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Abstract

Auctions to procure capacity for large-scale renewable electricity production

have become important policy tools in climate change mitigation and improv-

ing electricity access. These auctions have procurement targets that often

exceed any supplier’s capacity, resulting in nuanced allocation rules. In this

paper, I use theoretical and structural methods to analyse the auctions in In-

dia for their allocation inefficiency and the government’s expenditure, which is

financed by costly public funds. I theoretically prove that the design of these

auctions incentivises lower-capacity firms to be more competitive. Such firms

may get larger contracts despite having higher costs, leading to inefficient al-

location. To measure the inefficiency, I first estimate firms’ cost distributions

structurally using a recent dataset. Then, I simulate the theoretical equilib-

rium with empirical cost distributions of winners to quantify the inefficiency.

I further suggest counterfactual designs which lower the inefficiency and gov-

ernment expenditure, without reducing capacity allocation.
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1 Introduction

Large-scale renewable power production is crucial for addressing climate change
and expanding electricity access in developing countries.1 Over 60 countries now
use auctions to procure projects increasing their renewable electricity production
capacity (IRENA, 2015). These projects usually have very high initial investment
and a lifespan of 25 years to make a return on it. Without government intervention,
volatility of prices and policies, and contract enforcement challenges over such a
large period could lead to high risk premiums being charged by investors which
can hinder the development of renewable power market. To mitigate this, some
governments offer guaranteed tariffs to power producers using public funds, but
they face problems of asymmetric information and procurement targets larger than
suppliers’ capacities.

Perfectly informed governments could minimize public spending by procuring from
the most cost-efficient producers. As cost information is private, procurement auc-
tions are used. Simpler mechanisms require bidders to make flat offers of capacity
and price. Unlike standard settings though, procurement targets often exceed any
individual firm’s supply, and the cumulative supply of the lowest price bidders may
not match the target.2 The allocation rules used to solve these problems may gen-
erate incentives for asymmetric bidders to compete differently, which leads to ineffi-
cient allocation.3 Given such incentives and the policy importance of these auctions,
studying their design is crucial to improve their efficiency, reduce their cost to public
funds, and attain climate goals (Fabra, 2024, EARIE presidential address).

With this broader objective, I theoretically and structurally analyse the auction
designed by Solar Energy Corporation of India (SECI), which is responsible for
procuring half of India’s 109GW capacity.4 Successful bidders receive power pur-
chase agreements (PPAs) specifying project size (in MW) and a fixed tariff per
kilowatt-hour (INR/kWh) for selling their production to SECI for 25 years, both
determined in the auction. I theoretically show that when bidders are only privately
informed of their cost, the allocation rule of SECI’s auction incentivises larger ca-

1In this paper, renewable refers to solar and wind-based electricity.
2See IRENA (2015) Chapter 5 for examples
3Consider sealed-bid first-price auction with asymmetric information. A bidder who believes

they have a higher cost may bid more aggressively to avoid losing, potentially winning despite
having a lower valuation or higher cost

4At 20% utilisation rate, 109 GW could provide electricity to around 152 million Indian house-
holds consuming an average of 1255 kilowatt-hour annually in 2022 (PIB, 2022).
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pacity bidders to compete less aggressively and lose the auction even if their projects
have lower costs. This results in a cost-inefficient allocation. To quantify allocation
inefficiency resulting from such strategic behavior, I proceed in two steps. First,
I structurally estimate bidders’ cost distributions using a recent dataset. Second,
I use estimated cost distributions and observed bids to infer the range of cost of
the winners. I then simulate the theoretical equilibrium with empirical distribution,
truncated by the range of winners’ costs, in the current and counterfactual auction
designs. My key finding is that we can achieve fully efficient allocation at a lower
government expenditure (measured by the auctioneer’s payoff), without lowering the
capacity allocation. This contrasts with usual results on the rent-efficiency tradeoff,
indicating that SECI auctions might be leaving higher information rents to bidders
than needed for incentive compatibility.5 To my knowledge, this paper solves a
new game which emerges in SECI’s auctions, and is the one of the first to analyse
renewable capacity auction design in developing countries to look at its allocative
efficiency and impact on government expenditure.

To understand these results, let’s look at SECI’s auction design, which is also repli-
cated by other important renewable capacity procurement agencies in India. Before
the auction, the auctioneer announces her demand (or a procurement target). The
auctions have a qualification and a final stage. I model the final stage and make
suitable assumptions on the qualification when needed. This is enough to show that
the auction design results in inefficient allocation, without explicitly engaging with
the complexities of a nuanced two-stage auction. Furthermore, the empirically es-
timated inefficiency from the final stage equilibrium can be seen as a lower bound
because it will only add to any inefficiency arising from qualification stage.

Bidders provide a single bid of their capacity and tariff offer in the qualification
stage and are selected for the final stage according to a pre-specified rule. The final
stage is an open descending bid auction, where project size offers (or capacity) from
the qualification stage are frozen and revealed publicly, but bidders can reduce their
tariff offers.6 A bidder’s award is the minimum of her capacity offer and the residual
of the target and cumulative capacity of the bidders with lower tariff offers. This
way, the market is cleared by awarding a project of a positive, but lower than offered

5Efficient mechanisms usually provide higher incentives to more efficient bidders to deter them
from bidding like less efficient ones, thereby revealing their true type. The incentives, called
information rents, arise due to information asymmetry between the auctioneer and bidders.

6Open descending bid in procurement setting can be thought of as a reverse English auction
with many winners. Similarly, the Dutch auction in this setting would have ascending bids, where
the auctioneer would start with a low bid and keep increasing it until someone agrees to sell.
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capacity, to one of the bidders.

Like in any open descending price auction, bidders in SECI’s auctions final stage
(or simply, SECI auctions) are faced with the choice of either undercutting their
competitors’ last tariff offer, or exiting the auction at their current tariff offer. In
the latter case, they get the residual award and their exiting tariff offer is their
bid. Any bidder who can get a strictly positive residual on exiting at some tariff
is said to be pivotal at that tariff. Her exit ends the auction, and her bid is the
tariff discovered in that auction, paid to all the winners. A non-pivotal bidder’s
exit starts a subgame with remaining bidders. Any non-pivotal bidder should bid
her costs to maximize the chance of a positive award. Pivotal bidders balance the
trade-off between high bids with residual awards and low bids with own capacity as
the award. This trade-off arises due to the residual award rule.

Following Milgrom and Weber (1982), I model the final stage as a "clock auction"
with 2 bidders having the same reserve.7 Such cases appear in auctions accounting
for nearly 20% of the total allotted capacity. In this auction, a digital clock shows
project size offers of both bidders, and the reserve tariff bid at the start of the
auction. The bid continuously reduces as the auction proceeds, unless one bidder
exits. On exiting, she gets the residual award and the other bidder is awarded her
capacity. The price shown on the clock when she exits is the price discovered in
the auction, which would be given to both the bidders. Each bidder has a cutoff
strategy, i.e., she ex-ante decides on the bid at she would exit if opponent is still
active. Assume that bidders draw their cost independently and identically. Under
this assumption, I show that for any given cost, the bidder with the higher capacity
offer has the higher bid. In other words, she is more likely to exits at a higher bid
than her opponent, making her less aggressive.

Intuitively, the higher capacity bidder is less competitive because she receives a
higher residual award when exiting the auction. If she competes and loses, she gets
a lower price for a higher residual award. The additional quantity gained on winning
equals excess supply in the auction for both the bidders. Thus, aggressively com-
peting is not advantageous to the higher capacity bidder regardless of her cost type.
The residual award in the market clearing rule and public information about oppo-

7Usually, there are more than 2 bidders in any given auction. At the start, they are all non
pivotal and have different reserves. As the auction proceeds, many non pivotal bidders exit with
a zero award. The bid of the last exiting bidder becomes the reserve bid for all the bidders who
are still active. This reduces the number of bidders, only one or two of whom would be pivotal in
most cases, and all of whom would have the same reserve bid.
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nents’ capacities create strategic incentives, wherein a high-capacity bidder would
be less competitive despite having a lower cost, resulting in inefficient allocation.

Holmberg and Wolak (2018) and Fabra, Fehr, and Harbord (2006) have studied
similar auctions with simplifying assumption on bidders’ information, which are vi-
olated in SECI’s design. Fabra, Fehr, and Harbord (2006) assumes that bidders
know each-others’ capacities and costs. Holmberg and Wolak (2018) assumes that
bidders have symmetric capacities and cost information, and have private informa-
tion of their own costs. This provides them with a closed form equilibrium bid
functions. Given the design of SECI’s auctions, bidders see each-others’ asymmetric
capacities and know their costs privately. This game’s equilibrium is characterised
by coupled ordinary differential equations and boundary conditions, whose implicit
solution yields bidding strategies. While proving the existence and uniqueness of
this equilibrium through constructive methods, I deal with a singularity at one of
the boundaries in the boundary value problem defining it. This proof contributes
to the techniques used in auction theory, notably in Lizzeri and Persico (2000) and
Lebrun (2006).

The theoretical inefficiency gives rise to an important policy question. Since the
auctioneers may not want to complicate the allocation rule and aim to fulfill all of
their procurement demand, can the auctions be tweaked to make the allocation more
cost-efficient while reducing government expenditure? I address this question econo-
metrically in two steps: identifying and estimating the cost distributions of bidders;
and using the estimates to simulate the theoretical equilibrium of SECI auctions
and counterfactual designs to compute inefficiency and government expenditure.

Identification involves mapping SECI’s data of bidders’ identities, their final stage
tariff offers, their capacities and awards to their cost distributions. As discussed
earlier, the bidders who get an award of zero bid their own cost, thereby revealing
some of the order statistics of the costs. The data is similar to Dutch auctions,
where the winner identity, the winning bid (lowest order statistic), and set of all the
bidders can identify the underlying bid and cost distribution if the costs are drawn
independently (Brendstrup and H. Paarsch, 2003). However, the observations in
SECI’s final stage pertain to the sample of bidders whose qualification bid is below
a certain endogenously determined threshold. As we will see, this implies that
observed bids in the final round pertain to the costs which are drawn independently
of each other, conditional on one of the cost draws during the qualification stage.
I can exploit this conditional independence to establish the identification of cost
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distributions, using the technique similar to Song (2006). In doing so, I also account
for the possibility that bidders may get new information affecting their costs between
the 2 stages. The identification result adds to the literature on auction econometrics.
Note that we don’t need to use the theoretical equilibrium for identification of cost
distributions, but it is important for estimating the inefficiency and government
expenditure in SECI auctions and counterfactual designs.

I estimate the cost distribution parametrically. To capture bidder heterogeneity,
I enhance SECI’s auction data by identifying the majority shareholder/owner and
managing firm of each bidder from various sources. Based on their parent companies’
sectors, firms may differ in capital access and business models. Financial institutions,
owning some new firms, can profit by selling their portfolios to energy companies.
These new firms often have high liquidity from their institutional parent, which
reduces their financing cost volatility. In contrast, energy firms focus on long-term
returns from electricity sales and rely on external debt financing. I classify firms
into three categories: Indian energy firms, financial firms, and miscellaneous.

Using estimated cost distributions and the theoretical equilibrium, I can infer the
cost of bidders with positive residual award in data using their bids. For other win-
ners, I can infer the range of costs. Using this additional information, I simulate
the theoretical equilibrium for various draws of opponent’s cost. Simulations are
conducted for SECI auctions and two counterfactual designs- a discriminatory price
auction, and a Vickrey Clarke Groves (VCG) mechanism. In discriminatory price
auctions, bidders submit sealed tariff bids and receive their bid, while their capaci-
ties are public knowledge. They are popular in various settings, including India’s 2G
spectrum allocation and UK’s electricity auctions. Comparison with VCG is mo-
tivated by its efficiency properties. This mechanism incentivises all bidders to bid
their costs, thereby providing a good theoretical benchmark. I estimate welfare and
SECI’s expenditure using simulated bids of the participants under different mecha-
nisms. I find that VCG performs much better than the current design of SECI, as
it reduces the probability of inefficient allocation by 40% and government spending
by 5%.

The theoretical and structural study of design elements of India’s renewable capacity
auctions provides us with insights which can help improve their performance. While
the methods of the paper contribute to the domains of auction theory and economet-
rics, and the paper contributes to electricity market design, and renewable energy
market design in developing countries. Section 2 highlights these contributions and
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situates the paper in the literature. Section 3 provides institutional background. Sec-
tion 4 explains the dataset and establishes the stylized fact of negative correlation
between bidders’ project size offer with their competitiveness. Sections 5 provides a
theoretical explanation of the stylised fact. In section 6, I provide the identification
result to obtain cost distribution structurally from SECI’s data. Section 7 gives
the structural estimates of cost distribution. Section 8 provides the counterfactual
analysis of possible improvements in auction design. Section 9 concludes the paper.

2 Contributions to the literature

The paper contributes to four strands of literature. The research question and
context adds to the literature on renewable energy market design in developing
countries. More broadly, it adds to the papers on energy and electricty market
design. The methods of the paper contribute to the domains of auction theory,
theory of wars of attrition, and auction econometrics.

My paper contributes to the nascent literature on renewable energy auctions in de-
veloping countries. Most of this literature has focused on the effect of risk premiums
on investment incentives for power producers in such countries. Regarding India,
Ryan (2021) shows that the participation and competition was higher in the auc-
tions conducted by SECI in comparison to auctions conducted by other agencies.
This is because other agencies are more likely to default on their payments to the
bidders, which makes them risky. As a result bidders charge risk premium through
their bids in the auction, which holds up investments in their auctions. The paper,
however, abstracts from certain strategically important nuances of the auction pro-
cedure used by SECI. Besides this, Probst et al. (2020) provide reduced form results
on the impact of local content requirement on the price discovered in SECI auctions.
Such a requirement was discontinued in 2017, but has been reinstated since 2021 in
a different form. Outside the Indian context, Hara (2023) studies the importance
of risk premiums for bidding in Brazilian renewable energy auctions. To the best of
my knowledge, my paper is the first one to formally analyse the design of auctions
in India, and its affect on allocation efficiency and cost to public funds.

