(x, y, z, g) − V v(y, z, g) + V e(x, y, z, g) − V u(x, z, g)

The Nash Bargaining protocol implies that the division of surplus is given by:

βS(x, y, z, g) = V e(x, y, z, g) − V u(x, z, g)

(1 − β)S(x, y, z, g) = V p(x, y, z, g) − V v(y, z, g)
(2.1)

These equations must implicitly determine the transfer or “wage” w(x, y, z, g). As in
other papers, we assume that contract terms are indexed to the contracts of new hires
so that V e(x, y, z, g) − V u(x, z, g) is the same for all agents with a particular (x, y),
so is V p(x, y, z, g) − V v(y, z, g) for all institutions.

2.2.2 Agent Hamilton-Jacobi-Bellman Equations (HJBEs)

Suppose that agents believe that the evolution of the match distribution g is charac-
terized by function µ̃g(x, y, z, g). Given beliefs, the value functions V u, V e, V v, and
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V p satisfy the Hamilton Jacobi Bellman Equations (HJBEs):

ρV u(x, z, g) = b+ Mu
∫
α(x, ỹ, z, g)(V e(x, ỹ, z, g) − V u(x, z, g))g

v(ỹ)
V

dỹ

+
∑
ž ̸=z

λ(z, ž)(V u(x, ž, g) − V u(x, z, g)) + ⟨DgV
u, µ̃g⟩ (2.2)

ρV e(x, y, z, g) = w(x, y, z, g) − δ(x, y, z)(V u(x, z, g) − V e(x, y, z, g))

+
∑
ž ̸=z

λ(z, ž)(V e(x, ž, g) − V e(x, y, z, g)) + ⟨DgV
e, µ̃g⟩ (2.3)

ρV v(y, z, g) = − c+ Mv
∫
α(x̃, y, z, g)(V p(x̃, y, z, g) − V v(y, z, g))g

u(x̃)
U

dx̃

+
∑
ž ̸=z

λ(z, ž)(V v(y, ž, g) − V v(y, z, g)) + ⟨DgV
v, µ̃g⟩ (2.4)

ρV p(x, y, z, g) = F (x, y, z) − w(x, y, z, g) − δ(V v(y, z, g) − V p(x, y, z, g))

+
∑
ž ̸=z

λ(z, ž)(V p(x, ž, g) − V p(x, z, g)) + ⟨DgV
p, µ̃g⟩ (2.5)

where DgV
j is the Frechet derivative of V j with respect to the distribution g,

⟨f(y), h(y)⟩ =
∫
f(y)h(y)dy is the inner product, and α is an indicator for the accep-

tance of a match:

α(x, y, z, g) :=

 1, if S(x, y, z, g) > 0
0, otherwise

(2.6)

The acceptance function has this form because both agents and institutions accept
the match when the surplus is positive and divided using generalized Nash bargaining.
The HJBE for unemployed agents can be interpreted in the following way. The left-
hand side is the flow value of being unemployed. On the right-hand-side, the first
term is the flow utility benefit, the second term is the meeting rate multiplied by
the expected gain in a meeting, the third term is the value function shift when the
exogenous aggregate state changes, and the final term governs how the value function
is impacted by distribution changes.
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2.2.3 Match Distribution Evolution

Given the agent matching decisions, the measure of matches evolves according to:

dgt(x, y) = − δ(x, y, z)gt(x, y)dt+ Mu
t g

u
t (x)α(x, y, z, g)g

v
t (y)
Vt

dt

Given the state, g, and the firm distribution, gf , we can recover the other features of
the distribution from Table 2. So, the Kolmogorov Forward Equation (KFE) for the
match distribution can be expressed as:

dgt(x, y) = − δ(x, y, z)gt(x, y)dt+ m(Ut,Vt)
UtVt

αt(x, y)
(
gw(x) −

∫
gt(x, y)dy

)
×
(
gf (y) −

∫
gt(x, y)dx

)
dt

=: µg(x, y, z, g)dt

(2.7)

where the first term is the outflow from the breakup of matches and the second term
is the inflow from the create of new matches.

2.2.4 Free Entry and the Firm Distribution

The firm distribution gf
t is determined by the “free-entry” condition:

0 = E[V v
t ] =

∫
V v(ỹ, z, g)dỹ. (2.8)

Combining the free-entry condition with the HJB equations gives:

m(Ut,Vt)
Vt

= c∫ ∫
α(x̃, ỹ, zt, gt)gu

t (x̃)
Ut

(1 − β)S(x̃, ỹ, zt, gt)dx̃dỹ

where gu
t = gw

t −
∫
gt(x, y)dy and so the RHS can be computed from gt and St.

Conceptually, the matching rate depends upon the average surplus because new in-
stitutions enter the model until it is no longer profitable to do so. If the matching
function is homothetic in Ut and Vt (as is common in the literature), then we have
that m(zt,gt)

Vt
= m̂

(
Vt

Ut

)
and so we can solve for Vt explicitly. Otherwise, we can deploy

a non-linear solver. Since firm y draws are uniformly distributed, gf
t is then given by:

gf
t = Vt + Pt. (2.9)
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2.2.5 Equilibrium and Master Equation

Definition 1. A (recursive) equilibrium is a collection of functions {V u,V e,V v,V p,
w, α, gf} of the state variables (z, g) such that: (i) given beliefs about the evolution of
gt, (V u, V e, V v, V p, α) solve the HJB equations (2.2)-(2.5), (ii) the division of surplus
satisfies (2.1), (iii) gf satisfies the free entry condition (2.8), and (iv) agent beliefs
about the evolution of gt are consistent in the sense that µ̃g = µg, where µg is given
by equation (2.7).

After combining the HJB equations and imposing belief consistency, the equilib-
rium can be characterized by the “master equation” for the surplus:

0 = LSS =: −ρS(x, y, z, g) + F (x, y, z) − δ(x, y, z)S(x, y, z, g)

− (1 − β)m(z, g)
V(z, g)

∫
α(x̃, y, z, g)S(x̃, y, z, g) g

u(x̃)
U(z, g)dx̃

− b− β
m(z, g)
U(z, g)

∫
α(x, ỹ, z, g)S(x, ỹ, z, g) g

v(ỹ)
V(z, g)dỹ

+
∑
ž ̸=z

λ(z)(S(x, y, ž, g) − S(x, y, z, g)) + ⟨DgS(x, y, z, g), µg(x, y, z, g)⟩

(2.10)

where µg is given by (2.7), (U ,V , gu, gv) can be calculated by Table 2, gf comes from
equation (2.9), and α is given by equation (2.6). Once we obtain S(x, y, z, g) and
α(x, y, z, g) by solving Equation (2.10), we can obtain {V u, V e, V v, V p, w} by solving
equations (2.2), (2.3), (2.4), (2.5).

2.2.6 Relation to Environments in Other Papers

Block recursivity: We can compare this setup to well-known papers in the search
literature with block recursive equilibria in which agents’ decisions do not depend
upon the distribution of matches. Lise and Robin (2017) sets β = 0, introduces a
vacancy creation condition at each y, and assumes that all unmatched vacancies will
be destroyed. They show this implies that α and S do not depend upon g:4

α(x, y, z, g) = α(x, y, z), S(x, y, z, g) = S(x, y, z)
4They also introduce on-the-job search, which we compare to in Section 4.
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which means the Lise and Robin (2017) model is block recursive in total surplus and
acceptance decisions. In Appendix D.3, we show how our setup can nest the Lise and
Robin (2017) model as a special case with additional assumptions on the bargaining
process and free entry condition. Menzio and Shi (2011) has one-sided heterogeneity,
competitive search, and free firm entry. They show this implies that Surplus does not
depend upon g:

S(x, y, z, g) = S(x, y, z)

and so their model also has “block-recursivity”. The goal of our paper is remove
the assumptions that lead to block recursivity and solve for α and S explicitly as a
function of g.

Dimension reduction: For models with incomplete but competitive markets, Krusell
and Smith (1998) suggests replacing the law of motion for the distribution by the law
of motion of its mean (and potentially the law of motion of other low dimensional mo-
ments). This is an appealing approach for some competitive market models because
the distribution impacts agents’ decisions by changing aggregate prices and aggregate
prices may primarily depend upon the mean of the distribution. By contrast, in a
search and matching model, the distribution impacts agents’ decisions by changing
the probability distribution over which type of agent they meet. This ultimately en-
ters the master equation on lines 3 and 4 of equation (2.10). There are no ex-ante
obvious low-dimensional moments of the distribution that are sufficient for evaluating
these terms. Instead, we need to integrate across the surplus function, weighted by
the acceptance decision and the density of searching agents.

2.2.7 Model Extensions

In Section 4, we extend the model to incorporate endogenous separation and on-the-
job search with positive worker bargaining power. In Section 5, we extend the model
to incorporate type switching and asset trade in an over-the-counter market. Our
solution approach offers a foundation that could be used to study other important
models in the search and matching literature such as within firm heterogeneity, multi-
dimensional sorting, and consumption–saving decisions.
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2.3 Approximation with Finite Types

Our goal is to solve the master equation (2.10) numerically to obtain S(x, y, z, g) and
α(x, y, z, g). Then we could solve for the value and wage functions using Equations
(2.2) to (2.5). The difficulty of solving Equation (2.10) is that the state space contains
an infinite dimensional distribution, g, and so the master equation contains Frechet
derivatives with respect to the distribution. To make progress on this problem, we
discretize the type space so that equation (2.10) becomes a high, but finite dimen-
sional partial differential equation that can be solved using deep learning.