The analysis of SECI auctions adds to the literature on multi-unit procurement.
Many papers on multi-unit procurement focus on supply function equilibria where
bidders submit a price quantity schedule to the auctioneer, who then decides allo-
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cation (Holmberg, 2007; Holmberg, 2009; Schwenen, 2015). However, my paper has
flat tariff offers, i.e., the producers have only one price for all of their production.
It is closely related to Fabra, Fehr, and Harbord (2006) and Fabra, Fehr, and Fru-
tos (2011), who analyse the implications of uniform versus discriminatory pricing
auctions for 2 capacity constrained pivotal bidders with complete information. The
setting is similar to Bertrand-Edgeworth (BE) duopoly with asymmetric firms (See
Allen and Hellwig, 1993, for example).

Fabra, Fehr, and Harbord (2006) showed that the impact of this design choice on
allocation efficiency in electricity markets is ambiguous. The mixed strategy equi-
librium in this setting is similar to, but not the same as, the semi-separating Bayes
Nash equilibrium (BNE) in SECI auctions. Holmberg and Wolak (2018) further
extend this framework to incorporate symmetric private information on cost, and
publicly known symmetric capacity constraints on suppliers. They show that dis-
criminatory pricing is better for the auctioneer’s payoff when bidders have affiliated
distributions, while contending that the comparison between the two designs is ul-
timately an econometric question. My study extends these papers by finding equi-
librium with bidders with asymmetric, but known, capacities (as in SECI auctions);
and private information about marginal cost. This extension is non-trivial, as I do
not have closed form bidding functions as in Holmberg and Wolak (2018), and the
equilibrium of SECI auctions comes from implicit solution of a system of coupled
non-linear ODEs.

In the presence of 2 pivotal bidders, the SECI auction is similar to a war of attrition
(WoA) or asymmetric second price all-pay auction, except that the loser also gets
some award. Levin (2004)’s lecture notes provide a good summary of the literature
on WoA in simple settings with complete information. Nalebuff and Riley (1985)
analyse the WoA where players have private information on their type and asymmet-
ric beliefs. He shows that there is a continuum of equilibria when the losing bidder
gets zero. The same result was found in Amann and Leininger (1996), which could
show uniqueness of BNE for a general class of asymmetric all pay auctions with 2
players, except for the second price all pay auction, which is strategically same as
WoA. This is in contrast to the result for SECI auction, where we have a unique
semi-separating equilibrium in pure strategies. This difference is due to the absence
of sunk cost in SECI’s case, unlike traditional WoA where the time spent waiting
for the opponent to leave is a sunk cost, which changes the boundary conditions of
the differential equation system which give equilibrium.
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The proof of equilibrium existence and uniqueness is inspired by the exposition of
theoretical results in Lebrun (2006) and Lizzeri and Persico (2000). The former
provides the conditions for existence and uniqueness of pure strategy monotonic
equilibrium in asymmetric sealed bid first price auction. The differential equation
system in these auctions have a problem of singularity at the infimum of types. Same
problem arises in the SECI auctions, but can’t be resolved using same assumptions.
The intuition behind uniqueness of equilibrium is same as that of relative toughness
in Lizzeri and Persico (2000) for second price all-pay auctions. Furthermore, the
uniqueness result of my paper adds to that of Lizzeri and Persico (2000), whose
assumption of non positive award to low ranking bidder is invalid in SECI’s auctions,
and Bertrand Edgeworth duopoly in general. Given these differences, the techniques
used in theoretical results of this paper add to the literature on equilibrium existence
and uniqueness in auctions.

In the empirical part of the paper, I solve for a selection problem arising in the
context of SECI auctions due to the presence of a qualifier round. I identify the cost
distribution from observed order statistics of the final stage bid of losing non-pivotal
bidders, which are also their costs. Furthermore, we observe their respective identi-
ties, and identities of all other bidders. Identification is similar to that of bid distri-
bution in Dutch auctions where we observe winning bid, winner and other bidders’
identities (Brendstrup and H. Paarsch, 2003).8 The likelihood function employed
in my paper is inspired by Song (2006), who provides conditions for identifying
cost distribution from order statistics in a different setting which has unknown an
number of anonymous bidders.

To conclude this section, this paper belongs to the literature on auction design for
renewable energy, and contributes to empirical and theoretical literature on auctions.

3 Institution and allocation mechanism

At 180 GW, India has 4th largest installed capacity of electricity production from
renewable sources. Of this 109 GW is based on solar and wind. The target is
to increase it to 500 GW by 2030, in order to have at least 50% of electricity

8In the Dutch auctions, there is an additional step where the bid distribution is used to estimate
cost distribution, using the first order conditions of equilibrium. This is not needed in SECI
auctions.
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(a) Statewise capacity distribution (b) Capacity by off-taker and annual trends

Figure 1: Distribution of commissioned and planned Solar and Wind capacity in
India

Source of graphics- Bridge to India

production without fossil fuels. These targets are driven by environmental and
pollution concern, increasing demand of electricity, and desire to reduce extreme
dependence on oil and gas imports (BEE, 2009). Renewables accounted for around
90% of the additional electricity capacity for India in 2022, which indicates their
ever increasing significance (report by Ember-Climate, 2023). The sector attracted
foreign direct investment worth USD 9 billion, which exhibits its global importance.

Figure 1 shows the trends of utility scale solar and wind power capacity in India
since 2011, and state-wise distribution of the same. The western state of Rajasthan
has the highest installed and planned capacity, followed by Gujarat. The reason may
be that the western Rajasthan is desert with 300-330 days of clear skies, and has
easy availability of land. Nearly half of this planned and installed capacity comes
from central government agencies like SECI as shown in Figure 1b. This figure also
shows that the overall installed capacity has increased over the years.

Utility scale solar and wind farms are built through auctions of power purchase
agreements (PPA), which are signed between the auctioneer and bidders. PPAs
mention the size of projects which a single bidder has to construct, and the tariff
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at which they sell their electricity to the auctioneer for 25 years. Many agencies at
state and central level conduct these auctions. Around 50% of the solar and wind
capacity is created by SECI and National Thermal Power Corporation (NTPC)
(joint report by JMK and IEEFA, 2023). Some other important agencies are the
state level energy development corporations. Most of these agencies have similar
final stage for allocation.

3.1 Allocation procedure

In this section, I describe SECI’s allocation procedure in detail. I focus on SECI be-
cause it has almost half of the capacity and is considered relatively risk-free counter-
party (Ryan, 2021). Therefore, the analysis of bids can abstract from risk-premium
considerations. Moreover, state level agencies like those of Rajasthan and Gujarat,
states with largest solar capacity, also share the allocation rules used by SECI in
the final stage. While the focus is on inefficiencies in the final stage, I provide
econometrically relevant details of qualification stage as well.

Before the 2 stages, the auctioneer releases a Request for Submission (RfS) docu-
ment, which specifies auction specific details. It mentions if the project has to be
solar or wind or hybrid, if it has be located in a particular place in India or if it’s
location neutral. RfSs state that it’s bidders responsibility to find the land (unless
the auction is for solar park) and connect their project to the grid. It provides the
incentives and penalties, respectively, for good and bad post-auction performance
(delay in commissioning and production). RfS mentions procurement target (M)
and reserve tariff for the qualifier stage (p̄).

In the qualifier stage, each bidder submits two envelops. The first envelop shows
the financial and technical competence of the bidder. The second envelope contains
the project size and flat tariff offer. SECI doesn’t open second envelope until it has
ascertained the veracity of the first envelope. If allowed, the tariff could be replaced
by Viability Gap Funding (VGF), which is the minimum amount/MW required by
the bidder to make her project financially feasible, while selling electricity it would
produce at p̄. VGF bids were discontinued after 2017, except for very specific cases,
as more and more winners were bidding only on tariffs.

The qualification and allocation rules are exhibited through the example in Table 1.
The total number of bidders in the qualifier round can be denoted by N1, and the
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mechanism is low price sealed bid. SECI sorts the N1 bidders in an increasing
order of their tariff offers, with the lowest (best) rank for the lowest tariff. If VGF
is allowed, the bidders asking for VGF are ranked worse than the ones bidding
tariff. SECI selects top l bidders such that their cumulative capacity just exceeds
M for the final round. Additionally, top half of the remaining bidders also qualify.
To formalise, assume that the project capacity offered by ith ranked bidder is q(i).
SECI would select top m ranking bidders for the final stage, such that m = l+⌈N1−l

2
⌉

where l = mink

∑k
j=1 q(j) ≥ M . In the example table 1a, N1 = 7,m = 6, l = 4 and

selected bidders are B1 − B6. If the total of bidders’ capacities is less than M , the
auctioneer reduces the value of M in final stage in a pre-defined manner and all the
bidders qualify. Denote the number of bidders in final round by N .

The N qualified bidders compete online in an open descending bid auction in the
final round.9 Each bidder is able to see opponents’ pseudo identities, tariff, desired
project size, and tentative award throughout the auction.10 Bidders can’t change
their project size in this stage, which can, thus, be treated as exogenous. The
starting tariff bid of each bidder is their qualifier tariff offer, and they can only
reduce it. In a way, each bidder has a personalised reserve bid. The minimum
reduction allowed is 0.01 INR (≈0.00012 USD). Auction lasts for at least one hour
and it ends when there has been no change in bids for 8 minutes. At the end of
the auction, top W bidders by tariff, whose cumulative capacity just falls below M

are awarded a contract are awarded contract to build their desired capacity. The
market clearing rule is to award the lowest tariff bidder among the remaining (or,
the marginal winner), the residual amount for capacity creation. In the table 1b,
W = 3, B1 − B3 are awarded their capacity, while B4 is marginal and is awarded
residual of 500 and 350. If two bidders have same the tariff and both are marginal,
then the residual is given to one of them with 50% probability.

This paper focuses on the final stage, and inefficiencies which may arise due to the
market clearing rule. To understand bidding behaviour in the auction, lets revisit
the example in Table 1. Initially, there is excess supply and all the bidders are
non-pivotal in the sense that their decision to not compete doesn’t lead to excess
demand. At the start, B5 and B6 need to bid less than 3.0 in order to get any
award. Suppose they jump to this tariff. At this point, B4’s bid is 3.0, B5 and B6

are at 2.99. If the auction were to stop here, B4 would get nothing and B5 or B6

9It is strategically equivalent to uniform price auction. See Krishna (2009)
10Tentative award at some instant is the project size a bidder would be awarded if the auction

were to end at that instant.
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Table 1: Qualification and allocation rules

(a) qualification

Bidder Capacity Tariff Qualify
B1 100 2.4 ✓
B2 50 2.6 ✓
B3 200 2.8 ✓
B4 450 3.0 ✓
B5 150 3.2 ✓
B6 100 3.4 ✓
B7 300 3.5 ×

(b) Allocation

Bidder Capacity Final Tariff Award
B1 100 2.09 100
B2 50 2.09 50
B3 200 2.09 200
B4 450 2.1 150
B6 100 2.5 0
B5 150 2.9 0

would get the residual. However, B4 can now bid 2.98 to get the residual if her cost
is lower than that. In fact, she should not bid below 2.98 at this instant unless she
wants to be awarded a project of same size as her offered capacity. B5 and B6 would
then respond by reducing their bid to 2.97. The game continues this way with each
bidder trying to just outcompete the others. Proceeding this way, suppose that B5

has bid 2.9 and B4 and B6 have bid 2.89. Suppose B5’s cost is 2.9. In this case, she
would prefer to exit the auction as competing further risks getting a negative reward
as the tariff would be lower than her cost. The game, although, proceeds without
B5; B4 and B6 try to outcompete each other, until B6 drops out at her cost of 2.5.
At this tariff, B4 becomes pivotal. She can either try to outcompete others and get
more than 150MW, or drop out at 2.5 to get 150MW. She decides to compete and
eventually drops out at 2.1, even if her cost may have been than that of others, and
gets 150 MW.

In this stage, one can think of strategy of each bidder as a cutoff tariff upto which
they would compete, given the set of bidders who are yet to drop out. Their cutoff
tariff can be seen as their bid. In this scenario, assuming that the bid space is
continuous, any non-pivotal bidder would have a bid equal to their cost. Bidding
higher reduces their chances of getting positive award by becoming pivotal (like
B4 for bids below 2.5) or getting own capacity award while being non-pivotal (like
B2, B3) at a price above their cost. Bidding lower would yield negative reward. A
pivotal bidder, on the other hand, has a bid higher than her cost as that gives her
a positive award. Her bid depends on her cost, the set of pivotal and non-pivotal
bidders who are still active in the auction, and her beliefs about their bid.
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4 Data and stylized fact

Data for this paper is compiled from various sources. Bidding data is obtained from
2 sets of documents the SECI’s website. The first set of documents are requests
for submission (RfSs), which are issued by the auctioneer to invited bidders. This
document provides auction specific characteristics like technology specifications, lo-
cation restrictions, procurement target etc. They also provide the details of auction
mechanism, allocation, and market clearing rule among other things. Separately in
a result sheet, SECI provides bidding data for both stages. For qualifier stage, we
observe bidder identity, tariff and project size offers. For the final, we observe the
project size awarded to each bidder, bids of bidders with zero award, and bid of the
marginal winner. The bidding data is for auctions from 2016 through 2023. In all,
there are 536 bids for the qualifier and 421 bids for the final stage from 62 auctions.