Discrete type space and KFE: We restrict the possible types to finite collections:
x ∈ X = {x1, . . . , xnx} and y ∈ Y = {y1, . . . , yny}. With some abuse of notation,
we let g

t
denote the vector of measures of matched agents at the points (X ,Y),

where gt,ij = gt(xi, yj) is the function at type (xi, yj). We also let gw
t,i := gw

t (xi)
and gf

t,j := gf
t (yj). The aggregate state variables are now: {z, g

t
}, the aggregate

productivity and the density vector of matched agents. Under this discretization, the
Riemann approximation to the KFE is given by:

dgt,ij/dt = µg(xi, yj, zt, gt
)

= −δ(xi, yj, z)gt,ij +
m(zt, gt

)
U(zt, gt

)V(zt, gt
)α(xi, yj, zt, gt

)

×
(
gw

t,i − 1
ny

ny∑
k=1

gt,ik

)(
gf

t,j − 1
nx

nx∑
l=1

gt,lj

)
, ∀i ≤ nx, j ≤ ny

(2.11)

Master equation: The discretized Master equation for the Surplus is given by:

0 = LSS = −(ρ+ δ(xi, yj, z))S(x, y, z, g) + F (xi, yj, z) − b

− (1 − β)
m(zt, g)

U(z, g)V(z, g)
1
nx

nx∑
k=1

α(xk, yj, z, g)S(xk, yj, z, g)gu
k

− β
m(zt, g)

U(z, g)V(z, g)
1
ny

ny∑
l=1

α(xi, yl, z, g)S(xi, yl, z, g)gv
l

+
nx∑

k=1

ny∑
l=1

∂gkl
S(xk, yl, z, g)µg(xk, yl, z, g)

+
∑
ž ̸=z

λ(z)(S(xi, yj, ž, g) − S(xi, yj, z, g)), ∀ i ≤ nx, j ≤ ny (2.12)
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where µg is given by the discretized KFE (2.11), (U ,V , gu, gv) can be calculated
by Table 2 (after appropriate discretization), gf comes from equation (2.9), and we
approximate α(x, y, z, g) by:

α(x, y, z, g) =
(
1 + e−ξS(x,y,z,g)

)−1

to ensure differentiability of the value function when there is a finite number of types.5

2.4 The DeepSAM Method

In this section, we present the DeepSAM method for using deep learning to solve and
calibrate the general class of search and matching models outlined above. We first
present, for given structural parameters, how to solve the high dimensional master
equation (2.12). We then show how to calibrate the model by introducing structural
parameters as pseudo-state variables in the neural network and using a surrogate
model to find the parameters that match simulated moments with the data.

2.4.1 Solution Algorithm

We start by outlining our algorithm for solving the discretized master equation (2.12)
when the structural parameters are given. Let ω = (x, y, z, g) ∈ Ωω denote the state
space. We approximate the surplus function, S, by a neural network, Ŝ, and use
Θ ∈ ΩΘ to denote the parameters of the neural network:

Ŝ : Ωω × ΩΘ → R, (ω,Θ) 7→ Ŝ(ω;Θ)

with the form:

h(1) = ϕ(1)(W (1)ω + b(1)) . . .Hidden layer 1

h(2) = ϕ(2)(W (2)h(1) + b(2)) . . .Hidden layer 2
...

h(H) = ϕ(H)(W (H)h(H−1) + b(H)) . . .Hidden layer H

Ŝ = σ(h(H)) . . . Surplus
5The “softened” α function can be interpreted as a logit choice model where utility shocks come

from an extreme value distribution with parameter ξ.
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where, using the terminology of the deep learning literature, H is referred the number
of hidden layers, the length of vector h(i) is referred to as the number of neurons in
hidden layer i, ϕ(i) is referred to as the activation function for hidden layer i, and
the collection Θ = (W 1, . . .W (H), b(1), . . . , b(H)) are the parameters for the neural
network.

Algorithm 1: Generic Solution Algorithm
Input : Initial neural network parameters Θ0, number of points K to

sample, sequence of learning rates {ζn : n ≥ 0}, precision threshold
ϵ.

Output: A neural network approximation (x, y, z, g) 7→ Ŝ(x, y, z, g;Θ) of the
surplus function S solving the discretized master equation.

1. Approximate the surplus function by the neural network

S(x, y, z, g) ≈ Ŝ(x, y, z, g;Θ).

2. Start with initial parameter guess Θ0.

3. At iteration n with Θn:

(a) Generate K sample points, Qn =
{(
xk, yk, zk, {gij,k}i≤nx,j≤ny

)}
k≤K

.

(b) Calculate the average mean squared error of the surplus master equation
(2.12) on the sample points:

L (Θn, Qn) := 1
K

∑
k≤K

∣∣∣LSŜ
(
xk, yk, zk, {gij,k}i≤nx,j≤ny

)∣∣∣2

(c) Update NN parameters using stochastic gradient descent (SGD) or a
variant. For example:

Θn+1 = Θn − ζn∇ΘL (Θn, Qn)

(d) Repeat until L (Θn, Qn) ≤ ϵ with precision threshold ϵ.

4. Once S is solved, we have α and can solve for worker and firm value functions.

Our goal is to train the parameters of the neural network to approximately solve
equation (2.12) globally across the state space. Our approach is summarized in Algo-
rithm 1. Essentially, we use the stochastic gradient descent algorithms or their vari-
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ants to train the neural network to minimize the average loss in the master equation
on a random collection of sample points. As with other neural network approaches,
there are many implementation details involved with these generic steps.

Sampling procedure: We first solve the model at the steady state for the different
fixed z. We then draw distributions that are perturbed random combinations of the
steady state distributions for the different z. This sampling approach uses economic
knowledge to increase the solution accuracy in the regions of the state space that are
of most interest for the economic question. If required, once the error is small, we
can then move to sampling from the ergodic distribution generated by the current
solution. We can also increase sampling in regions of the state space (x, y) where
errors are high.

Algorithm stability It is most difficult to stabilize the algorithm when Ŝ(x, y, z, g;Θ)
has sharp curvature. In this case, we use a “homotopy” approach (Azinovic and Žem-
lička, 2023). Step (1): Train NN for parameters that give low curvature in Ŝ1. Step
(2): Change parameters closer and retrain NN starting from previous Ŝ2 = Ŝ1. Step
(3)+: keep changing parameters and retraining until at desired parameters.

2.4.2 DeepSAM for Solution and Calibration

A key goal of quantitative macroeconomics is to calibrate or estimate structural model
parameters so that the model generates output that is consistent with observed data
moments. Traditionally, this requires solving the model repeatedly for different pa-
rameter values, which can be a computationally intensive process. Deep learning
based solution methods offer an advantage for model calibration. By introducing eco-
nomic parameters as pseudo state variables in the neural network, we can efficiently
solve models simultaneously across both the state space and the economic parameter
space. We can then calibrate the model parameters using the method of simulated
moments.

In this section, we outline our algorithm for solving and calibrating the model.
Let Ψ ∈ ΩΨ denote the structural parameters that will be calibrated internally. Let
φ̂ = (φ̂1, . . . , φ̂N) denote the N × 1 data moments that we want to match. Let
φ(Ψ) = (φ1(Ψ), . . . , φN(Ψ)) be the corresponding model moments given structural

18



parameters Ψ, which we will generate by simulating the model. Our goal is to cali-
brate the model by choosing parameters Ψ to solve:

Ψ̂ = arg min
Ψ

N∑
i=1

ωi

(
φ̂i − φi(Ψ)

φ̂i

)2

, (2.13)

where ωi are fixed weights.
The main computational challenge of calibration is to solve φi(Ψ) for many values

of the structural parameters. We overcome this challenge by introducing Ψ as a
pseudo state vector and solving the resulting extended master equation, which in its
discretized form is given by:

0 = LSS = −(ρ+ δ(xi, yj, z))S(x, y, z, g,Ψ) + F (xi, yj, z) − b

− (1 − β)
m(zt, g)

U(z, g)V(z, g)
1
nx

nx∑
k=1

α(xk, yj, z, g,Ψ)S(xk, yj, z, g,Ψ)gu
i

− β
m(zt, g)

U(z, g)V(z, g)
1
ny

ny∑
l=1

α(xi, yl, z, g,Ψ)S(xi, yl, z, g,Ψ)gv
j

+
nx∑

k=1

ny∑
l=1

∂gkl
S(xk, yl, z, g,Ψ)µg(xk, yl, z, g,Ψ)

+
∑
ž ̸=z

λ(z)(S(xi, yj, ž, g,Ψ) − S(xi, yj, z, g,Ψ)), ∀ i ≤ nx, j ≤ ny

We approximate the extended surplus function S by a neural network:

Ŝ : Ωω × ΩΨ × ΩΘ → R, (ω,Ψ,Θ) 7→ Ŝ(ω,Ψ;Θ).

and solve it in a similar way as for equation (2.12), as outlined in Algorithm 2. Com-
pared to the neural network for solving equation (2.12), now the structural parameter
vector Ψ is also part of the state space. Compared to traditional techniques, an ad-
vantage of deep learning is that solving the extended master equation remains feasible
even after expanding the state space.

We now use the solution to the extended master equation to build a surrogate
model that maps economic parameters to simulated moments:

Φ : ΩΨ × ΘΦ → RN , Ψ 7→ Φ(Ψ; ΘΦ)
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We do this by simulating the model under many different structural parameter vec-
tors {Ψl}l (using parallelized processing) and computing the resulting model moments
{φ(Ψl) = (φ1(Ψl), . . . , φN(Ψl))}l. We then construct the surrogate model by train-
ing an additional neural network to approximate the relationship Φ(Φ) using the
simulated data. With Φ(Ψ), we can obtain the calibrated parameters by solving the
optimization problem (2.13). Our approach is summarized in Algorithm 2.

Algorithm 2: Generic Solution and Calibration Algorithm
Input : Initial neural network parameters Θ0, number of points K to

sample, sequence of learning rates {ζn : n ≥ 0}, precision threshold
ϵ.

Output: A neural network approximation (x, y, z, g,Ψ) 7→ Ŝ(x, y, z, g,Ψ;Θ)
of the surplus function S solving the discretized extended master
equation with structural parameters as pseudo states.

1. Train the model across the state and structural parameter spaces:

(a) Approximate the surplus function by a neural network that includes the
economic parameters Ψ as inputs S(x, y, z, g,Ψ) ≈ Ŝ(x, y, z, g,Ψ;Θ).

(b) Train the neural network, as in Algorithm 1.

2. Compute a surrogate model that maps structural parameters to model
moments:

ΩΨ × ΩΦ : (Ψ,ΘΦ) 7→ Φ(Ψ; ΘΦ)

and optimize over Φ to solve the distance minimization problem (2.13).

3 Labor Search Model

In this section, we demonstrate our methodology using a simple search and match-
ing model with two-sided heterogeneity and aggregate crisis shocks. Conceptually,
this model extends Shimer and Smith (2000) by incorporating aggregate shocks and
Mortensen and Pissarides (1994) by introducing heterogeneity among workers and
firms. The goal of this Section is three-fold: first, we illustrate our DeepSAM method
using a canonical labor setup; second, we evaluate its numerical performance, high-
lighting its accuracy and computational efficiency in addressing high-dimensional
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problems; lastly, we use the model to study the impact of the COVID-19 shock and
disentangle the importance of distribution feedback in aggregate dynamics.

In this section, we use DeepSAM to solve this model. In Section 4, we implement a
more comprehensive deep learning based calibration in a richer setup with on-the-job
search and endogenous separation to align the model more closely with a broader set
of data moments.

3.1 Model Details and Parameters

Our environment is a special case of Section 2.1 with the following features. The
agents are interpreted as “workers” and the institutions as “firms”. The exogenous
aggregate state z follows a three-state Markov chain, corresponding to expansion
(zH), normal recession (zL), and major crisis (zD), the later of which we interpret
as COVID-19. Match output F (z, x, y) = Azf(x, y) and the separation rate δz(x, y)
both depend upon the state z, where we have adopted the notation that A and δ are
indexed by z.