Usually, the firms create different entities for each auction. I map these entities to
their ultimate corporate parent using Orbis, public data on Zaubacorp, and firms’
own websites. For some entities, like Mira Zavas, Halvad, I found the ultimate parent
company using the domain of the email ID for the registered contact on Zaubacorp
and further confirmed the same on LinkedIn. Since the market is yet to consolidate,
there are many mergers and acquisitions during the period of data collection. I map
them to the parent in the year in which the auction was conducted. Overall, there
are 102 companies.

4.1 Data overview

In total, there is data from 64 auctions conducted by SECI. Two of these auctions
restrict participation to Public Sector Enterprises, two have very small procurement
target (5MW). One of them is for Round-the-Clock supply with escalating prices and
another one has two part tariff. Data is not complete for 2 of the auctions. I remove
these eight auctions from the analysis because they are not directly comparable
to other auctions. This leaves us with 56 auctions, having a total of 517 bids for
the qualifier and 410 for the final stage for 46.8GW allocation. Table 2 shows the
average number of participants to the qualifier round across large SECI auctions.
In total, 102 firms have participated in the large auctions. High participation in
2017 is driven by auctions for projects in Bhadla Solar Park in the desert state of
Rajasthan, which is now one of the largest Solar Parks in Asia. The auctions have
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Table 2: Average number of participants in auctions with target ≥ 25

Year Ind N S SP Aggregate
2015 - - 8.5 - 8.50
2016 - 3 8.33 6 4.73
2017 12 - - 22 17.80
2018 9.5 - - 7 9.14
2019 4.25 9 - - 5.20
2020 9.6 13 - - 10.57
2021 15 22 - - 17.33
2022 12.75 - 10 - 11.83
2023 9.2 - - - 9.2
Aggregate 9.06 7 8.83 16 9.23

been successful in fostering competition and scale, which has reduced the average
market clearing price (as explained in section 3) from Rs. 4.5/unit in 2015 auctions
to Rs. 2.4/unit in 2021 auctions (Figure 2).

Figure 2: Average market clearing price in large SECI auctions

Of the 102 firms, 34 have never won an award. Table 3 provides total award for
each category of firm, in the 56 auctions for each technology- solar, wind, and
hybrid. 54% (25.5GW) of the capacity is created by the 27 Indian energy firms.
The largest among them includes Adani Green, Renew power, NTPC. Nearly half
of the remaining capacity (9.88GW) is awarded to the 13 companies incorporated by
financial institutions, specifically for the purpose of gaining returns on investment
in India’s renewable market. Half of the capacity awarded in this category is won
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Table 3: Gigawatts awarded and number of successful bidders for each firm category
in SECI auctions with target ≥25 MW

Firm Category Hybrid Solar Wind Total
Non financial 5.91 17.49 13.52 36.92

Indian Energy 5.46 10.99 9.02 25.48
Others 0.45 6.49 4.50 11.44

International 4.04 4.16 8.20
Indian NonEnergy 2.16 0.34 2.49

Financial 1.2 6.58 2.10 9.88
Total 7.11 24.07 15.62 46.8

by Softbank’s energy platform and Ayana, energy platform incorporated in 2016
by British government’s British International Investment.11 Among other firms, 17
international energy firms like Total Energy (France), Sembcorp (Singapore) have
won most of the PPAs in terms of capacity.

Thus, we can see that a diverse set of firms have participated and won in SECI
auctions. Even within Indian energy firms, data shows that awards are being won
equally by public sector firms, family firms, and other firms backed by financial
institutions. As such, the market has diverse set of producers, and concentrations
are still low. Given such high market participation, collusive behaviour may not be
stable.

4.2 Stylized fact about bidding behavior

The key element of strategy in the final stage of auctions is the decision of a pivotal
bidder to agree to a residual award at a certain price, or to compete further in order
to get the desired capacity.

In the tariff auctions with large procurement targets (above 200MW), I observe that
there are 37 auctions with a pivotal bidder who doesn’t exercise her right to reject
the award.12 In 30 out of these 37 auctions, the bidder who gets residual award has
bid within INR 0.02 of the lowest of bids of all the bidders with zero award; or within

11Softbank sold all of its portfolio to Adani Green in 2022, despite the allegations of accounting
fraud and corruption against the latter.

12This right was given to the bidders who were awarded half of their desired capacity, in some
auctions since 2019.
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0.02 of her qualifying bid, if there is no bidder with zero award. In these cases, the
pivotal bidder is said to have exited immediately or not competed. In 26 of these
30 auctions, the bidder with highest quantity bid exits immediately. In 11 auctions,
the pivotal bidder competes before exiting at a slightly lower bid. Besides these 37
auctions, two have bidders with same capacity and in three others, no bidder gets
rationed in the outcome.

Among the 14 VGF auctions analysed (with target ≥ 25MW), 6 auctions have no
residual award as each bidder’s quantity bid equals M . Among the remaining, the
pivotal doesn’t compete in 3 auctions. This bidder is also the one with highest
capacity in these auctions. In 2 auctions, competition is observed. In 3 auctions,
the winner had a very low first round bid and capacity bid equal to M , which led
to absence of competition in second round.

Thus, we observe both competitive and non-competitive behaviour in 42 auctions
with a pivotal bidder. This can rule out a scheme where the bidders collude to get
a high tariff. However, in 78% of all these auctions, we observe that the pivotal
bidder agreed to residual award without any competition, and in most of the cases,
it was the bidder with highest capacity. There seems to a relationship between
capacity offer and competitive behavior. To further explore this relation, I estimate
a simple linear probability model where decision to exit immediately is the dependent
variable.

In the econometric model, the decision to not compete is captured by indicator
variable concedeia. For tariff auctions, concedeia = 1 if in auction a, Bi gets residual
award and bids within INR 0.02 of the lowest bid among all the bidders who got
zero award. If no bidder gets award of zero, I compare the final bids to qualifier
bids and set concedeia = 1 if Bi gets a positive residual award with the bid within
INR 0.02 of her qualifier bid. For VGF auctions, same procedure is followed with a
threshold of INR 100,000.

I use data from the 42 auctions with pivotal bidders to estimate the linear probability
model, where right to reject the residual award was not exercised. As explained in
the section 3, whenever a non-pivotal bidder concedes, the auction doesn’t end, as
the allocation is not yet decided. It continues with lesser number of bidders, any
subset of whom (including empty subset) might get a positive award if they decide
to not compete further. Thus, a subgame is created among remaining bidders. If I
observe such a situation in a particular auction, I consider the subgame generated by
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exit of a non-pivotal bidder as a separate auction. In each such subgame a where the
bidder i decides to compete and not agree to a residual capacity, concedeia = 0. In
the observed terminal subgame, concedeia = 1 if the bidder who gets positive residual
concedes immediately. I treat these subgames as independent of each other, which
imposes further limitation on the interpretation of the linear probability model. As
such, the model just measures a controlled correlation, and not the causal effect of
various factors on decision to exit immediately. The bidders who got zero award are
not considered for this analysis because their decision to concede is not based on
strategic choice regarding agreeing to residual at a higher bid, but on their individual
rationality.

Furthermore, it is possible that pivotal bidder exits only when the size of residual
award is high enough. To check this, I calculate a potential residual award for all the
bidders who were awarded their capacity. This is the capacity award they would have
obtained hypothetically if they had chosen to concede at the tariff discovered in the
auction, instead of outcompeting it. To this end, I subtract from the procurement
target M , the capacity offers of winners whose bids are same for both the stages
(if any). This gives us "adjusted M". I also remove such bidders from regression
analysis because their behaviour is not observed. The potential residual award is
then difference between adjusted M and capacity of all other bidders. The potential
residual is then floored at 0. The non-pivotal bidders at the market clearing price
are those with zero potential residual.

In three different specifications, I run a regression of concedeia on capacityia and
residualia scaled by procurement target in a, and the ratio of the two. I remove
the non-pivotal bidders from the data fed into regression. Effect of competition on
exit decision is captured by number of non pivotal and pivotal competitors. The
regression results are provided in Table 4. This econometric model doesn’t use any
measure for cost of bidders, which is important for exit decisions. However, this
should not be a problem because the aim here is not to claim any causality, but find
some correlation between a bidder’s decision to concede and her capacity. This is
indeed what we find. The 3 different measures, bidder capacity, bidder’s potential
residual award, and the ratio of the 2 are positively related to the probability of
them exiting immediately.

The key stylized fact regarding final stage bidding is, thus, the positive correlation
between the capacity offer of a pivotal bidder and her decision to exit immediately.
The regression results indicate that this correlation may be driven by the residual
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Table 4: Relation between residual award size and immediate exit decision

Dependent variable:

Immediate exit decision

(1) (2) (3) (4) (5) (6)

Constant −0.060 0.253∗∗∗ 0.155∗∗∗ −0.209 0.175 0.081
(0.044) (0.055) (0.045) (0.167) (0.167) (0.169)

Capacity 0.654∗∗∗ 0.665∗∗∗

(0.108) (0.132)

Residual 0.209∗∗∗ 0.286∗∗∗

(0.058) (0.076)

Residual/Capacity 0.008∗ 0.009∗

(0.004) (0.005)

Number NonPivotal −0.015 0.011 0.053 −0.011 −0.016 0.023
(0.039) (0.042) (0.040) (0.041) (0.043) (0.043)

Number Pivotal 0.020 −0.027 0.002 0.025∗ −0.026 0.013
(0.013) (0.018) (0.015) (0.014) (0.020) (0.016)

Location ✓ ✓ ✓

Year ✓ ✓ ✓

EnergySource ✓ ✓ ✓

Observations 192 192 192 192 192 192
R2 0.181 0.084 0.040 0.193 0.146 0.097
Adjusted R2 0.168 0.070 0.024 0.148 0.099 0.047

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

award.
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5 Theory of bidding behaviour

This section models the final stage as a descending clock auction with residual
award. The aim of this section is to provide a theoretical explanation of the stylized
facts presented in Section 4. I make assumptions on game timing, and bidder and
auctioneer information which incorporate relevant information from qualifier round.
Although seemingly strong, such assumptions help this paper remain focused on
incentives for bidders to compete or not, when facing the market clearing rule.

Before the auction, government announces the procurement target M for that auc-
tion. Each bidder, i announces her capacity qi ≤ M , which is the capacity they
can create and provide to the government. I assume that this quantity is reported
truthfully. Set of all the bidders is denoted by N . The bidders are assumed to be
risk-neutral. In the procedure described in section 3, the reserve bid is individualised
as it depends on their qualification bid. However, I abstract from this and assume
that the announces the reserve price (=bR) which is same for all the bidders.

The abstraction on reserve price doesn’t lead to much loss of generality as can be ex-
plained in the following example. Let’s suppose M = 100, N = {B1, B2, B3, B4, B5}.
Bidder’s respective capacities are {30, 40, 50, 35, 10} and corresponding qualification
bids are {3, 4, 5, 6, 7}. Then, the highest possible bid for any bidder is 7. However,
the 4th and 5th bidder get 0 if they bid 7. Thus, they would gradually reduce their
bid from their starting bid, with the hope of out-competing some other bidder at
a price above own cost. Suppose they reduce their bid to 5 and then B5 exits the
auction. If the auction were to end at this bid, B1 and B2 would get 70 in total as
their award. This means that third and fourth bidder have to compete for remaining
30 if the auction continues. The situation is similar to an auction where bidders bid
for an award of 30, and have the same reserve bid of 5. Moreover, the game can
continue in such a way that the common reserve becomes 4 and the total award size
is 70. Thus, assuming a common reserve bid, instead of individualised reserve (as
in reality) doesn’t affect the theoretical understanding of the bidding strategies in
this auction, and this is essentially due to open nature of bidding.

Each bidder is assumed to have a constant marginal cost of supplying the product,
denoted by ci. For each bidder i, ci is private information, revealed to her before
the auction. ci ∼ Fi(.) independently and ci ∈ [0, c̄]. For the baseline model,
Fi(c) = F (c), ∀i. I denote the reversed hazard rate of this distribution, f(c)/F (c)
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by σ(c) and assume that σ′(c) < 0,∀c > 0. It is possible that there might be some
learning among bidders from the qualification bids of their opponents. Any such
learning can be captured by assuming heterogeneous priors over opponents’ costs.
As I show through a extensions in appendix B, heterogenous priors can be easily
accommodated in the baseline model.

M is allotted via an open descending price auction, modelled as descending clock
auctions as in Milgrom and Weber (1982). Bidders bid the per unit price they
would ask the government for providing their capacity.13 At the start of the auction,
auctioneer displays bid bR, M , and qi∀Bi ∈ N on a screen and all the bidders enter
an arena. As auction proceeds, the displayed bid reduces in a continuous manner. If
a bidder wishes to exit at a bid b, she leaves the arena when screen displays b ≤ bR.
When she leaves, she gets a residual quantity award of Max{0,M −

∑
i qi1Bi∈I(b)},

where I(b) is the set of bidders in the arena at bid b. The auction stops when a
bidder gets a positive award when she exits, or if M−

∑
i qi1Bi∈I(b) = 0. The bidders

who are still in the arena at the end of auction are awarded their quantity at the
bid displayed on the screen at that time. Thus at any point, the bidders who would
get a positive residual on exiting the arena decide to either accept the residual at
the current bid, or to wait for the bid to drop so that another opponent exits. If
they decide the former, they get higher price but lower quantity, and vice-versa if
they decide the latter.

In such a game, any bidder who would get a zero award on exiting, would not exit
until the displayed price is same as her cost. If they exit at a higher bid, they still
get a payoff of zero. However, if the don’t exit, there is a chance that some other
players will exit and this bidder may get a positive award. Thus, it’s beneficial for
her to not exit at a bid above cost. This characteristic of equilibrium bids of zero
award bidders plays crucial role in identification of the cost distribution from SECI
data.

The descending clock auction is essentially a dynamic game, where the bidders have
2 options (exit and continue) at any given instant. However, one can also think of
this as a stage game. At the start of the game, each bidder chooses a cutoff bid
at which she would exit, if none of her opponents would have exited by that bid.