Economic parameters: The calibration of the economic parameters for our model is
presented in Table 3. We calibrate the model at the annual frequency. For non-crisis
states, when possible, we take standard parameters from the literature. We calibrate
the matching efficiency κ to target an ergodic average unemployment rate of 6%. For
the crisis state, we calibrate the separation rate across workers and firms δD(x, y)
to match the observed peak declines in employment levels during the COVID-19 re-
cession calculated in Cajner et al. (2020). More specially, Cajner et al. (2020) uses
detailed data from a major US payroll company to estimate the employment drop of
workers in different skill groups (corresponding to five groups in our model) and firms
in different two-digit NAICS industries (mapped to 11 groups in our model) during
the COVID-19 recession. These drops peaked in April 2020, about 0.2 years after the
onset of the pandemic in the US. As shown in Figure 1, we calibrate δD(x, y) such
that the model’s simulated declines in employment for these heterogeneous groups
match these empirical moments after the disaster shock zD hits the ergodic state of
the economy for t = 0.2 years. The detailed values of δD(x, y) are in Appendix C.1.

Neural network parameters: We describe the details of the neural network approxi-
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Parameter Interpretation Value Target/Source
ρ Discount rate 0.05 Kaplan et al. (2018)
ξ Extreme value for α choice 2.0

f(x, y) Production for match (x, y) 0.6 + 0.4
(√

x + √
y
)2 Hagedorn et al. (2017)

β Surplus division factor 0.72 Shimer (2005)
m(U , V) Matching function κUνV1−ν Hagedorn et al. (2017)

ν Elasticity in meeting function 0.5 Hagedorn et al. (2017)
κ Scale for meeting function 5.4 Unemployment rate
b Worker unemployment benefit 0.5 Shimer (2005)
c Entry cost 4.86 Steady state V/U = 1

Steady State:
z̄ Steady state TFP 1 Shimer (2005)
δ̄ Steady state separation rate 0.2 BLS job tenure 5 years

Exogenous Aggregate Shock Process:
AD, AL, AH TFP levels 0.985, 0.985, 1.015 Lise and Robin (2017)

δL, δH Separation rates 0.18, 0.22 Shimer (2005)
δD(x, y) TFP and separation at crisis state See text Match Cajner et al. (2020)

λz Poisson transition probability See Appendix C.1 Shimer (2005)
nx Discretization of worker types 5 Calibration of δD(x, y)
ny Discretization of firm types 11 Calibration of δD(x, y)

Table 3: Economic Parameters.

(a) Calibration along worker dimension (b) Calibration along firm dimension

Figure 1: Calibrating δD(x, y) to match effect of COVID-19 shock on heterogeneous
workers and firms in Cajner et al. (2020).

mation and sampling in Table 4. We use a fully connected feed-forward network with
4 layers, 50 neurons per layer, and a tanh(·) activation function.
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Parameter Value
Number of layers 4
Neurons per layer 50
Activation function tanh(·)
Initial learning rate 10−4

Final learning rate 10−5

Initial sample size per epoch 256
Final sample size per epoch 512
Convergence threshold for target calibration 10−6

Table 4: Neural network parameters

3.2 Numerical Performance

In this subsection, we evaluate the numerical performance of the DeepSAM method on
the model presented above. We perform a number of checks to verify the usefulness
of our solution method. We report the numerical loss and computational time for
solving the model in the first column of Table 5. We achieve small errors, on the
order of O(10−6), across our sample. This level of accuracy was reached within 4
hours and 20 minutes using an A100 GPU on Google Colab, a platform accessible to
all researchers. Notably, no existing method has been able to solve our 58-dimensional
PDE within such a timeframe. We discuss the detailed numerical scheme and the
numerical stability of the results in Appendix C.3.6

Model with aggregate shock Model without aggregate shock
PDE Training Loss 2 × 10−6 3.9 × 10−6

MSE to Existing Solution No existing solution 5 × 10−6

Computational Time 4h 20min 57 min

Table 5: Numerical performance of DeepSAM for models with and without aggregate
shocks. Computations are performed on the A100 GPU at Google Colab.

Regarding accuracy, besides verifying low numerical loss, we can further validate
our method by applying it to a model that can be solved with conventional methods.
For this purpose, we apply the DeepSAM method to a model without aggregate

6The computation time varies with different calibrations. For example, if we set a relatively small
κ = 0.4, it only takes less than 30 minutes to solve the 58-dimensional PDE. That’s because the
high dimensional function approximated by neural networks is flatter in the curvature, which makes
it easier to “learn”.
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shocks—a 57-dimensional PDE for S(x, y, g), which we fully specify in Appendix
C—by imposing zt ≡ z̄ and δt ≡ δ̄. For this model, we can use traditional fixed-point
methods, as in Shimer and Smith (2000) and Hagedorn, Law, and Manovskii (2017),
to solve for the deterministic steady state (DSS) solution SDSS(x, y), which can serve
as a benchmark to validate our approach. With the 57-dimension solution we obtain
with DeepSAM, we can set g = gDSS and get the DeepSAM solution at DSS as

SDSS
DeepSAM(x, y) = S(x, y, g = gDSS)

Then we can compare our DSS solution with the solution using conventional methods
SDSS

Conventional(x, y). We define the squared difference of the two methods for each (x, y)
pair as ∥SDSS

DeepSAM(x, y) − SDSS
Conventional(x, y)∥2. The mean squared difference takes the

average of the squared difference across all (x, y) pairs. We report the numerical
performance in the second column of Table 5. The PDE training loss, measured
as the mean square error, averaged 3.9 × 10−6 over the 57-dimensional state space
(x, y, g) after 57 minutes of training. By comparing our solution at this steady state
with those obtained using conventional methods, we found differences in the order of
10−5. We interpret these results as indicative of high accuracy.

(a) Model with aggregate shock: loss across
state space

(b) Model without aggregate shock:
difference from conventional solution

Figure 2: Numerical accuracy across state space.
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We also depict the numerical accuracy visually. For the model with aggregate
shocks, Figure 2a shows the mean squared loss in the surplus Master equation at
a given distribution and aggregate shock realization. The loss is in the order of
magnitude of 10−6 and not biased in a particular part of the state space. For the
model without aggregate shocks, Figure 2b plots the squared difference between the
DeepSAM solution and conventional solution at the DSS. The difference is always in
the order of magnitude of 10−5, which we also interpret as high accuracy.

3.3 Distribution Feedback to Aggregate Dynamics: The COVID-
19 Recession

An important advantage of the DeepSAM method is its ability to explicitly solve for α
as a function of the distribution, enabling us to assess the contribution of distribution
feedback to aggregate dynamics. This is particularly valuable in scenarios where
there is a significant shift in the distribution of matches over business cycles - a
phenomenon well-documented in a large empirical literature, such as by Guvenen,
Schulhofer-Wohl, Song, and Yogo (2017). In this section, we use our model to study
the impact of the COVID-19 shock, and disentangle the importance of distribution
feedback in aggregate dynamics. These are important questions that can only be
answered using the global solution methods.

As discussed above, we model the COVID-19 shock as the disaster shock zD that
lasts for t = 0.2 years, followed by the recovery phase with stochastic aggregate shocks
zt ∈ {zH , zL, zD}. The model is globally solved with the DeepSAM method. With
the solution in place, we can simulate the dynamics of the gt using the Kolmogorov
forward equation (2.11) and compute aggregate dynamics for unemployment, em-
ployment, average wage, and other variables with gt. The dynamics of aggregate
unemployment are presented as the blue line of Figure 3a. As is targeted in the data,
we see a sharp increase in unemployment until April 2020, followed by the recovery
phase.

To understand the contribution of distribution feedback to aggregate dynamics,
we decompose the impulse responses in the unemployment into two channels:

(i) the change in unemployment when agents’ acceptance decision is always evalu-
ated at the long-run ergodic employment distribution, and
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(a) Ut after COVID shock (b) Ut after counterfactual symmetric shock

Figure 3: Unemployment Ut after the COVID-19 shock: full dynamics vs “restricted”
dynamics in which the decision of workers and firms are myopic to change in dis-
tribution gt as in Equation (3.1). The left panel shows the dynamics after the true
asymmetric COVID-19 shock, while the right one corresponds to the counterfactual
symmetric shock.

(ii) the additional change in unemployment when the acceptance function reacts to
the changing matching distribution.

We refer to the former as the “restricted” dynamics for the experiment without the
additional feedback from the distribution to the acceptance function. Mathematically,
under the restricted dynamics, the distribution gR

t evolves according to:

dgR
t (x, y)
dt

= − δ(x, y, zt)gR
t (x, y) +

mt(z, gR
t

)
Ut(gR

t
)Vt(gR

t
)α(x, y, zt, g

ergodic)gu,R
t (x)gv,R

t (y) (3.1)

We plot the restricted dynamics with the dashed orange line of Figure 3a. Compared
to the full dynamics calculated with the KFE (2.11), the only difference in Equation
(3.1) is that agents make decisions assuming the distribution is always at the erdogic
state. Thus the gap between full dynamics and restricted dynamics can be interpreted
as the contribution of distribution feedback to aggregate dynamics.

From Figure 3a, we can see the distribution feedback accounts for about 30%
of the unemployment dynamics in the recovery phase. When agents make decisions
based on the true distribution shift, the unemployment rate recovers faster than in
the economy where agents are myopic to the distribution change. This divergence
is attributable to the asymmetric shock disproportionately increasing unemployment
among low-type workers, thereby raising the opportunity cost of waiting for a high-
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type match. Consequently, in the full model, workers are less selective and more
likely to accept matches with low-type partners compared to their counterparts in
the model without distribution feedback.

(a) gergodic(x, y) at ergodic state (b) gCOVID(x, y) − gergodic(x, y)

(c) α(x, y, gergodic) at ergodic state (d) α(x, y, gCOVID) − α(x, y, gergodic)

Figure 4: Distribution of matches and associated acceptance decision. Panels (a) and
(c): distribution and acceptance at ergodic steady state. Panels (b) and (d): difference
of distribution and acceptance after the asymmetric COVID-19 shock, compared to
the ergodic steady state.

We confirm this mechanism of distribution feedback in Figure 4, which shows
how agents’ decision function α changes when the distribution shifts from the ergodic
steady state to that following the asymmetric COVID-19 shock. Figures 4a and
4b show that matches are disproportionately destroyed at the lower ends of both
the worker and firm distributions. Consequently, as shown in Figure 4d, the low
type workers and firms exhibit a higher accepting rate for potential matches, as they
understand the opportunity cost of waiting is higher due to increased competition in
the job market following the asymmetric shock.