13This is an abstraction from the idea of price bids being the tariff on produced electricity and
not the price of constructed capacity. The price bids in this model can be thought to be the sum
of per unit markup these bidders desire and the Lifetime average Cost of Electricity they expect to
produce. Any adjustments made for this equivalence don’t harm the equilibrium results as long as
capacity utilisation factors and future discounting rates are assumed same across all the bidders.
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If a bidder exits and gets an award of zero, a subgame starts, and each bidder in
this subgame finds a new cutoff bid. If in any subgame, the exiting bidder gets a
positive residual award, the game ends. Thus, bidders have cutoff strategies in this
stage game, where the cutoff bid depends on the set of quantities of all the players
in the subgame. Bidder i’s strategy is to choose her cutoff bid (or simply, bid) bi

in each subgame. The analysis amounts to finding Bayes Nash Equilibria (BNE) in
pure strategies of this game. To keep the results simple and tractable, I focus on
games with just 2 bidders.

5.1 Pure strategy equilibrium with 2 players

This section provides the results on characteristics and existence of pure strategy
equilibria for auctions with 2 players and 3 players. In general, opponent of Bi is
denoted by B−i, her bid by bi, and her equilibrium bid function by βi(c). A bidder is
said to be large if their capacity is larger than the procurement target. The simplest
case with 2 bidders would be when M < qi for both i, i.e., both are large. This case
reduces the auction to a simple english auction, where βi(c) = c for both i. The
other cases are a bit more involved.

5.1.1 A large bidder and a small bidder

Assume M = q1 > q2 without loss of generality. In this case B2 gets 0 if her bid is
higher. On the other hand, B1 gets her capacity in all the cases. Bi’s ex-post payoff,
conditional on winning and losing respectively, are:

πW
i (bi; ci,q, b−i) = qi(p− ci)

πL
i (bi; ci,q, b−i) = Max{0,M − q−i}(p− ci)

where p = Max{b1, b2}

B2 would find it weakly dominant to bid her cost. If she bids above and loses, she
gets 0. If she wins with this bid, she pays price equal to opponent’s bid, which
would higher than her cost. Thus, she isn’t really better off by bidding above her
cost. Bidding lower than cost is dominated as that gives negative payoff. Thus, her
equilibrium bid function, β2(c) = c.
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β1(c) is obtained as B1’s best response to β2(c) = c. This is obtained by maximisa-
tion of her expected payoff, which is given by:

π1(b1; c1, β2(c)) = (M − q2)(b1 − c1)F (b1) + q1

∫ bR

b1

(x− c1)dF (x)

For B1, this situation reduces, analytically, to a decision problem, rather than a
game. β1(c1) is attained by finding b1 ∈ ArgMax

b≤bR
π1(b;c1, β2(c)) for each c1. If

β1(c1) < bR, then σ(β1(c1))(β1(c1)− c1) =
M−q2
q2

which is the first order condition of
optimisation at an interior point. If for some c1 this equality doesn’t hold ∀b < bR,
β1(c1) = bR, i.e., B1 exits immediately at bR. Strategies β1(c), β2(c) constitute the
equilibrium of this case.

To have an illustration of equilibrium, suppose ci
iid∼ U(0, 1) without an atom. This

implies that if there is an internal optimum for some cost type, she bids according
to function β1(c) =

q2
2q2−M

c. Note that if q2 < M/2, this yields negative bids, which
are dominated. Thus, if q2 < M/2, there is no internal optimum and B1 bids bR

regardless of her cost (β1(c) = bR), which implies complete pooling. Otherwise, she
would be pooling partially. For example, when M = q1 = 3, q2 = 2, she would bid
bR for c > 0.2

√
31 − 0.8 ≈ 0.313. For other values of c, β1(c) = 2c. Notice that

the bidding function is discontinuous. This discontinuity is further illustrated in
Figure 3b where a truncated lognormal distribution is assumed. Since it is dominant
for B2 to bid her type c2, and the computed β1(c) is the unique maximiser of B1’s
payoff, the equilibrium described here is unique BNE.

B1 bids bR for a type c1 if σ(b)(b − c1) <
M−q2
q2

, ∀b < bR. If M or q1 rise, and/or
q2 declines, this inequality is likely to be satisfied for a wider range of c1. Thus, the
extent of bunching would increase. Intuitively, rise in M and decline in q2 reduces
the extent of rationing faced by B1. This makes her reluctant to compete when her
cost isn’t low enough to defeat B2 who bids truthfully.

5.1.2 2 small bidders

In this case, M > q1 > q2, and q1 + q2 > M . In this case, both bidders would get a
positive reward in case their bids are higher. Bi’s ex-post win and loss payoffs can

22



(a) Complete pooling: q1 = 100, q2 = 40 (b) Partial pooling: q1 = 100, q2 = 80

Figure 3: Equilibrium bid function of B1

Equilibrium bid function for B1 when M = 100, bR = 4.1, and F : [0, 4] → [0, 1] is constrained
Log-Normal with µ = 1, σ = 1. Note that the scales on x-axis and y-axis are different.

be written as:

πW
i (bi; ci,q, b−i) = qi(p− ci)

πL
i (bi; ci,q, b−i) = (M − q−i)(p− ci)

where p = max{b1, b2}.

Any ties are broken in favour B2.14 Unlike, the previous case and second price
auction, none of the players would bid truthfully in this case. Bi’s expected payoff
from the auction when she bids bi, conditional on opponent’s bid, b−i and capacities
q1, q2,M is:

πi(bi; b−i, ci,q,M) = (M − q−i)(bi − ci)Pr(bi > b−i) + qiEF (bi − ci|bi < b−i)Pr(bi < b−i)

There are 2 complete pooling Bayes Nash Equilibria, where either B1 or B2 never
exit the arena, and their opponent exits immediately. In other words, one of the
bidder commits to bid lower than the other bidder, who in turn bids bR. Such BNE
are sustained by some crazy type, and lead to completely inefficient screening.15

Thus, it is natural to look for any other possible BNE, where screening is better.
Following lemma characterises such a BNE:

14This tie-breaking rule is not without loss of generality. In fact, it is set in this way in order to
have equilibrium existence. This is similar to the idea in Simon and Zame (1990) on endogenising
the tie-breaking rule. They prove that in the game where indeterminacy can arise due to unspecified
tie-breaking rule, one can always find a tie-breaking rule consistent with equilibrium existence.

15If we look at the descending auction in dynamic version explained earlier, such an equilibrium
will not be a perfect bayesian equilibrium.
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Lemma 1. For each Bi, βi(c) constitute a semi-separating Bayes Nash Equilib-
rium of the 2-player clock auction with rationing if and only if it satisfies following
properties:

(i) βi(c) is non-decreasing in c

(ii) βi(c) is continuous and atomless for b < bR for both i

(iii) βi(0) = 0,∀i

(iv) For each i, define ϕi(b) = β−1
i (c) for b ∈ (0, bR). ϕi(b) solves:

f(ϕ−i(b))

F (ϕ−i(b))
ϕ′
−i(b)(b− ϕi(b))(q1 + q2 −M) = (M − q−i), ∀i (1)

(v) β2(b
R) = c̄, and β1(c) = bR ,∀c ∈ [c∗, c̄], where c∗ = ϕ1(b).

Proof. See Appendix A.1

Characteristic (i) can be shown by exhibiting that payoff function satisfies increasing
differences property. (ii) can be shown through standard arguments for continuity
and atomlessness. If there is an atom at some bid b, the opponent’s type which bids
b will deviate to a bid slightly lower than b, if latter’s strategy is continuous. If there
is a discontinuity in strategies, such that the type β(c) = b and type β(c−) = b′ < b,
than the opponent types bidding between b′ and b would prefer to bid b. These
deviations are shown in Figure 4. Characteristic (iii) can be shown through argu-
ments similar to Bertrand competition.Characteristic (iv) can be obtained through
first order conditions for optimum at an interior point. It requires invertibility of
bid function, which is ensured by conditions (i) and (ii).

Property (v) is the key characteristic of interest. It implies that a positive mass of
high cost types of B1 bid bR, i.e., B1 bunches at bR. It relies on the relative marginal
payoffs of two players at any point of intersection of the solution curves, which are
such that β′

2(c)

β′
1(c)

= M−q1
M−q2

< 1 if βi(c)s intersect at the cost c. The marginal payoffs
are such that their solution curves intersect at most once. Then, by continuity,
strict monotonicity at b < bR, and property (iii) and (iv), I show that even in the
immediate neighbourhood of 0, β1(c) > β2(c). Thus, there is no point of intersection
for strictly positive costs and bids and β1(c) > β2(c)∀c > 0. Combined with the
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βi(c)

b′
b

βi(c)

b

Figure 4: Possible deviations in case of discontinuity and presence of atom

property that highest types of both players should bid bR, it implies that β1(c) =

bR,∀c ∈ [c∗, c̄], while β2(c̄) = bR. This property also shows the importance of tie-
breaking rule in favor of B2. In absence of this rule, whenever the two players bid
bR, B2 has an incentive to reduce the bid slightly below bR and avoid rationing with
positive probability because B1 is bunching at bR. This tie-breaking rule makes B2

indifferent between bidding bR or slightly below bR. Such an incentive doesn’t exist
for B1 as possibility of tie for her is 0 because B2 doesn’t bunch.

Intuitively, B1 is less aggressive and bunches because she has a higher marginal
cost of competing (or reducing her bid) for any given cost type. She has a higher
residual award, and if she loses after competing, she gets a lower price. The gain
in quantity conditional on winning is same for both the bidders (=q1 + q2 − M).
Being less aggressive gives B1 a higher markup (= β1(c) − c), which balances her
higher marginal cost of competing. B1’s bid function is above B2’s for all positive
costs. This also implies that for high cost types, B1 has no incentive to compete at
all, which leads to bunching. An important implication of the property (v) of the
Lemma is that we can rule out existence of any completely separating equilibrium
in this auction as long as the capacities of the two bidders are different. Figure 5
shows the equilibrium as characterised in Lemma 1.

This figure also exhibits the selection inefficiency in these auctions. If B2 has cost
c2 and B1 has cost c1 < c2 as in the figure, B2 will be bidding lower. As such, she
will be awarded q2 and B1 gets M − q2. Total cost of production in this scenario is
c2q2 + c1(M − q2) = c1M + (c2 − c1)q2. On the other hand, if B2 was rationed, the
cost would have been c1q1 + c2(M − q1) = c2M − (c2 − c1)q1 < c1M + (c2 − c1)q2.
Thus, the allocation is not cost efficient.
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Figure 5: Asymmetric equilibrium with 2 players q1 > q2

So far, I haven’t analysed the existence and uniqueness of equilibrium described in
the lemma. This is important because in absence of such an equilibrium, the game
only has the complete pooling equilibria. The functions, ϕ1(b), ϕ2(b) are hereafter
called solution curves. Since Lemma 1 implies that β1(c) > β2(c),∀c ∈ (0, c̄), it also
implies that ϕ1(b) < ϕ2(b),∀b > 0.

Any equilibrium is attained from the solution to Boundary value problem (BVP)
given by FOCs (equations 1) and boundary conditions given by ϕ2(b

R) = c̄, ϕ1(b
R) =

c∗ < c̄ such that ϕ1(0) = ϕ2(0) = 0. The differential equations of this BVP have a
division by 0 at the left boundary and hence, Picard Lidelof theorem is not applicable
at (0, 0). Thus, right boundary has to be used to establish existence, which is
endogenously determined for ϕ1(b). Similar problem of existence and uniqueness is
encountered in asymmetric sealed bid first price auction, which is usually resolved by
assumptions like a small atom at lower bound of support.16 While this assumption
doesn’t help in SECI auctions, I can nevertheless show existence, by proving ∃c∗

such that when ϕ1(b
R) = c∗, ϕ1(0) = ϕ2(0) = 0. Theorem 1 is formal statement of

existence and uniqueness of equilibrium in Lemma 1, which I prove in the appendix.

Theorem 1. The BNE as described in Lemma 1, exists and is unique.

Proof. See Appendix A.2

Uniqueness can be understood through the argument similar to relative toughness
in Lizzeri and Persico (2000). Consider two sets of solution curves ϕi(b) and ϕ̂i(b)

such that ϕ2(b
R) = ϕ̂2(b

R) = c̄ and ϕ1(b
R) = c∗ < ϕ̂1(b

R) = ĉ∗, pertaining to "ϕ"
and "ϕ̂" situations respectively. As I show formally in appendix, this would imply

16Formal treatment and other useful assumptions can be found in Lebrun (2006)
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Figure 6: Intersecting solution curves

that ϕ̂1(b) > ϕ1(b) and ϕ̂2(b) < ϕ2(b) for all b > 0, as exhibited in Figure 7. If
this doesn’t hold, we have intersections as shown in Figure 6. If ϕ̂1(b) and ϕ1(b)

intersect as in figure 6a, then we have 2 solutions to the Initial value problem with
ϕ2(b

R) = c̄ and ϕ1(b1t) = c1t and equations (1), violating Picard Lindelof theorem.
Other possibility is that ϕ̂2(b) and ϕ2(b) intersect as in figure 6b, which necessitates
an intersection between ϕ̂1(b) and ϕ1(b), as proven in the appendix. This too violates
Picard Lindelof theorem. Thus, ϕ̂1(b) > ϕ1(b) and ϕ̂2(b) < ϕ2(b) for all b > 0.