To further dissect the role of asymmetric shocks, we conduct a counterfactual
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analysis with a disaster shock that has symmetric impact across workers and firms
through the separation rate, namely δ̃D(x, y) ≡ δ̃D for all x, y. We calibrate δ̃D such
that the shock generates the same aggregate unemployment rate as our calibrated
δD(x, y) at the peak of the COVID-19 recession. We plot the full dynamics and
restricted dynamics of the economy after this counterfactual “symmetric” shock in
Figure 3b. In this case, the unemployment trajectories of the “restricted” dynamics
and the full solution are closely aligned, which means the distribution feedback is
small when aggregate shocks affect workers and firms symmetrically.

These findings underscore the significance of distribution feedback on aggregate
dynamics in the labor market, particularly when workers and firms have heteroge-
neous exposure to aggregate shocks. They also suggest that policy design should
account for the asymmetric nature of shocks, as well as the heterogeneous effects of
policies themselves. For instance, the design of unemployment insurance needs to
consider the feedback effect from the distribution shift to fully understand its impli-
cations and efficacy.

4 On-The-Job Search and Business Cycles

In this section, we study business cycle shocks in a labor market with endogenous
job-to-job and job-to-unemployment transitions. Conceptually, the model extends
Lise and Robin (2017) by giving workers non-zero bargaining power and generalizing
the free entry condition, both of which are changes that break “block-recursivity”.
We calibrate the model using the deep learning based simulated method of moments
approach outlined in Section 2.4.2. We use the calibrated model to study how em-
ployment and wage dynamics vary across the worker and firm types.

4.1 Environment Changes

We make the following changes to the environment from Section 3.1.

Search and matching: All workers now engage in random search. The matching
function becomes m(Ut + ϕEt,Vt) with the interpretation that ϕ is the exogenous
relative intensity at which employed workers search. Let Wt := Ut + ϕEt denote the
total mass of searchers. The probabilities that an unemployed or an employed worker
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meets a potential employer are given by:

Mu
t = m(Wt,Vt)

Wt

, Me
t = ϕ

m(Wt,Vt)
Wt

while the probability that a vacant firm meets a potential hire is:

Mv
t = m(Wt,Vt)

Vt

.

Conditional on meeting a worker, we define the probabilities that the worker is unem-
ployed or employed by Cu = U

U+ϕE and Ce = ϕE
U+ϕE respectively. The probability for a

firm to meet an unemployed worker x ∈ X equals MvCu

∫
X gu(x)dx. The probability

for a firm to meet an employed worker x ∈ X equals MvCu

∫
X ge(x)dx.

Bargaining between unemployed workers and firms: Let V u
t (x) denote the value of

unemployment for a worker of type x. Let V e
t (x, y) denote the value of worker x

employed at a firm of type y. Let V v
t (y) denote the value of a vacancy for firm y. Let

V p
t (x, y) denote the value of firm y employing an unemployed worker of type x. As

before, the surplus of a match between an unemployed worker and an vacant firm is
defined as Su

t (x, y) := V p
t (x, y) −V v

t (y) +V e
t (x, y) −V u

t (x) and the division of surplus
is given by:

βSu
t (x, y) = V e

t (x, y) − V u
t (x)

(1 − β)Su
t (x, y) = V p

t (x, y) − V v
t (y)

Bargaining on the job: If a worker in match (x, y) moves to another firm with produc-
tivity ỹ, then the worker gets β share of the incremental surplus St(x, ỹ)−St(x, y), the
new firm gets 1 − β share of the incremental surplus, and the incumbent firm keeps
their surplus (1 − β)St(x, y). Conceptually, this is a model where the incumbent firm
cannot be made worse off by the move (e.g. because they have a veto over whether
the worker can move), which makes this setup both technically and economically ap-
pealing.7

7Our assumption that workers get a share β of incremental surplus from on-the-job transitions
is different to Lise and Robin (2017), which imposes that workers get no surplus when moving
from unemployment to employment and get the result of Bertrand competition between firms when
moving from one job to another. Technically, our setup allows us to relax the β = 0 restriction
in Lise and Robin (2017) while still allowing the problem to be characterized recursively without
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Endogenous separation: In addition to allowing workers to search, we also allow
matches to breakup. If St(x, y) < 0, the worker returns to unemployment and the
firm returns to posting vacancies.

Recursive characterization of equilibrium: We write down KFE, the master equation,
and the recursive characterization of equilibrium in Appendix D.1 and D.2.

4.2 Deep Learning-Based Calibration

We calibrate the parameters {β, κ, c, b, δ} internally to match the ergodic unemploy-
ment rate, vacancy rate, employment-to-employment transition rate, unemployment-
to-employment transition rate, and employment-to-unemployment transition rates,
denoted by E[U ],E[V ],E[EE],E[UE],E[EU ] respectively. The other parameters are
taken from the literature and outlined in Table 8 in Appendix A. We discretize work-
ers into seven productivity types and firms into eight productivity types, which is
sufficiently fine to match the empirical regularities in the data.

We undertake the deep learning based internal calibration outlined in Section
2.4.2. The internally calibrated parameters, the data moments, and the model mo-
ments are shown in Table 6. The target moments are taken from Lise and Robin
(2017) and the transition flow moments (including expected rate of employment-
to-employment, employment-to-unemployment, and unemployment-to-employment
transitions) are presented as monthly values to match with the original paper. The
computational times for each step of the calibration, as well as the associated numer-
ical losses, are shown in Table 7. Evidently, we are able to get a close match to all
five moments. To help illustrate this visually, Figure 5 shows the surrogate neural
network mapping Φ(Ψ) from economic parameters to the aggregate moment loss for
the dimensions β and κ (holding the other parameters fixed at their optimal values).
This illustrates the curvature in the surrogate function that allows DeepSAM to find
the optimal parameters. The entire solution and calibration process takes 4 hours
and 19 minutes, where the model is solved over the economic parameter space and
simulated across 8000 parameter combinations to build the surrogate model deployed

needing to add match history as a state variable. We also believe our setup makes economic sense
because it ensures that the worker has similar bargaining power in all their matches.
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for the simulated method of moments. For reference, solving the problem for given
structural parameter values, which is a 59-dimensional PDE, will take 55 minutes. To
our knowledge, it’s infeasible to solve such a high dimensional problem within such
a time frame using other approaches. Furthermore, the full calibration only takes 4
hours and 19 minutes, making our method practically useful for quantitative analysis.

Parameter Interpretation Value Fitted moment Data Model
β Surplus division factor 0.73 E[U ] 0.058 0.058
κ Scale for meeting function 15.88 E[V ] 0.037 0.037
c Entry cost 9.46 E[EE] 0.025 0.026
b Worker unemployment benefit 0.03 E[UE] 0.468 0.431
δ Separation rates 0.02 E[EU ] 0.025 0.026

Table 6: Internally Calibrated Parameters and Targeted Moments.

Given
Structural
Parameters

Structural
Parameters as
Pseudo-states

Training
Surrogate

Model

Simulated
Method of
Moments

Full
Calibration

MSE Loss 1.97 × 10−6 4.8 × 10−6 1.11 × 10−6 1.24 × 10−4 -
Time 55min 4h1min 16.5min 1.4min 4h19min

Table 7: Training loss and computational time for solving vs calibrating the model.
Computations are performed on the A100 GPU at Google Colab.
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Figure 5: Target moment: E[U ],E[V ]. Parameter: matching efficiency κ, worker
bargaining power β.

4.3 A Search-Theoretical Explanation for Okun’s Hypothesis

We use our calibrated model to revisit the hypothesis put forward by Okun (1973)
that longer expansions disproportionally improve labor market outcomes for low-wage
workers. Figure 6 shows the impulse responses for an economy that goes into recession
for half a year and then recovers to the high state. The left panel shows that the
lowest and highest type workers experience a similar decline in unemployment for the
first quarter of the expansion but then the low type workers experience a relatively
larger decrease in unemployment in the subsequent quarters. In this sense, low type
workers benefit relatively more as the expansion lasts longer.

The explanation for Okun’s hypothesis can be seen in the right panel of Figure 6,
which depicts the ratio of mismatched pairs to positive assortative matching (PAM)
pairs. We call a matched pair (x, y) a “PAM pair” if |x − y| ≤ 1

2 , and otherwise call
the pair a “non-PAM” or “mismatched pair”. Evidently, there is a strong pattern of
countercyclical sorting over the business cycles, which more pronounced the longer
the expansion or recession extends. During the recession, the mass of “PAM pairs”
grows faster than the mass of “non-PAM pairs”, while the converse happens dur-
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Figure 6: Left panel: ∆Ut for different workers. Low and high type refers to the lowest and
highest types in our discretization. Right panel: The ratio of mismatched pairs to PAM
pairs.

ing the expansion. This is because high type workers become increasingly plentiful
(scarce) during recessions (expansions) and so high type firms become more (less)
picky. Ultimately, the weakening of positive assortative throughout the expansion
disproportionately benefits low type agents and so generates the patterns predicted
by Okun. In this sense, we can recover Okun’s hypothesis from the distributional
feedback without the need to introduce skill accumulation or other features into the
model. This offers a complementary story to other papers in the literature (e.g. Alves
and Violante (2023)), which potentially has different policy implications. This is be-
cause, in our model, the decrease in low-skilled unemployment during long booms
comes from creating “non-PAM” pairs that are quickly broken up during subsequent
recessions.

4.4 Dynamics of Wage Distribution

A well-known difficulty in the heterogeneous agent random search literature is that
“block-recursive” models cannot solve for wage dynamics. This is because the surplus
division does not inherit the block recursive property of total surplus. Or as Lentz,
Lise, and Robin (2017) write: “wages cannot be solved for exactly, indeed one needs
to solve for a fixed point in worker values where the distribution of workers across
jobs is a state variable.” By contrast, we can easily use our DeepSAM method to
solve for the wage dynamics because it has solved for the surplus function explicitly
as a function of the match distribution. We show the wage change after positive and
negative aggregate shocks in Figure 7. Evidently, the wages of low-type workers are
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more procyclical, especially for those in high-type forms.

Figure 7: Wage change after aggregate shocks

4.5 Revisiting “Block Recursivity” with On-the-job Search

With the DeepSAM method, we are able to solve heterogeneous agent random search
models with on-the-job search and endogenous separation beyond the block recursive
case. As discussed in Appendix D.3, a key assumption in Lise and Robin (2017) for
getting block recursivity is setting β = 0 so unemployed workers get zero surplus
when bargaining with a firm. In Figure 8, we study how this restriction impacts
impulse response. We present the times paths for unemployment (Ut), vacancies (Vt),
the total quantity of poaching, and the total hires from unemployment in response
to a 1.5% negative productivity shock that lasts for one year and then subsequently
reverts to the stochastic process governing aggregate TFP. 8

We find that aggregate unemployment, vacancies, poaching, and hiring from un-
employment are all most sensitive to aggregate shocks when β = 0. With on-the-job
search, a 1.5% productivity shock leads to an increase in the unemployment rate of

8The total quantity of poaching is defined as

ϕ
m(Wt, Vt)

WtVt

∫ ∫ ∫
αe

t (x, ỹ, y)gv
t (y)gt(x, ỹ)dỹdxdy.

The total quantity of hires from unemployment is defined as

m(Wt, Vt)
WtVt

∫ ∫
αt(x, y)gu

t (x)gv
t (y)dxdy.
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Figure 8: IRF following negative TFP Shock with different β’s. After one year, the
plots show the average time path across 1000 simulations.

about 0.05% under our preferred calibration of β = 0.72. By contrast, a block re-
cursive setup predicts a more substantial 0.25% increase in the unemployment rate.
This is because firm posting is more elastic when firms get the entire surplus from
matches with unemployed workers.

5 Over-the-Counter Financial Markets

In this final section, we consider a search model of over-the-counter bonds markets
with heterogeneous investors and aggregate default risk. This can be thought of as
an extension to Duffie, Gârleanu, and Pedersen (2005) and Weill (2008) that expands
the investor and asset heterogeneity. We model bond duration explicitly and discuss
the emergent prices. From a technical point of view, relative to the labor models, this
section introduces type switching and asset trade.
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5.1 Environment

Setting: Time is continuous with infinite horizon. The economy has a collection of
assets, indexed by k ∈ {1, . . . , K} in positive net supply sk, which we interpret as
bonds. Each asset pays a flow dividend δ > 0 each period and 1 good at maturity.
Asset k matures at rate 1/τk (implying an average maturity of τk).

Agents and preferences: The economy is populated by a unit-mass continuum of
infinitely-lived and risk-neutral investors. Let j ∈ {1, . . . , J} denote the set of in-
vestor types in the economy. Agents of type j discount the future at rate ρj > 0.
An investor gets marginal utility of 1 from a non-storable numeraire good. In order
to make payments, investors are endowed with a technology that instantly produces
numeraire goods, at a unit marginal cost. An investor can hold either zero or one
share of at most one type of asset. An investor can have heterogeneous valuations
of holding the assets. When agent j holds asset k, they get flow utility δ − ψ(j, k),
where ψ(j, k) is interpreted as the holding cost that reflects institutional constraints.
Investors switch randomly, and pair-wise independently across types. Let Λ denote
the matrix of switching rates and let λi,j denote rate of switching from type i to j.

Financial crisis risk: The aggregate state in the economy is z ∈ {z1, . . . , zn}, which
follows a continuous time Markov process where ζz,z′ denotes the rate at which the
process switches from z to z′. We potentially allow the aggregate state to affect agent
switching rates and haircuts. Formally, at state z, the switching rate from agent type
i to agent type j is given by λij(z). Changes to λij(z) impact the fraction of agents
with low or high holding costs so, as in Duffie, Gârleanu, and Pedersen (2005), we
interpret these shocks as changes to the “liquidity constraints” in the investor popu-
lation. In addition, at state z, asset k pays a fraction ϕ(k, z) of the coupon and the
principal. We interpret ϕ(k, z) as the “haircut” on the bond.

Primary market: When bonds mature, they are replaced my new bonds in the econ-
omy. We impose there is an exogenous primary market that allocates new bonds to
non asset holding agents with holding cost j at rate ξj,k.

Distribution: An investor’s type is made up of her holding cost j ∈ {1, . . . , J} and
her ownership status, for each asset type k ∈ {1, . . . , K} (owner o or non-owner n).
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Hence the set of investor idiosyncratic states is:

A = {1n, 2n, . . . , Jn, 1o1, . . . , 1oK, 2o1, . . . 2oK, Jo1, . . . , JoK}

Relative to the labor model, the support of the distribution has been expanded to ac-
count for type switching. For each a ∈ A, let ga denote the fraction of total investors
that have state a.

Meeting and Bargaining: The contact rate between investors with idiosyncratic states
a and b is: Ma,b = κa,bgagb. When agents with states a and b meet, they engage in
Generalized Nash bargaining with bargaining power βa,b for agent in state a.

5.2 Endogenous Yield Curve and Financial Crises

In Appendix E, we derive the Master equation for the general OTC model. To il-
lustrate the solution, we outline a particular calibration with four types of agents:
{A, B, C, D}, where type A are interpreted as dealers in the primary bond market,
type B are interpreted as liquidity constrained hedge funds, type C are non-liquidity
constrained hedge funds, and type D are pension/insurance funds with a long in-
vestment horizon. This is reflected in their holding costs. Non-liquidity constrained
investors have no holding cost while liquidity constrained investors have a holding
cost of 0.2. Pension/insurance funds face holding costs of 0.02 for short maturity
bonds (τ1 = 0.25, 1.0), 0.01 for bonds with τ = 5.0, and no holding cost for long term
bonds τ = 1.0. We interpret this as reflecting regulatory constraints or financial fric-
tions that encourage the hedge funds to hold long-term bonds. We impose that types
dealer and pension/insurance types are constant. By contrast, hedge funds switch
from C to B (i.e. becoming liquidity constrained) at rate 0.3 in the good state, 0.5
in the normal state, and 0.7 in the bad state. In all states, they switch from B to C
(i.e. becoming non-liquidity constrained) at rate 0.1. We choose parameters so that
the ergodic yield curve matches the average high grade corporate yield curve over the
past 50 years documented by Payne and Szőke (2024) and the haircut rates during
the crisis to match Chen, Cui, He, and Milbradt (2017). We explain the calibration
in more detail in Appendix E.

Figure 9a shows the ergodic mean bond prices as a function of maturity. Evidently,
longer maturity bonds have lower prices indicating an upward sloping yield curve.
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This shape reflects relative investor willingness to hold short and long maturity bonds
in the economy. Hedge funds prefer to hold short maturity bonds because they are
worried that they will end up stuck with long maturity bonds if they become liquidity
constrained. By contrast, the pension/insurance fund is penalized when they hold
short maturity bonds. Under our parametrization, it is the first effect that dominates.

We use our model to examine the impact of a liquidity crisis in an over-the-counter
bond market. Figure 9b shows the impulse responses for bond prices following liq-
uidity crisis shock. Specifically, the economy starts at the ergodic mean and then
moves to the “bad” state zB for the first year. Afterwards, the economy is simulated
200 times and the mean paths are calculated. Evidently, for short maturity bonds,
the yields move very little whereas for long maturity bonds the yields increase signif-
icantly. Finally, Figure 10 shows the change in the distribution of investors (relative
to the ergodic mean) when the economy stays for a long time in the bad state and the
good state. Evidently, the crisis increases the likelihood that a hedge fund becomes
constrained and so increases the proportion of liquidity constrained hedge funds. This
heightens hedge fund concern that they will end up stuck with long maturity bonds
while liquidity constrained and so relative demand for long-term bonds drops during
the crisis leading to the relatively large yield increase (price drop) for long-term bonds
in Figure 9b.

(a) Ergodic Yield Curve (b) Change of Yield to Maturity by Bond

Figure 9: Ergodic Yield Curve and Impulse Responses. Plot (b) shows the proportional
bond yield change compared to the ergodic yield at each maturity following a one-year
recession. To calculate the figures, we simulate 3000 paths and calculate the mean.
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(a) Ergodic Distribution gergodic (b) Change after Crisis g(zL)−gergodic

gergodic

Figure 10: Distribution response to a crisis shock.

6 Conclusion

In this paper, we developed a new method for characterizing global solutions to search
and matching models with aggregate shocks and heterogeneous agents. This allows
us to study dynamics in models where agent decisions depend upon the distribu-
tion so the model is not “block-recursive”. We believe our methodology is a major
breakthrough in our understanding of search and matching dynamics with potential
applications in the labor, finance, and spatial literature.
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Appendix

A Details of the OJS Model

Parameter Interpretation Value
ρ Discount rate 0.05

ξ, ξe Extreme value for α and αe choices 2.5, 0.02
f(x, y) Production for match (x, y) 0.6 + 0.4

(√
x + √

y
)2

m(U , V) Matching function κUνV1−ν

ν Elasticity in meeting function 0.5
ϕ Relative intensity 0.075

AL, AH TFP levels 0.985, 1.015
λz Poisson transition probability 0.08
nx Discretization of worker types 7
ny Discretization of firm types 8

Table 8: Externally Calibrated Parameters.
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Online Appendix

B Master Equation with the Free Entry Condition

As in Section 2.2.4, the free entry condition is

0 =
∫
V v

t (ỹ)dỹ

Recall from (2.4) the HJB equation for a vacant institution with productivity y is

ρV v
t (y) = −c+ Mv

t

∫
α(x̃, y)g

u
t (x̃)
Ut

(1 − β)St(x̃, y)dx̃+ ∂tV
v

t (y)

Integrating and combining these equations, we have that:

ρ
∫
V v

t (ỹ)dỹ = − c+ Mv
t

∫ ∫
α(x̃, ỹ)g

u
t (x̃)
Ut

(1 − β)St(x̃, ỹ)dx̃dỹ + ∂t

∫
V v

t (ỹ)dỹ

⇒ c = m(Ut,Vt)
Vt

∫ ∫
α(x̃, ỹ)g

u
t (x̃)
Ut

(1 − β)St(x̃, ỹ)dx̃dỹ

⇒ m(Ut,Vt)
Vt

= c∫ ∫
α(x̃, ỹ)gu

t (x̃)
Ut

(1 − β)St(x̃, ỹ)dx̃dỹ

Assuming that m(Ut,Vt)/(Vt) = m̂(Vt/Ut), we have that:

Vt = Utm̂
−1

 c∫ ∫
α(x̃, ỹ)gu

t (x̃)
Ut

(1 − β)St(x̃, ỹ)dx̃dỹ

 (B.1)

where gu
t = gw

t −
∫
gt(x, y)dy and so the RHS can be computed from gt and St. (For

example, if m(U ,V) = κUνV1−ν , then Mv
t = m(U ,V)/V = m̂(Vt/Ut) = κ(U/V)ν and

Mu
t = m(U ,V)/U = κ(V/U)1−ν). Since firm y draws are uniformly distributed, we

have that gf
t is given by:

gf
t = Vt + Pt

= Utm̂
−1
(

c∫ ∫
α(x̃, ỹ)(gu

t (x̃)/Ut)(1 − β)St(x̃, ỹ)dx̃dỹ

)
+
∫ ∫

gt(x, y)dydx
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where Vt is from (B.1), Pt =
∫ ∫

gt(x, y)dydx, and Ut =
∫
(gw

t (x) −
∫
gt(x, y)dy). This

means that gf
t can be computed from gt and St, and

gv
t (y) = gf

t (y) − gp
t (y)