To understand the intuition, let’s look at Figure 7. At bR, B2 is bidding the same
in both equilibria but is "marginally" less aggressive at bR in ϕ̂ equilibrium (i.e.,
ϕ̂′
2(b

R) > ϕ′
2(b

R)). As such, the probability of B2’s exit when B1 bids in the im-
mediate neighbourhood of bR is lower in ϕ. Thus, B1 of type ĉ∗ should be less
aggressive in scenario ϕ, which compensates for this lower probability through a
higher markup. ϕ̂1(b

R) needs to be higher to equalise marginal benefit and marginal
cost of competition. The same logic applies at b < bR. As ϕ̂2(b) < ϕ2(b), B2 is more
aggressive in scenario ϕ, and hence has a lower probability of exit at any bid. B1

needs to compensate for that by charging a higher markup, i.e., ϕ1(b) < ϕ̂1(b).

While the result on existence and uniqueness is in line with the results on all-pay
auctions without any residual reward for the losing bidder, there are some subtle
differences. For example, results in Lizzeri and Persico (2000) required loss payoff
to be nonpositive. The result I have is attained even when the "loss" payoff is
positive. Moreover, my result is in contrast with the result on 2 player asymmetric
war of attrition in Nalebuff and Riley (1985), which had a continuum of equilibria
in asymmetric war of attrition. In their case, many possible solutions to the FOCs
satisfy the condition that player with highest type can wait infinitely.
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Figure 7: Co-movement of ϕ1(b) and ϕ2(b) in response to change in c∗

The equilibrium characteristic that B1 bunches depends crucially on the finite reserve
bid and assumption that ex-post payoff are the only source of ex-ante asymmetry.
So far in the paper, this asymmetry has been imposed by capacity differences and
the cost distribution is same for both bidders. However, ex-ante asymmetry can
arise from differences in cost distributions too. Till now, I have focused only on the
former in order to clearly understand the effect of such an asymmetry. The insights
developed here on the effect of quantity award heterogeneity also carry on to the
situations where both sources of asymmetry are considered. However, the identity of
bunching bidder depends on the net effect of dominance of cost distribution and ex-
post award. I show this in Appendix B, where I provide a formal characterisation of
the equilibrium and proofs for following 2 cases of heterogeneity in cost distribution
of the two players:

1. ci ∈ [0, c̄i], such that c̄1 < c̄2 and ci
i.i.d∼ Fi(c) such that σ1(c) = σ2(c),∀c ∈

[0,min{c̄1, c̄2}] . Intuitively speaking, B2 is likely to have larger costs than
B1.

2. ci
i.i.d∼ Fi(.) where each Fi has same support, [0, c̄]. Denote by σi(c) the reversed

hazard rate (RHR) of Fi(c); σ′
i(c) < 0. Suppose that the distribution F1 RHR

dominates F2, i.e., σ1(c) ≥ σ2(c)∀c ∈ [0, c̄]. Dominance can imply having
higher probability of higher costs.

Through these cases, I can show that the intuition regarding the effect of differences
in ex-post quantity award in the case of same cost distributions for each bidder case
is robust to differences in cost distributions, even though the net effect is differ-
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(a) (b)

Figure 8: Change in ϕi(b)s in response to quantity changes

In the left figure, ϕi(b)s are defined for q1 = 60, q2 = 50,m = 100 and ϕ̃i(b) are defined for
q1 = 80, q2 = 50,m = 100. In the right figure, ϕi(b)s are defined for q1 = 60, q2 = 50,m = 100 and
ϕ̃i(b) are defined for q1 = 70, q2 = 50,m = 100. The costs are drawn in i.i.d manner from U [0, 1]
with a bR = 1.1.

ent. What matters for the equilibrium structure, and specially for the identity of
bunching bidder is the net effect of cost distribution dominance and quantity bids.

To conclude the analysis, I provide the comparative statics with respect to M and
qi. The simulations show that any effect of increase in q1/(M − q2), depends on its
value, and the extent of change in it. This is shown in Figure 8. In Figure 8a, q1 rises
from 60 to 90, and that leads to B1 being very less aggressive (ϕ̃1(b) < ϕ1(b)), while
B2 becomes more aggressive (ϕ̃2(b) > ϕ2(b)). In Figure 8b, q1 rises from 60 to 70,
which makes both the players less aggressive. Thus, changes in bidding behavior in
response to change in q1 and extent of rationing are not obvious and not monotonic.

The theoretical exercises of this section and the appendix C on 3 players, show that
the descending clock auction with rationing allocates inefficiently. While such an
auction design is attractive because of the simplicity of allocation rules and trans-
parency, the market of renewable electricity created by it is not cost-efficient. Thus a
question arises regarding possibility of making this market more cost-efficient with-
out using more complicated methods. I take an empirical approach to answer this
question. This not only helps me quantify the cost-inefficiency in the auctions, but
also tells the extent to which auctions can be made more efficient by slightly differ-
ent mechanisms. The first step of this approach is to identify the cost distribution
of the bidders from the observables in the data. The second step is to estimate the
cost distribution, and final step is to conduct a simulation based study of various
counterfactual mechanisms.
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6 Identification of cost distributions

Identification requires mapping the observables in SECI’s data to the auction model’s
primitives of interest. The model primitives of interest are cost distribution of
bidders in final stage. Relevant observables are the identities of bidders, their tariff
offers, project sizes of the bidders and their awards in the final stage, and the ranking
of bidders in the qualification stage.

Model primitives:
Denote the set of all auctions in SECI data by T and bidders in qualification stage of
auction t ∈ T by N I

t . Any bidder Bi ∈ N I
t has capacity qit ≤ Mt. The vector of the

capacities in qualification is denoted by qI
t .17 An arbitrary bidder Bi ∈ N I

t has cost
cIit ∼ F I

it(.) at the time of qualification bid submission. cIit is assumed to be drawn
independently of costs of other bidders and the vector of capacities. Both cIit and qit

are Bi’s private information during qualification. Given the time difference between
the stages, bidders may receive new information which can affect their final stage
costs. Bi’s cost during the final stage is cit = cIit+εit, where εit ∼ Hit(.), independent
of cIt and qI

t . Bidder Bi’s final stage cost distribution Fit(.) is a convolution of F I
it(.)

and Hit(.), Fit(c) =
∫∞
−∞ hit(x)F

I
it(c − x)dx. The model primitives of interest are

bidders’ final stage cost distributions Fit(.).
17Boldface character denote vectors throughout this section.
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Observables:
For the final stage, SECI provides us the bidders’ identities, capacities, final tariff
offer rit, and award ait. In the clock model, a bidder’s tariff offer is not necessarily
same as her bid, which is the lowest price at which she bidder would supply any
capacity. For all the bidders with ait = qit, the tariff offer is usually same as the bid
of the rationed bidder, and is larger than their own bid. However, each bidder with
ait = 0 bids her own cost, which is higher than the cost of bidders with a positive
award, i.e., Bi with ait = 0, rit = cit.18 This reveals some of the order statistics
of the cost c

(k:N)
t and the identity of the bidder bidding them. Besides this, SECI’s

data also tells us the identity of the marginal qualifier from the qualification stage.19

Identification:
If cit ∼ Fit(.) independently, then some kth cost order statistic (c(k:Nt)

t ), the identity
of bidder bidding it (B(k:Nt)

t ), and set of bidders Nt can identify the underlying
cost distribution. H. J. Paarsch, Hong, et al. (2006) and Athey and Haile (2007)
provide relevant identification result adapted from Berman (1963) for single-unit
Dutch auctions where winner, winning bid, and set of bidders can identify bid and
cost distributions. This result relies critically on the independence of cost draws,
which is not unconditional in the final stage of SECI auctions.

In the qualification stage, bidder Bi ∈ N I
t has tariff bid bIit = βI

it(c
I
it, qit). Denote the

kth order statistic of bids in this stage by b
I,(k:NI

t )
t . The qualification rule from section

3 states that bidder Bi qualifies for the final stage iff βI
it(c

I
it, qit) ≤ b

I,(N(qI
t ,b

I
t ,Mt):NI

t )
t ,

where N(qI
t ,b

I
t ,Mt) = Nt is the number of qualifying bidders in auction t. Suppose,

without loss of generality, bI,(N(qI
t ,b

I
t ,Mt):NI

t
t = bIut, bid of some arbitrary bidder Bu.

The costs of bidders in final stage are drawn from convolution of Hit(.) and trun-
cated distribution F I

it(. | βI
it(c

I
it, qit) ≤ βI

ut(c
I
ut, qut)). Denote this convolution by

Fit(. | βI
it(c

I
it, qit) ≤ βI

ut(c
I
ut, qut)). Assuming first stage bids are monotonic in cIit, the

final stage cost cit is drawn from the distribution Fit(. | cIit ≤ c̄Iit(c
I
ut, qu, qi)) for all

bidders. An increase in cIut increases bIut, which then increases c̄Iit(cut, qu, qi). This
affects the probability of drawing cit, ∀Bi ∈ Nt. Figure 9 illustrates this for a special
case when all bidders draw from same distribution. The observed costs are drawn
independently, conditional on cIut (or bIut). The conditional independence of draws

18This is specific to clock model of open descending bid auctions. Haile and Tamer (2003) provide
results on identification of bounds of distribution without clock model assumption, which allows
bidders to engage in jump bidding.

19Recall: marginal qualifier is the bidder who succeeds qualification stage with the highest bid.
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Figure 9: Selection problem

Solid segments represent the observed support of bidder cost distributions, with dots representing
realizations. The figure is drawn assuming symmetric distributions across bidders. Solid arrows
pertain to the bidders whose final stage costs are observed. Green dots are successful bidders at
each stage, yellow dots are qualified bidders with 0 award, and red dots are disqualified bidders.
Data provides orange bidders’ costs and all bidders’ identities. Qualification rules implies that we
do not observe final costs of red bidders which may be below c4. As cI5 changes, length of solid
segment for qualification stage changes, affecting the probability of observed cost draws.

enables us to combine Song (2006) use the identification results for Dutch auctions.
As long as at least 2 order statistics of costs are observed, higher one of which per-
tains to the marginal qualifier, identification is achieved. As I illustrate in Appendix
D, the distribution of cit conditional on cit < cut and cIit < cIut is independent of cIut.

Intuitively, the identification is made possible by restricting ourselves only to those
auctions where marginal qualifier reveals her cost and considering the subsample of
bidders cost samller than marginal qualifier’s. Identification from an order statistic
in this restricted subsample is same as in dutch auctions where costs are drawn from
distribution truncated at the cost of marginal qualifier. Variation across auctions in
the value of an order statistic and the bidder bidding that order statistic then helps
with identification of distribution.

7 Estimating cost distribution

In this section, I provide parametric estimates for the cost distribution. While this
imposes additional non-testable structure, the limited amount of data prevents using
non-parametric estimation. Unlike non parametric estimation which is truncated at
some highest observed cost, parametric estimation enables us to find a non-truncated
distribution.20 Using these estimates, one can also see the effect of auction and

20An analysis of tradeoff between the two methods can be found in H. J. Paarsch (1997) section
3.4.
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Table 5: Average observed cost and number of non-pivotal bids

Auction Type Pre 2018 2019 to 2021 Post 2021 Aggregate
Hybrid - 2.526 (13) 2.593 (4) 2.542 (17)
Solar 3.094 (37) 2.393 (19) 2.597 (15) 2.801 (71)

North 2.882 (27) 2.328 (13) - 2.702 (40)
South 4.558 (5) - 2.520 (4) 3.652 (9)
Unspecified 2.774 (5) 2.535 (6) 2.625 (11) 2.634 (22)

Wind 2.985 (17) 2.925 (12) 3.103 (3) 2.974 (32)
Aggregate 3.060 (54) 2.578 (44) 2.665 (22) 2.810 (120)

bidder characteristics on the cost distribution.

Given the limitation imposed by identification requirement, I use data from 27
auctions. These 27 auctions have 242 bids, of which 120 pertain to cost order
statistics. The auctions are different in three aspects:

1. Temporal: There is a trend of decline in costs of renewable technology, which
affects the cost distribution. Furthermore, there have been many policy inter-
ventions, notably on import duties on solar panels and modules.

2. Technological: Some auctions are specifically for solar power, some for wind,
and some are technologically neutral (hybrid).

3. Geographical: Some auctions specify the state where the project must be
constructed, some are specific to certain solar parks, and some others are
location-neutral. This affects the average cost of production because different
parts of India have different solar irradiance. Moreover, a part of cost is
purchasing the land and connecting the project to the grid, which can be
affected by state-specific laws.

I provide a naive average of costs across all these different dimensions in Table 5.
These costs are the bids of the bidders with zero award, and hence, the averages
in the table are positively biased. However, these numbers can still provide some
insights. For the temporal part, I divide the sample into pre-2018 (including 2018),
2019-21, and post 2021. While the data mentions the exact state, I club the states or
solar parks as south Indian if they are to the south of tropic of cancer, which are also
more industrialised (coincidentally). We can observe that the costs are lower in the
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later years. Specifically, the cost of solar power are much lower in 2019-21 period,
which maybe because of reduced duties on Solar panels imported from China. We
can also notice that hybrid auctions usually have slightly lower costs than solar,
much lower cost than wind. Such auctions provide bidders flexibility, which enables
them to create the optimal mix of solar and wind. Furthermore, these auctions
don’t restrict projects to specific locations, which gives additional flexibility to the
bidders. This is also true for solar auctions with unspecified location, which have
lower costs.

A major part of bidder heterogeneity in such large auctions emerges from financing
costs. As such, an entity incorporated by financial institutions would have a different
cost structure than the others. More precisely, given their assured access to finance
from parent fund, the variance of their cost distribution maybe lower than others.
Besides the heterogeneity on ownership, I also capture the effect of being an Indian
energy firm. The idea is that such a firm would have better knowledge of the India
market and policies, which can enable them to have a lower cost.