= Utm̂
−1
(

c∫ ∫
α(x̃, ỹ)(gu

t (x̃)/Ut)(1 − β)St(x̃, ỹ)dx̃dỹ

)
+
∫ ∫

gt(x, y)dydx

−
∫
gt(x, y)dx

We can now calculate the differential equation for surplus:

ρSt(x, y) = ρ(V p
t (x, y) − V v

t (y) + V e
t (x, y) − V u

t (x))

= ft(x, y) − wt(x, y) − δ(1 − β)St(x, y) + ∂tV
p

t (x, y)

−
(

Mv
t

∫
α(x̃, y)g

u
t (x̃)
Ut

(1 − β)St(x̃, y)dx̃+ ∂tV
v

t (y)
)

+ wt(x, y) − βδSt(x, y) + ∂tV
e

t (x, y)

−
(
b+ Mu

t

∫
αt(x, ỹ)g

v
t (ỹ)
Vt

βSt(x, ỹ)dỹ + ∂tV
u

t (x)
)

= ft(x, y) − δSt(x, y) − Mv
t

∫
α(x̃, y)g

u
t (x̃)
Ut

(1 − β)St(x̃, y)dx̃

− b− Mu
t

∫
αt(x, ỹ)g

v
t (ỹ)
Vt

βSt(x, ỹ)dỹ + ∂tSt(x, y)

where:

Vt = Utm̂
−1

 c∫ ∫
α(x̃, ỹ)gu

t (x̃)
Ut

(1 − β)St(x̃, ỹ)dx̃dỹ


Mv

t = m(U ,V)/V = m̂(Vt/Ut) = κ(U/V)ν ,

Mu
t = m(U ,V)/U = κ(V/U)1−ν

gv
t (y) = gf

t (y) − gp
t (y)

= Vt + Pt − gp
t (y)

= Utm̂
−1
(

c∫ ∫
α(x̃, ỹ)(gu

t (x̃)/Ut)(1 − β)St(x̃, ỹ)dx̃dỹ

)
+
∫ ∫

gt(x, y)dydx−
∫
gt(x, y)dx

and the KFE is in the same form as (2.7) with different definitions of gf (y) and V .
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C Appendix For the Labor Search Model in Sec-
tion 3

C.1 Calibration Details

The Poisson transition rate for aggregate shocks across high, low, and disaster states
are:

λz =


− λHL λHD

λLH − λLD

λDH λDL −

 =


− 0.4 0.001
0.4 − 0.001

0.0995 0.0995 −


The calibrated separation rate across worker and firm types δD(x, y) =

5.2834 4.3853 3.7621 3.3420 3.0671 2.8927 2.7848 2.7191 2.6787 2.6534 2.6370
3.3734 2.5752 2.0345 1.6818 1.4614 1.3303 1.2565 1.2169 1.1963 1.1855 1.1794
2.6337 1.9001 1.4115 1.1002 0.9121 0.8058 0.7505 0.7245 0.7136 0.7094 0.7077
2.3878 1.6936 1.2358 0.9478 0.7773 0.6837 0.6374 0.6175 0.6106 0.6087 0.6084
2.3072 1.6352 1.1938 0.9178 0.7555 0.6676 0.6249 0.6072 0.6014 0.6001 0.6000

C.2 Master equation and loss function for the model without
aggregate shocks

To verify the accuracy of the DeepSAM method, we apply it to solve a labor search
model without aggregate shocks, which can also be solved with a conventional nu-
merical method such as that in Hagedorn, Law, and Manovskii (2017). The master
equation and loss function for the Surplus is given by:

0 = LSS = −(ρ+ δ(x, y))S(x, y, g) + F (x, y) − b

− (1 − β)
m(g)

U(g)V(g)
1
nx

nx∑
i=1

α(xi, y, g)S(xi, y, g)gu(xi)

− β
m(g)

U(g)V(g)
1
ny

ny∑
j=1

α(x, yj, g)S(x, yj, g)gv(yj)

+
nx∑
i=1

ny∑
i=1

∂gij
S(x, y, g)µg(xi, yj, g)
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in which

dgt(x, y)/dt = µg(x, y, g
t
) = −δ(x, y)gt(x, y) +

m(g
t
)

UtVt

α(x, y, g
t
)

×

gw(x) − 1
ny

ny∑
j=1

g
t
(x, yj)

(gf (y) − 1
nx

nx∑
i=1

g
t
(xi, y)

)

and α(x, y, g) is given by:

α(x, y, g) =
(
1 + e−ξS(x,y,g)

)−1
.

C.3 Numerical method and performance

C.3.1 Hyperparameters for the neural networks

Training loss, learning rate, and sample size. Figure 11 presents the value of
the loss function (2.12) along the training process. It takes 1.5 hours on an A100
GPU for the neural network to converge to a stable solution. The learning rate is
10−4 for the first 400,000 epoch, is 10−5 after that. Sample size: 256 in first 400k, 512
from after that. We use a cosine scheme for to adjust the learning rate over time.

Figure 11: Loss function along training epochs
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D Appendix For the On-the-job Search Model

D.1 Equilibrium Description

Unemployed Workers: The HJB equation for an unemployed worker of type x is the
same as in the model without on-the-job search:

ρV u
t (x) = b+ Mu

t

∫
αt(x, ỹ)(V e

t (x, ỹ) − V u
t (x))g

v
t (ỹ)
Vt

dỹ + ∂tV
u

t (x)

= b+ Mu
t

∫
αt(x, ỹ)βSt(x, ỹ)g

v
t (ỹ)
Vt

dỹ + ∂tV
u

t (x)

where:

αt(x, ỹ) :=

 1, if St(x, ỹ) > 0
0, otherwise

Employed Workers: The HJB equation for an employed worker of type x matched
with type y becomes:

ρV e
t (x, y) = wt(x, y) + Me

t

∫
αe

t (x, y, ỹ)β(St(x, ỹ) − St(x, y))g
v
t (ỹ)
Vt

dỹ

− β(δt(x, y) + ηαb
t(x, y))St(x, y) + ∂tV

e
t (x, y)

where we have used that βSt(x, y) = V u
t (x) − V e

t (x, y) because worker surplus is
indexed to that of new hires and where:

αe
t (x, y, ỹ) :=

 1, if St(x, ỹ) ≥ St(x, y) ≥ 0
0, otherwise
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Vacant Firms: The HJB equation for a vacant firm is:

ρV v
t (y) = MvCu

∫
α(x̃, y)(V p

t (x̃, y) − V v
t (x))g

u
t (x̃)
Ut

dx̃

+ MvCe

∫ ∫
αp

t (y, x̃, ỹ)gm(x̃, ỹ)
Et

(1 − β)(St(x̃, y) − St(x̃, ỹ))dx̃dỹ

+ ∂tV
v

t (y)

= MvCu

∫
α(x̃, y)(1 − β)St(x̃, y)g

u
t (x̃)
Ut

dx̃

+ MvCe

∫
αp

t (y, x̃, ỹ)gm(x̃, ỹ)
Et

(1 − β)(St(x̃, y) − St(x̃, ỹ))dx̃dỹ

+ ∂tV
v

t (y)

where

αp
t (y, x̃, ỹ) :=

 1, if St(x̃, y) ≥ St(x̃, ỹ) ≥ 0
0, otherwise

Producing Firms: The HJB equation for a producing firm becomes:

ρV p
t (x, y) = F (x, y) − wt(x, y) + δ(V v

t (x) − V p
t (x, y)) + ∂tV

p
t (x, y)

= Ft(x, y) − wt(x, y) − δ(1 − β)St(x, y) + ∂tV
p

t (x, y)

if the division of future surplus from continuing the match is the same as the division
of surplus for new matches.

Master Equation For Surplus: we show that the differential equation for the surplus
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becomes the following:

ρSt(x, y) = ρ(V p
t (x, y) − V v

t (y) + V e
t (x, y) − V u

t (x))

= Ft(x, y) − wt(x, y) − (δ + ηαb(x, y))(1 − β)St(x, y) + ∂tV
p

t (x, y)

−
(

Mv
t Cu

t

∫
α(x̃, y)(1 − β)St(x̃, y)g

u
t (x̃)
Ut

dx̃+ ∂tV
v

t (y)

+ Mv
t Ce

t

∫
αp

t (y, x̃, ỹ)g(x̃, ỹ)
Et

(1 − β)(St(x̃, y) − St(x̃, ỹ))dx̃dỹ
)

+ wt(x, y) + Me
t

∫
αe

t (x, y, ỹ)β(St(x, ỹ) − St(x, y))g
v
t (ỹ)
Vt

dỹ

− β(δ + ηαb(x, y))St(x, y) + ∂tV
e

t (x, y)

−
(
b+ Mu

t

∫
αt(x, ỹ)βSt(x, ỹ)g

v
t (ỹ)
Vt

dỹ
)

= Ft(x, y) − (δ + ηαb(x, y))St(x, y) − b

− Mv
t Cu

t

∫
α(x̃, y)(1 − β)St(x̃, y)g

u
t (x̃)
Ut

dx̃

− Mv
t Ce

t

∫
αp

t (y, x̃, ỹ)gt(x̃, ỹ)
Et

(1 − β)(St(x̃, y) − St(x̃, ỹ))dx̃dỹ

+ Me
t

∫
αe

t (x, y, ỹ)β(St(x, ỹ) − St(x, y))g
v
t (ỹ)
Vt

dỹ

− Mu
t

∫
αt(x, ỹ)βSt(x, ỹ)g

v
t (ỹ)
Vt

dỹ

+ λ(z)(St(x, y, z̃) − St(x, y, z)) + ∂tSt(y)

where:

αt(x, ỹ) :=

 1, if St(x, ỹ) > 0
0, otherwise

αb
t(x, ỹ) :=

 1, if St(x, ỹ) < 0
0, otherwise

αe
t (x, y, ỹ) :=

 1, if St(x, ỹ) ≥ St(x, y) and St(x, ỹ) ≥ 0
0, otherwise

αp
t (y, x̃, ỹ) :=

 1, if St(x̃, y) ≥ St(x̃, ỹ) and St(x̃, y) ≥ 0
0, otherwise
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Observe that:

Mv
t Cu

t

Ut

= m(Wt,Vt)
WtVt

,
Mv

t Ce
t

Et

= ϕ
m(Wt,Vt)