Table 6 provides average of the observed cost of each firm type. It can be noticed
that Indian energy firms usually have lower costs in hybrid and solar power. For wind
power, other types of firms tend to have lower cost. Similarly, firms incorporated
as platforms by financial institutions tend to have lower cost in each category of
auction. However, one must read these average costs wutg some caution, as they
pertain only to the bidders who have lost in the auction. Thus, these numbers have
a systematic upward bias. For example, it may be the case that many Indian energy
firms are also winning the PPAs in wind auctions, but their costs are not used in
calculating the averages in this table. The sole purpose of these descriptive statistics
is to indicate that some types of firms may have systematically lower cost than the
others.

Table 6 also shows that variance of costs is lower for financial firms vis-a-vis others,
regardless of the auction type. Based on these indicative results, I estimate the
following parametric distribution for the costs of firms.

cit ∼ logN (µit, vari)

where µit = α0 + α1Indi + α2Xt,

vari = v0 + v1Fini

where Xt is the vector of characteristics, and Indi = 1 for Indian energy firms,
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Table 6: Average and variance (in parenthesis) of costs of firms of each type

Auction Type Indian Energy Others Financial Others
Hybrid 2.492 2.597 2.494 2.562

(0.014) (0.049) (0.005) (0.042)
Solar 2.724 2.872 2.709 2.839

(0.291) (0.344) (0.261) (0.345)
Wind 3.117 2.848 2.729 3.055

(0.203) (0.095) (0.016) (0.182)
Aggregate 2.830 2.789 2.682 2.861

(0.265 (0.242) (0.168) (0.277)

Fini = 1 for firms incorporated by financial institutions. For the formal likelihood
function, I introduce some more notations:

• For each t ∈ T , BL
t denotes the set of bidders with zero award, and B

I,(N(qI
t ,b

I
t ,Mt):NI

t )
t

denotes identity of marginal qualifier,.

• S = {{(Bi, qit, rit, ait)}Bi∈Nt | t ∈ T & |BL
t | ≥ 2 & B

I,(N(qI
t ,b

I
t ,Mt):NI

t )
t ∈ BL

t },
set of observations from auctions with at least 2 bidder with zero award, one
of which belongs to marginal qualifier

• For each t ∈ T , rut, the final stage bid of marginal qualifier

• For each t ∈ T , rlt, the lowest observed cost order statistic in t

• For each t ∈ T , BLsub
t , set of bidders with zero award, and cost below rut

The parameter vectors α0, α1, α2, v0 and v1 are estimated by maximising following
likelihood function:

L(α0, α1, α2, v0, v1|S,∪t∈T Xt, Ind,Fin)

=
∏
t∈T

( ∏
Bi∈Nt\BL

t

F

(
ln(rlt)− (α0 + α1Indi + α2Xt)√

v0 + v1Fini

) ∏
Bi∈BLsub

t

f

(
ln(rit)− (α0 + α1Indi + α2Xt)√

v0 + v1Fini

)
∏

Bi∈(Nt\BL
t )∪BLsub

t

F

(
ln(rut)− (α0 + α1Indi + α2Xt)√

v0 + v1Fini

) )

where f(.) and F (.) denote PDF and CDF respectively of standard normal distri-
bution.
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Table 7 provides bootstrapped estimates of parameters of cost distribution. Most
results are in line with descriptive statistics. Solar auctions attract lower tariffs, and
tariffs have been lower after 2018. In the years 2019-21, the tariffs are the lowest.
This may be due to reduced duties on solar panels, or even due to overcompetition
in the period. Among the firms, the Indian energy firms seem to have lower cost,
which can be explained by their better understanding of the market and institutions.
Financial firms usually have lower variance.

Table 7: Cost distribution parameters

Parameter Estimate Standard Error
Constant 1.094 0.074
Solar -0.106 0.075
Y2019-21 -0.150 0.068
Y21post -0.045 0.184
Indian Energy -0.071 0.102
Variance 0.153 0.057
Financial -0.068 0.064

8 Alternatives designs

In this section, I compare SECI’s existing mechanism to following alternatives:

1. Sealed bid discriminatory pricing: Bidders’ capacity offers are publicly known,
but the tariff bids are sealed whenever some player becomes pivotal. The bid-
ders than make a tariff bid at which they are willing to supply electricity from
the project, and this is the bid SECI will pay to them. The rest of the alloca-
tion mechanism remains the same. Sealed bid auctions are also regularly used
in other sectors of Indian economy, an important one of them being the spec-
trum allocation.21 In the literature on comparing different auction designs with
multiple winners, there is no consensus on whether uniform pricing is better or
discriminatory for the auctioneer’s payoff and/or the allocation efficiency. As
per Holmberg and Wolak (2018), the suitability of low/high price sealed bid vs

21These auctions were marred by corruption scandal accusations (most notably 2G scam of 2008),
which may have been a motivation behind having open auctions in renewable energy.
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open ascending/descending bid auction depends on the application at hand,
and hence warrants a separate investigation for each setting. Fabra, Fehr, and
Harbord (2006) compared the two auctions theoretically when bidders have
complete information about each other, and concluded that the effect this
design choice on allocation efficiency is ambiguous.

2. Vickrey Clarke Groves (VCG): Consider the case of 2 pivotal players. VCG
mechanism is a pair (Ai, ti) where Ai is allocation to Bi and ti is the transfer
from SECI to the bidders, such that

Ai =

M − q−i, bi > b−i

qi, bi < b−i

ti =

(M − q−i)c̄, bi > b−i

(M − q−i)c̄+ (q1 + q2 −M)b−i, bi < b−i

where bi is Bi’s sealed bid. The transfer has a constant part, which is set in
a way which makes the mechanism individually rational. It can be seen that
this allocation and transfer rule yields bi = ci for each i as a weakly dominant
strategy, under same information assumptions as before. Any other bid either
leads to a negative payoff or reduces the probability of getting project of desired
size. This leads to perfect revelation and fully efficient allocation. However,
these auctions maybe costly to SECI’s budget.

I compare these designs for their allocation efficiency and the ex-post payoffs for the
auctioneer. I estimate the following metrics:

• The probability that the lower cost bidder was given a residual award (i.e.,
got smaller capacity award).

• The production cost incurred in creation of capacity when award is made
as per a particular auction mechanism.

• Productive inefficiency: Difference of production cost in different mecha-
nisms vis-a-vis VCG mechanism (efficiency benchmark)

• Ex-post payment made by SECI to the auctioneers.
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I estimate these metrics for the auctions which have 1 or 2 pivotal bidders, or where
project size is same for each pivotal bidder. These are the cases where we have
theoretical resolution of the bidding behavior. Such auctions account for around 10
GW of total capacity allocations.

While estimating for the auctions with 2 pivotal players, I assume that they can’t ac-
count for information heterogeneity among them because they can’t see each other’s
identities. However they know past auction results. Thus, I assume that they re-
spond to the following belief regarding their opponent’s cost:

cia ∼ LogN (µ̂ia, ˆvari)

where µ̂ia = α̂0 + α̂1X̄i + α̂2Xa, ˆvari = ˆvar0 + ˆvar1X̄i

Here, α̂0, α̂1, α̂2 are estimated parameters from Section 6. X̄i is the weighted average
of characteristics of all the bidders. Each bidder’s weight is the fraction of auctions
where she has won a positive award. Using this distribution, I compute bidders’
bids under alternative mechanisms and calculate the metrics for each draw in each
auction. Figure 10 shows the bootstrapped estimates for inefficiency and payment
metrics.

The estimates show that the probability of inefficient allocation is much higher in
open uniform price in comparison to sealed bid discriminatory price auction and
VCG, and the production costs are slightly higher. To understand the gains in
efficiencies when switching to discriminatory pricing, we can compare equilibrium
bidding functions in each, which are shown in figure 11. We notice that bidder’s
bidding functions (and hence, bid distributions) are closer to each other in sealed
bid discriminatory price auction, vis-a-vis open uniform price auction. The reason
being that in the latter, bidders receive what they bid when they win, not what their
opponent bids. As such, they are inclined to make bids with higher markup. Given
that the highest cost type bids reserve, higher markup implies that the bidding
functions are at higher levels for all costs in sealed bid compared to open bidding.
This would imply that their bidding functions and the bid distributions are close,
which reduces the probability of inefficient allocation. Such difference in bidding
behavior across auctions should be seen as long as bidders are asymmetric. If the
bidders are symmetric, we don’t have inefficient allocation.

Finally, it is possible that bidders may be under-reporting in mechanisms other than
VCG, which adds to inefficiency levels presented in this paper. Thus, the efficiency
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Figure 10: Comparing different mechanisms

Figure 11: Bidding behavior: uniform versus discriminatory price

estimates here are a lower bound. Moreover, VCG also performs better when it
comes to payments by SECI to the bidders. There is roughly 5% savings which can
be achieved if SECI switches her design, which could be a policy recommendations
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9 Conclusion

In this paper, I attempt to provide insights into designing large scale renewable
energy auctions. As more and more countries adopt these auctions, and as these
auctions enable very large scale capacity creation, little elements of their design can
have significant effect. This paper analyses such effects in the final stage of auction
mechanism used by Solar Energy Corporation of India (SECI), theoretically as well
as empirically. India already has 5th largest capacity of solar and wind power, and
the aim is to scale it up further in order to generate 50% of electricity from renewable
sources by 2030. In this capacity creation, SECI has an important role to play.

SECI auctions’ winners receive 25 year long PPAs. The terms of the PPA are set
in the final stage, whose participants are chosen on the basis of their bids in a
qualification stage. This stage is an open descending price auction (uniform pricing)
with multiple winners, and a market clearing rule which gives residual award to
the winner with highest bid. The stylized fact and semi-separating equilibrium of a
descending clock version of this auction show that bidders with higher project size
bid less aggressively. I show that public knowledge of opponent’s project sizes, finite
reserve bid, and the market clearing rule are drivers of this result. These results
clearly show that these auctions are allocating inefficiently.

The paper then attempts to suggest improvements in this design. This is done
empirically, in order to measure the possible reductions in inefficiency and SECI’s
payment. For this purpose, the paper first deals with an identification problem. Here
the identification of parameters is enabled by observation of bids of bidders with zero
award, who bid their cost. These costs provide us order statistics, albeit only of the
bidders whose costs is below a threshold in the qualification stage, which poses a
sample selection problem. This problem can be resolved by exploiting the density
of probability of observing a certain order statistic, conditional on the observation
of cost of the worst ranked qualifying bidder. In addition to the order statistics, we
can also observe identities all the bidders mapped to their bids. The identification
then follows from the literature on dutch auctions with observation of winning bid,
winner, and set of all the bidders.

Using the aforementioned conditional density, I create a likelihood function, and
estimate the parameters using MLE. The estimates show that Indian energy firms
are likely to have lower expected cost. The firms which are incorporated by financial
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institutions, with the sole aim of making some financial returns, are likely to have
lower variance. With these parameters, I conduct a counterfactual exercise and show
that switching from uniform pricing of open auction to a sealed bid discriminatory
pricing, or VCG mechanism, can reduce SECI’s payoffs as well as inefficient alloca-
tion probability. The results show that VCG performs the best in terms of efficiency
as well as SECI’s payoff. The paper ends with a policy suggestion on moving to a
VCG mechanism.

To conclude, in this paper, I study auction design in a very important market. In
doing so, I also contribute to literature in auction theory and empirics. The paper
opens a lot of different avenues for research on India’s energy markets. For example,
research questions can focus on effect of auction design choices on investment incen-
tives. While VCG does away with underinvestment, we can’t say if the currently
used SECI mechanism has such incentives or not. Fabra, Fehr, and Frutos (2011)
has answered such a question in complete information setting. Extending this work
to IPV setting would be theoretically interesting and can help with empirically mea-
suring the extent of underinvestment. More empirical questions try to understand
why Indian energy firms have lower cost than others, or on the differences in costs
realised in North India vis-a-vis South India in locations with similar solar and wind
conditions. Another question can be on the impact of changes in the duties on solar
panel and module imports. The Indian renewable energy market is still growing,
and researching these and other related questions can help shape it’s final form; and
also provide insights for other countries.
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A Proofs for section 5

Throughout the proof, assume that q1 > q2 denote lim
x→x−

u(x) by u(x−) and lim
x→x+

u(x)

by u(x+) for any function u(x).

A.1 Proof of Lemma 1

Proof. First I prove that the equilibrium should satisfy the specified conditions.
Then, I show that there is no unilateral deviation from a bid suggested by these
properties (only if direction), for any type of any bidder (if direction).

Only if direction:
Condition (i), Monotonicity of bidding functions: It is sufficient to show that
payoff of a player satisfies Single crossing property of incremental returns (SCP IR).
Consider any 2 arbitrary cost types of Bi, ci and c′i such that ci < c′i and 2 bids bi, b′i
such that bi < b′i. Then the property is satisfied if πi(b

′
i, ci) − πi(bi, ci) > 0 implies

πi(b
′
i, c

′
i)−πi(bi, c

′
i) > 0 when the opponent B−i bids with a non-decreasing strategy.

Without loss of generality, assume i = 1.

π1(b
′
1, c1; b2) = (M − q2)(b

′
1 − c1)Pr(b2 < b′1) + q1E(b2 − c1|b2 > b′1)Pr(b2 > b′1)

π1(b1, c1; b2) = (M − q2)(b1 − c1)Pr(b2 < b1) + q1E(b2 − c1|b2 > b1)Pr(b2 > b1)

(2)
where b2 is the random variable denoting B2’s bid.