WtVt

,

Me
t

Vt

= ϕ
m(Wt,Vt)

WtVt

,
Mu

t

Vt

= m(Wt,Vt)
WtVt

and so the surplus equation becomes:

ρSt(x, y) = Ft(x, y) − (δ + ηαb
t(x, y))St(x, y) − b

− (1 − β)m(Wt,Vt)
WtVt

∫
αt(x̃, y)St(x̃, y)gu

t (x̃)dx̃

− (1 − β)ϕm(Wt,Vt)
WtVt

∫
αp

t (y, x̃, ỹ)gt(x̃, ỹ)(St(x̃, y) − St(x̃, ỹ))dx̃dỹ

+ βϕ
m(Wt,Vt)

WtVt

∫
αe

t (x, y, ỹ)(St(x, ỹ) − St(x, y))gv
t (ỹ)dỹ

− β
m(Wt,Vt)

WtVt

∫
αt(x, ỹ)St(x, ỹ)gv

t (ỹ)dỹ

+ λ(z)(St(x, y, z̃) − St(x, y, z)) + ∂tSt(y)

Kolmogorov Forward Equation: The measure of matches evolves according to:

dgt(x, y) = − (δ + ηαb
t(x, y))gt(x, y)dt

− Me
t︸︷︷︸

Rate. e-worker
meets

∫
αe

t (x, y, ỹ)︸ ︷︷ ︸
Prob. accept

gv
t (ỹ)
Vt︸ ︷︷ ︸

Prob. meet ỹ

dỹ gt(x, y)︸ ︷︷ ︸
Mass at (x, y)︸ ︷︷ ︸

Mass accepting match

dt

+ Mu
t︸︷︷︸

Rate. u-worker
meets

αt(x, y)g
v
t (y)
Vt

gu
t (x)dt

+ Me
t

∫
αe

t (x, ỹ, y)g
v
t (y)
Vt

gt(x, ỹ)dỹdt

where this KFE has been written from the perspective of the workers (it could equiv-
alently be written from the point of view of the firms) and each term is written
as:

(Prob. worker meets) × (Prob. acceptance) × (prob. y) × (mass of workers)

51



The first term on the RHS is the exit rate due to exogenous separations, the second
term is the exit rate due to workers finding better matches, the third term is new
matches from unemployed workers matching, and the final term is employed workers
moving to (x, y). Observe that:

Me
t

Vt

= ϕ
m(Wt,Vt)

WtVt

Mu
t

Vt

= m(Wt,Vt)
WtVt

So, the KFE becomes:

dgt(x, y) = − (δ + ηαb
t(x, y))gt(x, y)dt− ϕ

m(Wt,Vt)
WtVt

gt(x, y)
∫
αe

t (x, y, ỹ)gv
t (ỹ)dỹdt

+ m(Wt,Vt)
WtVt

αt(x, y)gu
t (x)gv

t (y)dt

+ ϕ
m(Wt,Vt)

WtVt

∫
αe

t (x, ỹ, y)gv
t (y)gt(x, ỹ)dỹdt

If we know measure of matches, then we can recover the other distribution:

ge
t (x) =

∫
gt(x, y)dy, gu

t (x) = gw
t (x) −

∫
gt(x, y)dy,

gp
t (y) =

∫
gt(x, y)dx gv

t (y) = gf
t (y) −

∫
gt(x, y)dx,

Ut =
∫
gu

t (x)dx, Vt =
∫
gv

t (y)dy

Et =
∫
ge

t (x)dx, Pt =
∫
gp

t (y)dy

D.2 Recursive Characterization of Equilibrium

Once again, the aggregate state variables are (zt, gt), and we can set up the recursive
equilibrium.
Surplus Differential Equation: In the previous section, we show that the surplus

52



satisfies the following differential equation:

ρS(x, y, z, g) = F (x, y, z) − (δ(x, y, z) + αb(x, y, z, g))S(x, y, z, g) − b

− (1 − β)m(W ,V)
WV

∫
α(x̃, y, z, g)S(x̃, y, z, g)gu(x̃)dx̃

− (1 − β)ϕm(W ,V)
WV

∫
αp(y, x̃, ỹ, z, g)g(x̃, ỹ)(S(x̃, y, z, g) − S(x̃, ỹ, z, g))dx̃dỹ

+ βϕ
m(W ,V)

WV

∫
αe(x, y, ỹ, z, g)(S(x, ỹ, z, g) − S(x, y, z, g))gv(ỹ)dỹ

− β
m(W ,V)

WV

∫
α(x, ỹ, z, g)S(x, ỹ, z, g)gv(ỹ)dỹ

+ λ(z)(S(x, y, z̃, g) − S(x, y, z, g)) + ⟨DgS(x, y, z, g), µg(x, y, z, g)⟩

where α, αb, αe, αp are indicator functions representing: (1) whether an unemployed
worker and a firm accept each other, (2) whether an existing match will endogenously
break up, (3) whether an employed worker of type x working for firm y will move to
a vacant firm ỹ, and (4) whether a vacant firm y can poach worker x̃ who is currently
employed by firm ỹ

α(x, ỹ, z, g) :=

 1, if S(x, ỹ, z, g) > 0
0, otherwise

αb(x, ỹ, z, g) :=

 1, if S(x, ỹ, z, g) < 0
0, otherwise

αe(x, y, ỹ, z, g) :=

 1, if S(x, ỹ, z, g) ≥ S(x, y, z, g) and S(x, ỹ, z, g) ≥ 0
0, otherwise

αp(y, x̃, ỹ, z, g) :=

 1, if S(x̃, y, z, g) ≥ S(x̃, ỹ, z, g) and S(x̃, y, z, g) ≥ 0
0, otherwise

Evidently, the main difference to the differential equation for surplus in Section 3 is
that now we have to take into account the possibility of movements from job to job.
These jobs potentially have a different acceptance function than the unemployment-
to-job transitions.
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D.3 Relating to Block Recursivity as in Lise and Robin (2017)

In this section, we show what changes are required in our environment to get the
block recursive results in Lise and Robin (2017).

D.3.1 Environment

We make the following changes to the environment from subsection 3.1.

Setting: The economy is populated by a continuum of infinitely lived workers indexed
by ability x, and a continuum of firms indexed by technology y. The total measures
of workers and firms are fixed and normalized to 1 and their densities are given by
gw

t (x) and gf
t (y). However, now firms can post v job opportunities at exogenous cost

c(v). The aggregate state of the economy is indexed by zt. At the beginning of each
period, the aggregate state changes from z to z′ at Poisson rate π(z, z′).

Meeting Technology: The total effective search effort is Wt = Ut + ϕEt. Let vt(y)
denote the measure of type y job opportunities chosen by firm y. Let Vt =

∫
vt(y)dy

denote the aggregate number of job opportunities. The total measure of meetings at
time t is given by Mt = m(Wt, Vt). Define Mu

t := Mt/Wt as the rate at which an
unemployed searcher contacts a vacancy, and Me

t = ϕMu
t is the rate at which an

employed searcher contacts a vacancy in period t. Let Mv
t := Mt/Vt denote the rate

per unit of recruiting effort vt(y) that a firm contacts any searching worker.

D.3.2 Value and Surplus Functions

Value of Unemployment: Let V u
t (x) denote the value of unemployment to a type x

worker at t. Let V e
0,t(x, y) be the value to type x worker who is hired from unemploy-

ment by a firm of type y. Lise and Robin (2017) assume the worker has no bargaining
power so V e

0,t(x, y) = Bt(x) for all y. So, the HJBE for the unemployed worker is:

ρV u
t (x) = b(x) + Mu

t

∫
αt(x, ỹ)(V e

0,t(x, ỹ) − V u
t (x))vt(ỹ)

Vt

dỹ + ∂tV
u

t (x)

= b(x) + ∂tV
u

t (x)
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where αt(x, y) = 0.5. In recursive form, we have V u
t (x) = V u(x, zt) and so the HJBE

becomes:

ρV u
t (x, zt) = b(x) +

∑
z′
π(z, z′)(V u(x, z) − V u(x, z))

Value and Surplus of a Match: Let Pt(x, y) denote the present value of a match (x, y),
including the continuation values to worker and the firm upon separation (which in
our notation would be Pt(x, y) = V e

t (x, y)+V p
t (x, y).) Let P̃t(x, y, ỹ) denote the value

to the incumbent firm and the worker after the worker moves to a new firm of type
ỹ. Then, Pt(x, y) solves the HJBE:

ρPt(x, y) = F (x, y, zt) + ϕMu
t

∫
αe

t (x, y, ỹ)(P̃t(x, y, ỹ) − Pt(x, y))vt(ỹ)
Vt

dỹ

+ (δ + ηαb(x, y))(V u
t (x) − Pt(x, y)) + ∂tPt(x, y)

If Pt(x, ỹ) > Pt(x, y), the worker moves and they get the incumbent firm’s value. So,
after the move the incumbent firm has zero value and the incumbent worker has value
Pt(x, y), which implies

P̃t(x, y, ỹ) = 0 + Pt(x, y)

If Pt(x, ỹ) < Pt(x, y), the worker does not move and gets Pt(x, ỹ). This redistributes
surplus towards the worker but does not change the overall value to workers and firms
combined, which implies that P̃t(x, y, ỹ) = Pt(x, y).

In summary, the second term in the HJBE is always zero, so we get:

ρPt(x, y) = F (x, y, zt) + (δ + ηαb(x, y))(V u
t (x) − Pt(x, y)) + ∂tPt(x, y)

Consider the surplus, which is defined as:

St(x, y) := Pt(x, y) − V v
t (y) − V u

t (x)

In Lise and Robin (2017), their free entry condition implies that V v
t (y) = 0 for all y,

so

St(x, y) = Pt(x, y) − V u
t (x)
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Putting the HJBEs together, we have

ρSt(x, y) = ρ(Pt(x, y) − V u
t (x)) (D.1)

= F (x, y, zt) + (δ + ηαb(x, y))(V u
t (x) − Pt(x, y)) + ∂tPt(x, y)

− b(x) − ∂tV
u

t (x)

= F (x, y, zt) − b(x) − (δ + ηαb(x, y))St(x, y) + ∂tSt(x, y)

Equation (D.1) does not depend upon g and so the surplus is “block recursive”—it
can be solved without knowing the distribution. This means that, in recursive form,
we have the surplus S(x, y, z) satisfies:

ρS(x, y, z) = F (x, y, z) − b(x) − (δ + ηαb(x, y))S(x, y, z)

+
∑

z̃

π(z, z̃)(S(x, y, z̃) − S(x, y, z))

KFE: The distribution of matches evolves according to:

dgt(x, y) = − (δ + ηαb
t(x, y))gt(x, y)dt

− ϕ
m(Wt,Vt)

Wt

∫
αe

t (x, y, ỹ)g
v
t (ỹ)
Vt

dỹgt(x, y)dt

+ m(Wt,Vt)
Wt

αt(x, y)g
v
t (y)
Vt

gu
t (x)dt

+ ϕ
m(Wt,Vt)

Wt

∫
αe

t (x, ỹ, y)g
v
t (ỹ)
Vt

gt(x, ỹ)dỹdt

where the αt(x, y) are calculated from the surplus terms as in the main text.