∴A(b′1, b1, c1, b2) ≡ π1(b
′
1, c1; b2)− π1(b1, c1; b2)

=(M − q2)[(b
′
1 − c1)Pr(b2 < b′1)− (b1 − c1)Pr(b2 < b1)]

+ q1[E(b2 − c1|b2 > b′1)Pr(b2 > b′1)−E(b2 − c1|b2 > b1)Pr(b2 > b1)]

(3)
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Suppose A(b′1, b1, c1, b2) > 0.,

π1(b
′
1, c

′
1; b2)− π1(b1, c

′
1; b2)

=(M − q2)[(b
′
1 − c′1)Pr(b2 < b′1)− (b1 − c′1)Pr(b2 < b1)]

+ q1[E(b2 − c′1|b2 > b′1)Pr(b2 > b′1)−E(b2 − c′1|b2 > b1)Pr(b2 > b1)]

=(M − q2)[(b
′
1 − c1 + c1 − c′1)Pr(b2 < b′1)− (b1 − c1 + c1 − c′1)Pr(b2 < b1)]

+ q1[E(b2 − c1 + c1 − c′1|b2 > b′1)Pr(b2 > b′1)−E(b2 − c1 + c1 − c′1|b2 > b1)Pr(b2 > b1)]

=A(b′1, b1, c1, b2) + (M − q2)(c1 − c′1)[Pr(b2 < b′1)− Pr(b2 < b1)] + q1(c1 − c′1)[Pr(b2 > b′1)− Pr(b2 > b1)]

=A(b′1, b1, c1, b2) + (M − q2)(c1 − c′1)[Pr(b2 < b′1)− Pr(b2 < b1)] + q1(c1 − c′1)[−Pr(b2 < b′1) + Pr(b2 < b1)]

=A(b′1, b1, c1, b2)︸ ︷︷ ︸
>0

+(M − q2 − q1)︸ ︷︷ ︸
<0

(c1 − c′1)︸ ︷︷ ︸
<0

[Pr(b2 < b′1)− Pr(b2 < b1)]︸ ︷︷ ︸
>0 as b′1>b1

(4)
Pr(b′1 = max{b′1, b2})−Pr(b1 = max{b1, b2}) > 0. This, along with A(b′, b, c1, b2) >

0, c1 < c′1, M < q1 + q2, ensures that above expression above is positive. Thus,
π1(b

′
1, c

′
1; b2) − π1(b1, c

′
1; b2) > 0, which proves the SCP-IR. Thus, equilibrium is

monotonic.

Condition (ii), continuity and atomlessness

Continuity: For this, I proceed in two steps. First I show that their bidding functions
have same range, and then I show that the range is a convex subset of real line.
Given the monotonicity of equilibrium, the only type of discontinuity is the one
where for some type c1 of B1, β1(c

−
1 ) = b′ < β1(c1) = b. Suppose first, that

bidders bidding function ranges are different. Then, as shown in the figure 12a,
∃c̃2 s.t. β2(c̃2) ∈ [b′, b]. The expected payoff of this type of B2 is π2(β2(c̃2), c̃2) =

(β2(c̃2)− c̃2)(M − q1)Pr(b1 < β2(c̃2)) + q2E(b1 − c̃2|b1 > β2(c̃2))Pr(b1 > β2(c̃2)).

If she bids b, her expected payoff is π2(b, c̃2) = (b − c̃2)(M − q1)Pr(b1 < b) +

q2E(b1 − c̃2|b1 > b)Pr(b1 > b). The monotonicity of B1’s strategy and a hole in
her bid distribution on (b′, b), and atomlessness of cost distribution, Pr(b1 > b) =

Pr(b1 > β2(c̃2)) and Pr(b1 < b) = Pr(b1 < β2(c̃2)). Thus, π2(b, c̃2)−π2(β2(c̃2), c̃2) =

(b− β2(c̃2))(M − q1)Pr(b1 < b) + q2E(b1 − c̃2|b1 > b)Pr(b1 > b) > 0.

Now suppose that there is a range of bids [b′, b), b′ < b which are bid by none of
the bidder and all bids below b′ are being bid by some type of each bidder. This is
shown in Figure 12b. Consider a type c1 − ϵ, ϵ → 0 of B1 such that her type c1 bids
b. Given the monotonicity, this type would bid b′ − δ(ϵ), δ(ϵ) → 0 when ϵ → 0. Her
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payoff is:

π1(b
′ − δ(ϵ); c1 − ϵ, b2)

=(M − q2)(b
′ − δ(ϵ)− c1 + ϵ)Pr(b2 < b′ − δ(ϵ)) + q1E(b2 − c1 − ϵ(ϵ)|b2 > b′ − δ(ϵ))Pr(b2 > b′ − δ(ϵ))

If she instead bids b, her payoff is:

π1(b; c1 − ϵ, b2)

=(M − q2)(b− c1 + ϵ)Pr(b2 < b) + q1E(b2 − c1 + ϵ|b2 > b)Pr(b2 > b)

=(M − q2)(b− c1 + ϵ)Pr(b2 < b′) + q1E(b2 − c1 + ϵ|b2 > b′)Pr(b2 > b′)

=(M − q2)(b− c1 + ϵ)(Pr(b2 < b′ − δ(ϵ)) + Pr(b′ − δ(ϵ) < b2 < b′))

+ q1(E(b2 − c1 − ϵ|b2 > b′ − δ(ϵ))Pr(b2 > b′ − δ(ϵ))−E(b2 − c1 − ϵ|b′ − δ < b2 < b′)Pr(b′ − δ(ϵ) < b2 < b′))

where the last expression follows from law of total expectations.

b′

b

c1 c̃2 c

β2(c̃2)

βi(c) β1(c)

β2(c)

(a)

b′

b

c1

β1(c)
β2(c)

c

βi(c)

(b)

Figure 12: Discontinuity of bidding functions

π1(b; c1 − ϵ, b2)− π1(b
′ − δ(ϵ); c1 − ϵ, b2)

=(b− b′ + δ(ϵ))(M − q2)Pr(b2 < b′ − δ(ϵ)) + ((M − q2)(b− c1 + ϵ)

− q1E(b2 − c1 − ϵ|b′ − δ(ϵ) < b2 < b′))Pr(b′ − δ(ϵ) < b2 < b′)

∴ lim
ϵ→0

π1(b; c1 − ϵ, b2)− π1(b
′ − δ(ϵ); c1 − ϵ, b2) = (b− b′)(M − q2)Pr(b2 < b′) > 0

Thus, there is a strictly positive deviation for B1 when the bids do not have full
support. Similar deviation can be shown for B2 too. Thus, the result on common
and full support for bids of both players tells us that their strategies are continuous.
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No atom at bids below bR: In any equilibrium, a cost type of a bidder has to be
locally indifferent between the bid suggested by equilibrium and a bid slightly lower
or higher. Suppose that in equilibrium, B1 has an atom of probability mass d > 0

at some bid b1 < bR. If opponent bids continuously. Then B2 has a type c2 + δ,
where δ → 0 and type c2 bids b1. This is exhibited in Figure 13. If this type decides
to reduce her bid to b−1 , then her marginal cost is almost zero, but marginal benefit
is (q1 + q2 −M)d(b1 − c2). Thus, B2 of this type (c+2 ) can profit by bidding slightly
lower than b1. Thus, there is no equilibrium where there is an atom for b < bR.

βi(c)

c

b1

c1

β1(c) β2(c)

c2

Figure 13: Deviation if there is an atom in bids

From (i) and (ii), we know that βi(c) is invertible for all c as long as βi(c) ̸= bR.
Thus, for each i, I can define the functions ϕi(b),∀i as follows:

ϕi(b) :=

β−1
i (b) for b < bR

Inf{c : βi(c) = bR} for b = bR

ϕi(b) gives the cost type of Bi who would some bid b < bR in equilibrium. If the
bidder bids bR, then ϕi(b) gives the smallest cost type of Bi who would bid bR.
Since the equilibrium bids are continuous monotonic, ϕi(b)s are also continuous and
monotonic.

Condition (iii), bid of c = 0: can be argued as follows. Suppose without loss of
generality that in equilibrium β1(0) =

¯
b but β2(c∗) =

¯
b for some c∗ > 0 and

¯
b > 0.

Given the strict monotonicity of ϕi(b) , the type c∗+ϵ, of B2 would bid some
¯
b+δ(ϵ).
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As ϵ → 0, δ(ϵ) → 0 by continuity. It’s payoff is:

π2(
¯
b+ δ(ϵ), c∗ + ϵ)

=(M − q1)F (ϕ1(
¯
b+ δ(ϵ)))(

¯
b+ δ(ϵ)− c∗ − ϵ) + q2

∫ bR

¯
b+δ(ϵ)

(x− c∗ − ϵ)dF (ϕ1(x))

=(M − q1)(F (ϕ1(0)) + δ(ϵ)f(ϕ1(
¯
b) + (δ(ϵ))2

∂2

∂b2
F (ϕ1(

¯
b)) + . . . )(

¯
b+ δ(ϵ)− c∗ − ϵ)

+ q2

∫ bR

¯
b+δ(ϵ)

(x− c∗ − ϵ)dF (ϕ1(x))

=q2

∫ bR

¯
b

(x− c∗ − ϵ)dF (ϕ1(x))

− (q1 + q2 −M)(
¯
b− c∗ − ϵ)

(
δ(ϵ)f(ϕ1(

¯
b))ϕ′

1(¯
b)︸ ︷︷ ︸

>0

+(δ(ϵ))2
∂2

∂b2
F (ϕ1(

¯
b)) + . . .︸ ︷︷ ︸

→0 as ϵ→0

)
+ (M − q1)F (ϕ1(

¯
b))︸ ︷︷ ︸

=0

(
¯
b+ δ(ϵ)− c∗ − ϵ) + (M − q1) δ(ϵ)

(
δ(ϵ)f(ϕ1(

¯
b) + (δ(ϵ))2

∂2

∂b2
F (ϕ1(

¯
b)) + . . .

)
︸ ︷︷ ︸

→0 as ϵ→0

<q2

∫ bR

¯
b

(x− c∗ − ϵ)dF (ϕ1(x))

<q2

∫ bR

¯
b

(x− c∗ − ϵ)dF (ϕ1(x))

=π2(
¯
b− γ, c∗ + ϵ) , ∀γ ≥ 0

Thus, there is a strictly profitable deviation for the type c∗ + ϵ. This deviation
doesn’t exist if

¯
b = 0. Similar deviation can be shown if β2(0) =

¯
b > β1(0) = 0.

Therefore, in equilibrium βi(0) = 0 for both i.

Condition (iv), First order condition: Suppose that B−i is playing as per so-
lution curve ϕ−i(b), which satisfies equation (1) (when replacing β−1

i (c) with ϕi(b).
Then, the payoff of Bi of type ci when she bids bi is:

πi(bi; ci, ϕ−i(b)) = F (ϕ−i(bi))(bi − ci)(M −
∑
j ̸=i

qj) + qi

∫ bR

bi

(x− ci)dF (ϕ−i(x)) (5)

Any interior optimum of this payoff will satisfy the first order condition of optimi-
sation, which is:

f(ϕ−i(bi))ϕ
′
−i(bi)(bi − ci)(M − q−i − qi) + F (ϕ−i(bi))(M − q−i) = 0

48



Replacing ci by ϕi(b), we can obtain (1) for Bi.

Condition (v), bid of c̄ which states that B1 partially pools at bR in equilibrium.
For this, I first prove that there can be at most one intersection between ϕ2(b)

and ϕ1(b) and that intersection should be as in Figure 14. Then I show that even
in the immediate right neighbourhood of 0, ϕ2(b) > ϕ1(b), which shows that any
intersection as shown in the figure is not possible. These two together imply that
ϕ2(b) > ϕ1(b) for b > 0.

For first step, note that at any point of intersection of ϕ1(b) and ϕ2(b), one can see

from (1) that
ϕ′
2(b)

ϕ′
1(b)

=
M − q2
M − q1

> 1. This implies that ϕ2(b) should intersect that

ϕ1(b) just once and from below and left of it, as show in figure 14. The inequality
ϕ′
2(b) > ϕ′

1(b) will not be satisfied at the second point of intersection. If ϕ1(b) < ϕ2(b)

for some b < bR, there will be no intersection between the two functions for bids
above this b. Suppose that ∃bt ≤ bR, such that ϕ1(b) ≥ ϕ2(b),∀b ≤ bt with equality
only at b = bt (as shown in Figure 14). Since ϕ2(b) can intersect ϕ1(b) only from left
and below, all other cases are ruled out.

bt

ϕi(b)

b

ϕ1(c)
ϕ2(c)

Figure 14: Possible intersection between ϕ1(b) and ϕ2(b)

From (iii), we know that as c → 0+, β1(c) → 0+, β2(c) → 0+. This implies that
β1(c) → β2(c) as c → 0+. From (i) and (ii), βi(c) is continuous and strictly mono-
tonic when c → 0+, which implies that ϕi(b) is defined for all b > 0, and that
lim
b→0+

ϕi(b) = 0.

For the second step, consider some δ → 0+ and suppose ϕi(δ/n) = 0 + ϵi(δ/n)

for some natural number n ≥ 1. Then, for each i, ϕi(δ) − ϕi(δ/n) = n−1
n
δϕ′

i(δ) +
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(
n−1
n
δ
)2
ϕ′′
i (δ) + . . . Therefore,

ϕ′
2(δ)

ϕ′
1(δ)

=
ϕ2(δ)− ϕ2(δ/n)− n−1

n
δϕ′′

2(δ)− n−1
n

2
δ2ϕ′′′

2 (δ)− . . .

ϕ1(δ)− ϕ1(δ/n)− n−1
n
δϕ′′

1(δ)− n−1
n

2
δ2ϕ′′′

1 (δ)− . . .

=
ϵ2(δ)− ϵ2(δ/n)− n−1

n
δϕ′′

2(δ)− n−1
n

2
δ2ϕ′′′

2 (δ)− . . .

ϵ1(δ)− ϵ1(δ/n)− n−1
n
δϕ′′

1(δ)− n−1
n

2
δ2ϕ′′′

1 (δ)− . . .

(6)

From FOCs (equations 1),
ϕ′
2(δ)

ϕ′
1(δ)

=
M − q2
M − q1

σ(0) + ϵ1(δ)σ
′(0) + ϵ21(δ)σ

′′(0) + . . .