Vacancies: Vacancies are pinned down by the cost of creation via:

c′[gv
t (y)] = Mv

tJ(y, z)

and where Mv
t = m(Wt,Vt)

Vt
and Vt =

∫
gv

t (y)dy and:

J(y, z) =
∫ gu

t (x̃)
Wt

αb(x̃, y, z)S(x̃, y, z)dx̃

+ ϕ
∫ ∫ g(x̃, ỹ)

Wt

αe(x̃, ỹ, y, z)(S(x̃, y, z) − S(x̃, ỹ, z))dx̃dỹ
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E Additional Details on the OTC Model in Section
5

E.1 Recursive Characterization of Equilibrium

The aggregate states are (z, g). We again denote the law of motion for the cross-
sectional idiosyncratic state distribution, g, by the form:

dgt(a) = µg(a, z, g)dt

Let V (in, z, g) denote the value function for an investor of type i without an asset
and let V (iok, z, g) denote the value function for an investor of type i with an asset.

Surplus division: Investors with idiosyncratic states a and b trade if the surplus from
exchanging assets is positive. Formally, if an agent i with an asset k meets an agent
j without the asset, then the total surplus is:

S(iok, jn, z, g) = V (in, z, g) − V (iok, z, g) + V (jok, z, g) − V (jn, z, g)

=: ∆Vi[ok→n](z, g) + ∆Vj[n→ok](z, g)

where ∆Vi[ok→n](z, g) := V (in, z, g)−V (iok, z, g) and ∆Vj[n→ok](z, g) := V (jok, z, g)−
V (jn, z, g). The generalized Nash bargaining protocol implies that:

βiok,jnS(iok, jn, z, g) = ∆Vi[ok→n] + pk(in, jok, z, g)

(1 − βiok,jn)S(iok, jn, z, g) = ∆Vj[n→ok] − pk(in, jok, z, g)

and so the price paid is:

pk(jok, in, z, g) = βiok,jn|∆Vj[ok→n](z, g)| + (1 − βiok,jn)|∆Vi[n→ok](z, g)|

Similarly, if an agent i with asset k meets an agent j with asset l, then the total
surplus if investor i with asset k exchanges with investor j with asset l is:

S(iok, jol, z, g) = V (iol, z, g) − V (iok, z, g) + V (jok, z, g) − V (jol, z, g)

=: ∆Vi[ok→ol](z, g) + ∆Vj[ol→ok](z, g)
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The generalized Nash bargaining protocol implies that:

βiok,jolS(iok, jol, z, g) = ∆Vi[ok→ol] + [pk − pl](iol, jok, z, g)

(1 − βiok,jol)S(iok, jol, z, g) = ∆Vj[ol→ok] − [pk − pl](iol, jok, z, g)

and the absolute value of the price difference is:

[|pk − pl|](iok, jol, z, g) = βiok,jol|∆Vi[ok→ol](z, g)| + (1 − βiok,jol)|∆Vj[ol→ok](z, g)|.

Hamilton-Jacobi-Bellman-Equations: The value function for a non-owner with type
i, V (in, g, z), is given by the following HJBE:

ρiV (in, g, z) =
∑

a

κin,aα(in, a, g, z)βin,aS(in, a, z, g)

+
∑

k

ξi,k(V (iok, g, z) − V (in, g, z))

+
∑
j ̸=i

λi,j(z)(V (jn, g, z) − V (in, g, z))

+
∑
z′
ζz,z′(V (in, g, z′) − V (in, g, z)) +

∑
a∈A

∂gaV (in, g, z)µg(a, z)

where α(in, jok, g, z) is an indicator for whether the surplus from the trade is positive
S(in, jok, g, z) > 0 and the trade is accepted upon matching. Likewise, the value
function for an investor of type i holding asset k, V (iok, g, z), is given by the following
HJBE:

ρiV (iok, g, z) = δϕ(k, z) − ψ(i, k) + 1
τk

(V (in, g, z) + π(k, z) − V (iok, g, z))

+
∑

a

κiok,aα(iok, a, g, z)gaβiok,aS(iok, a, g, z)

+
∑
j ̸=i

λi,j(z)(V (jok, g, z) − V (iok, g, z))

+
∑
z′
ζz,z′(V (iok, g, z′) − V (iok, g, z)) +

∑
a∈A

∂gaV (iok, g, z)µg(a, z).

Kolmogorov Forward Equation: The distribution evolution for non-owner states is
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given by:

dgin

dt
= µg(in, z, g) =

∑
j ̸=i

λj,i(z)gjn +
∑
j ̸=i

∑
k

κjn,iokgjngiokα(jn, iok, g, z)

−
∑
j ̸=i

λi,j(z)gin −
∑
j ̸=i

∑
k

κin,jokgingjokα(in, jok, g, z)

+
∑

k

1
τk

giok −
∑

k

ξi,kgin

and the distribution for owner states is given by:

dgiok

dt
= µg(iok, z, g) =

∑
j ̸=i

λj,i(z)gjok −
∑
j ̸=i

κjn,iokgjngiokα(jn, iok, g, z)

−
∑
j ̸=i

λi,j(z)giok +
∑
j ̸=i

κin,jokgingjokα(in, jok, g, z)

−
∑
j ̸=i

∑
l ̸=k

κiok,jolgiokgjolα(iok, jol, g, z)

+
∑
j ̸=i

∑
l ̸=k

κiol,jokgiolgjokα(iol, jok, g, z) − 1
τk

giok + ξi,kgin

In equilibrium, we must have that the flows from assets maturing are equal to the
flows from new assets being created. That is, we need that:

∑
i

ξi,kgin = 1
τk

∑
i

giok =: 1
τk

sk

E.2 Numerical Illustration

We now consider a calibration of the model that draws on Weill (2008), Chen, Cui,
He, and Milbradt (2017), Payne and Szőke (2024), and incorporates our agent and
asset specification.

E.2.1 Parameters

Economic parameters: We consider an environment with four types of agents: {A, B,
C, D}, where typeA are interpreted as dealers in the primary bond market, typeB are
interpreted as liquidity constrained hedge funds, type C are non-liquidity constrained
hedge funds, and type D are pension/insurance funds with a long investment horizon.
Formally, the matrices for holding costs, ψ(i, τ), switching rates, λij(z), and primary
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market participation, ξ(i, τ), are given in Tables 9, 10, and 11 respectively. The dealer
agents (type A) are the only agents who are assigned assets in the primary market.
They do not get a net benefit from holding the asset but instead only from trading
the asset. The hedge funds randomly switch between getting net benefit from holding
any asset (type C) and getting net loss from holding all assets (type B). In this sense,
they face the risk of becoming “liquidity constrained” and highly incentivized to sell
assets. The pension/insurance funds face a penalty for holding short maturity assets,
interpreted as a regulatory constraint on short asset exposure.

Maturity (τ)
τ1 = 0.25 τ2 = 1.0 τ3 = 5 τ4 = 10

Agent Type (i)

A δϕ(1, z) δϕ(2, z) δϕ(3, z) δϕ(4, z)
B 0.02 0.02 0.02 0.02
C 0.0 0.0 0.0 0.0
D 0.02 0.02 0.01 0.00

Table 9: Holding costs: ψ(i, τ).

Agent Type (j)
A B C D

A

B 0.1
C 0.7
D

(a) λ(i, j) for z = zL.

Agent Type (j)
A B C D

A

B 0.1
C 0.5
D

(b) λ(i, j) for z = zM .

Agent Type (j)
A B C D

A

B 0.1
C 0.3
D

(c) λ(i, j) for z = zH .

Table 10: Switching rates λ(i, j) across different aggregate states.
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Maturity (τ)
τ1 = 0.25 τ2 = 1.0 τ3 = 5 τ4 = 10

Agent Type (i)

A ξ1 ξ2 ξ3 ξ4

B − − − −
C − − − −
D − − − −

Table 11: Primary market participation: ξ(i, τ).

We consider the following matching rates, which specify that agents can trade
more quickly with the dealers than with each other (following Chen, Cui, He, and
Milbradt (2017)):

κa,b =



50, if (a, b) = (in, jok) and i, j ̸= A,
50, if (a, b) = (iok, jok) and i, j ̸= A,
75, if (a, b) = (in, Aok) and i ̸= A,
0, if (a, b) = (iok, Aol) and ∀i,
0, if (a, b) = (in, jn) and ∀i, j,

We impose that agents have equal bargaining power unless they match with a dealer,
in which case they have bargaining power 0.05 (following Weill (2008) and Chen, Cui,
He, and Milbradt (2017)):

βa,b =


0.5, if (a, b) = (in, jok) and i, j ̸= A,
0.5, if (a, b) = (iok, jol) and i, j ̸= A,
0.05, if (a, b) = (in, Aok) and i, j ̸= A,

The other economic parameters are listed in Table 12. We calibrate the model at
the annual frequency. Where possible, we take standard parameters from the litera-
ture.

Neural network parameters: We describe the details of the neural network approxi-
mation and sampling in Table 4. We use a fully connected feed-forward network with
4 layers, 100 neurons per layer, and a combination of tanh(·) activation functions.
The training loss is shown in Figure 12.
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Parameter Interpretation Value Target/Source
ρ Discount rate 0.05 Chen, Cui, He, and Milbradt (2017)
δ Bond Coupon Rate 0.01

Aggregate State: z ∈ {zL, zM , zH}
ϕ(z) Coupon haircut (0.986, 0.991, 0.997) Chen, Cui, He, and Milbradt (2017)
π(z) Principal haircut (0.986, 0.991, 0.997) Chen, Cui, He, and Milbradt (2017)

ζM,L, ζM,H Rate from 2 to 1 and 2 to 3 0.1 Crisis every 10 years
ζL,M , ζH,M Rate from 1 to 2 and 3 to 2 0.5 Average crisis duration 2 years

Table 12: Economic Parameters.

Parameter Value
Number of layers 8
Neurons per layer 100
Activation function GELU(·)
Initial learning rate 10−4

Final learning rate 10−6

Initial sample size per epoch 256
Sample size per epoch 1024
Convergence threshold for target calibration 10−6

Table 13: Neural network parameters

Figure 12: Loss function along training epochs
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