σ(0) + ϵ2(δ)σ′(0) + ϵ22(δ)σ
′′(0) + . . .

δ − ϵ2(δ)

δ − ϵ1(δ)
.

Thus,

M − q2
M − q1

σ(0) + ϵ1(δ)σ
′(0) + ϵ21(δ)σ

′′(0) + . . .

σ(0) + ϵ2(δ)σ′(0) + ϵ22(δ)σ
′′(0) + . . .

δ − ϵ2(δ)

δ − ϵ1(δ)

=
ϵ2(δ)− ϵ2(δ/n)− n−1

n
δϕ′′

2(δ)− n−1
n

2
δ2ϕ′′′

2 (δ)− . . .

ϵ1(δ)− ϵ1(δ/n)− n−1
n
δϕ′′

1(δ)− n−1
n

2
δ2ϕ′′′

1 (δ)− . . .

=⇒ M − q2
M − q1

=
(δ − ϵ1(δ))(ϵ2(δ)− ϵ2(δ/n)− n−1

n
δϕ′′

2(δ)− n−1
n

2
δ2ϕ′′′

2 (δ)− . . . )

(δ − ϵ2(δ))(ϵ1(δ)− ϵ1(δ/n)− n−1
n
δϕ′′

1(δ)− n−1
n

2
δ2ϕ′′′

1 (δ)− . . . )

σ(0) + ϵ2(δ)σ
′(0) + ϵ22(δ)σ

′′(0) + . . .

σ(0) + ϵ1(δ)σ′(0) + ϵ21(δ)σ
′′(0) + . . .

As n → ∞, n−1
n

→ 1 and ϵi(δ/n) → 0, ∀i. Furthermore, σ(k)(c)

σ(n)(c)
= 0 for k < n, where

σ(k)(c) is the kth differential of reversed hazard rate function.

∴
M − q2
M − q1︸ ︷︷ ︸

>1

=
(δ − ϵ1(δ))(ϵ2(δ)− δϕ′′

2(δ)− δ2ϕ′′′
2 (δ)− . . . )

(δ − ϵ2(δ))(ϵ1(δ)− δϕ′′
1(δ)− δ2ϕ′′′

1 (δ)− . . . )︸ ︷︷ ︸
>1, iff ϵ2(δ)>ϵ1(δ) as δ→0

σ(0) + ϵ2(δ)σ
′(0) + ϵ22(δ)σ

′′(0) + . . .

σ(0) + ϵ1(δ)σ′(0) + ϵ21(δ)σ
′′(0) + . . .︸ ︷︷ ︸

>1, iff ϵ2(δ)>ϵ1(δ)

The relation above would hold if and only if ϵ2(δ) > ϵ1(δ). This implies that ϕ2(b) >

ϕ1(b) in the immediate right neighbourhood of 0. Hence, there is no point of inter-
section between ϕ2(b) and ϕ1(b) for b > 0. Thus, for any b ∈ (0, bR], ϕ2(b) > ϕ1(b)

and, in particular, ∃c∗ < c̄, s.t. ϕ1(b
R) = c∗ < ϕ1(b

R) = c̄. The bidding function is
then:

β1(c) =

ϕ−1
1 (c), for c ≤ c∗

bR, for c∗ < c < c̄

β2(c) = ϕ−1
2 (c),∀c ∈ (0, c̄]
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If direction:
The conditions give equilibrium, if there is no deviation for any type ci of any player
Bi, from the bid recommended by any function βi(ci) which satisfies the properties
in Lemma 1. While the calculations here are for i = 1, the proof for i = 2 is the
same. Suppose ϕ1(b1) = c1, where 0 < b1 < bR.

Define Π1(b
′
1, b1, c1;ϕ2(b)) := π1(b

′
1, c1;ϕ2(b))−π1(b1, c1;ϕ2(b)) as the change in payoff

of B1 if she bids b′1 ∈ [0, bR] instead of b1.

Given the continuity, monotonicity and full support of bids, ∃ a type c′1 such that
ϕ1(b

′
1) = c′1. Since ϕ1(b) satisfies 1,

∂

∂b′1
Π1(b

′
1, b1, c1;ϕ2(b))

=
∂

∂b′1
π1(b

′
1, c1;ϕ2(b))

=(M − q2 − q1)(b
′
1 − c1)f(ϕ2(b

′
1))ϕ

′
2(b

′
1) + (M − q2)F (ϕ2(b

′
1))

=(M − q2 − q1)(b
′
1 − c′1 + c′1 − c1)f(ϕ2(b

′
1))ϕ

′
2(b

′
1) + (M − q2)F (ϕ2(b

′
1))

=(c′1 − c1)(M − q2 − q1)f(ϕ2(b
′
1))ϕ

′
2(b

′
1)

= (ϕ1(b
′
1)− ϕ1(b1))︸ ︷︷ ︸

>(<)0 if b′1>(<)b1

(M − q2 − q1)︸ ︷︷ ︸
<0

f(ϕ2(b
′
1))ϕ

′
2(b

′
1)︸ ︷︷ ︸

>0

Π1(b1, b1, c1;ϕ2(b)) = 0. If b′1 > b1, then ∂
∂b′1

Π1(b
′
1, b1, c1;ϕ2(b)) < 0. This implies that

any deviation from b1 to a higher bid would lead to reduction in expected payoff.
Similarly, when b′1 < b1, ∂

∂b′1
Π1(b

′
1, b1, c1;ϕ2(b)) > 0, which would ultimately imply

that any deviation from b1 to a lower bid will lead to reduction in expected payoff.
Thus, there is no strictly positive deviation for type c1 of B1 from the strategy
recommended by conditions of Lemma 1. Since c1 was chosen arbitrarily, I can infer
that no such deviation can be found for any other type. Similar calculations can be
done for B2. The absence of any unilateral deviation implies that any function βi(c)

satisfying the conditions of the Lemma gives a bayes nash equilibrium.

A.2 Proof of Theorem 1

To show that equilibrium exists and is unique amounts to showing that there is
exactly one pair of two functions β1(c) and β2(c) such that the conditions of Lemma 1
are satisfied. To do so, I proceed in following steps:
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1. Consider an Initial Value Problem P as follows:

ϕ′
2(b) =

M − q2
q1 + q2 −M

1

σ(ϕ2(b))(b− ϕ1(b))

ϕ′
1(b) =

M − q1
q1 + q2 −M

1

σ(ϕ1(b))(b− ϕ2(b))

(7)

ϕ2(b
R) = c̄, and ϕ1(b

R) = c∗ ≤ c̄. Cauchy Lipschitz theorem implies that ∃a
such that a unique solution to P exists for interval [bR − a, bR + a] because
bR > c̄.

2. Show that this solution is positive, and monotonic and extend the local solution
to the interval (0, bR].

3. Consider another IVP P̂ , with which is same as P in step 1, except that
ϕ̂1(b

R) = ĉ∗. Show that it’s solution (ϕ̂1(b), ϕ̂2(b)) is such that ϕ̂2(b) <

ϕ2(b),∀b ∈ (0, bR), ϕ̂1(b) < ϕ1(b),∀b ∈ (0, bR].

4. Using 2 and 3, show that there is exactly one value of c∗ (and hence one IVP)
such that lim

b→0+
ϕ1(b) = lim

b→0+
ϕ2(b) = 0, where ϕi(b)s solve P .

5. Extend ϕi(b)s to include 0 in the domain by setting ϕ1(0) = ϕ2(0) = 0.

6. Invert ϕi(b)s. Note that the domain of ϕ−1
1 (c) is [0, c∗]. Thus, βi(c) are defined

as:

β1(c) =

ϕ−1
1 (c) 0 ≤ c ≤ c∗

bR c∗ < c ≤ c̄.

β2(c) = ϕ−1
2 (c)

Step 1 is obvious from Cauchy Lipschitz theorem. I now prove steps 2,3, and 4.
Steps 5 and 6 do not require any proof.

Proof of step 2: Solution to P is positive and monotonic

Proof. To see the positivity, rewrite (7) as:

∂

∂b
ln(F (ϕ2(b)) =

M − q2
q1 + q2 −M

1

(b− ϕ1(b))

∂

∂b
ln(F (ϕ2(b)) =

M − q1
q1 + q2 −M

1

(b− ϕ2(b))
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The solution of P exists, and it should satisfy:

F (ϕ2(b)) = exp

(
M − q2

q1 + q2 −M

1

(bR − c̄)
−
∫ bR

b

M − q2
q1 + q2 −M

1

(b− ϕ1(b))

)
> 0

F (ϕ1(b)) = exp

(
M − q1

q1 + q2 −M

1

(bR − c∗)
−
∫ bR

b

M − q1
q1 + q2 −M

1

(b− ϕ2(b))

)
> 0

F (ϕi(b)) > 0, only if ϕi(b) > 0.

Monotonicity can be shown through a contradiction argument. Since ϕ1(b) and
ϕ2(b) are solutions to ODEs on some interval containing bR, they are continuous
and differentiable in that interval.

Thus, if the solution was not monotonic, then ∃bi ∈ (0, bR] such that ϕ′
i(bi) = 0.

Under the assumption that there is a small atom at 0, F (c) > 0∀c ∈ (0, c̄]. Thus,
ϕ′
i(bi) = 0 only if |ϕ−i(bi)| = ∞. This violates the boundedness theorem. Thus, the

solutions ϕ1(b) and ϕ2(b) are monotonic. Moreover, this monotonicity is positive.
To see this, note that bR > c̄ =⇒ bR − ϕ2n(b

R) > 0 =⇒ ϕ′
1n(b

R) > 0. A negative
monotonicity would contradict this.

The monotonicity result from step 2 implies that ϕ′
i(b) > 0, which requires that

b > ϕ−i(b) for each i. Thus, as b → 0, positivity implies that ϕi(b) → 0 in order to
satisfy the monotonicity.

Proof of step 3: At most 1 IVP where lim
b→0

ϕ1(b) = lim
b→0

ϕ2(b) = 0

Proof. Consider 2 IVPs, P and P̂ , with following ODEs:

ϕ′
2(b) =

M − q2
q1 + q2 −M

1

σ(ϕ2(b))(b− ϕ1(b))

ϕ′
1(b) =

M − q1
q1 + q2 −M

1

σ(ϕ1(b))(b− ϕ2(b))

with initial values
ϕ2(b

R) = c̄, and ϕ1(b
R) = c∗ ≤ c̄ for P ;

ϕ̂2(b
R) = c̄, and ϕ̂1(b

R) = ĉ∗ for some ĉ∗ ∈ (c∗, c̄) for P̂ .

Since ϕ2(b
R) = c̄ = ϕ̂2(b

R), σ(ϕ̂2(b
R)) = σ(ϕ2(b

R)). Using FOCs, it can be inferred

that ϕ̂′
2(b

R)(bR − ϕ̂1(b
R)) = ϕ′

2(b
R)(bR − ϕ1(b

R)) =
M − q2

(q1 + q2 −M)σ(ϕ2(bR))
which
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Figure 15: Intersecting solution curves

implies ϕ̂′
2(b

R)(bR− ĉ∗) = ϕ′
2(b

R)(bR−c∗). Since ĉ∗ > c∗, bR− ĉ∗ < bR−c∗. Therefore,
ϕ̂′
2(b

R) > ϕ′
2(b

R). This implies that for any b in the immediate left-neighbourhood
of bR, ϕ̂2(b) < ϕ2(b).

Intersection between ϕ1(b) and ϕ̂1(b), as in figure 15a, is prohibited by uniqueness
of solution to IVPs having same initial value. Suppose for any b2t ∈ (0, bR), ϕ̂2(b)

and ϕ2(b) intersect as shown in the figure ??. Then, ϕ̂2(b2t) = ϕ2(b2t) and ϕ̂′
2(b2t) <

ϕ′
2(b2t), which imply that σ(ϕ̂2(b2t))ϕ̂

′
2(b2t) < σ(ϕ2(b2t))ϕ

′
2(b2t). From the FOCs, it

can then be inferred that b2t − ϕ̂1(b2t) > b2t − ϕ1(b2t), which implies that ϕ̂1(b2t) <

ϕ1(b2t). This requires an intersection between ϕ̂1(b) and ϕ1(b) at some point b1t ∈
(b2t, b

R). Thus, there are two solutions to the IVP defined by ODEs 7, and boundary
at points b1t and b2t, which violates the cauchy-lipschitz theorem of uniquenss of IVP
solution. Thus, ∀b ∈ (0, bR), ϕ̂2(b) < ϕ2(b).

Proof of Step 4:

Proof. I need to show that there is exactly one value of c∗ such that the solution
ϕi(b) to resultant IVP P satisfies lim

b→0
ϕi(b) = 0. To see this, note that the condition

ϕ̂1(b) > ϕ1(b)∀b ∈ (0, bR], and ϕ̂2(b) < ϕ2(b)∀b ∈ (0, bR) and ϕ̂2(b
R) = ϕ2(b

R),
and implies that ϕ̂2(b) − ϕ̂1(b) < ϕ2(b) − ϕ1(b)∀b > 0. Alongwith result of step 3,
this further implies that if ϕ2(bt) = ϕ1(bt) for some bt > 0, then ϕ̂2(b̂t) = ϕ̂1(b̂t)

for some b̂t > bt, where ϕ̂i(b) are solutions to P̂ . Since the choice of c∗ = ϕ1(b
R)

and ĉ∗ = ϕ̂1(b
R), where c∗ < ĉ∗ was arbitrary, this amounts to saying that the

x-coordinate of point of intersection of ϕ1(b) and ϕ2(b) is strictly increasing in c∗.
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Now, consider a function H(c) : [ι, c̄] → [ι, c̄] which maps c∗ to bt where ϕ2(bt) =

ϕ1(bt) for IVP with ϕ1(b
R) = c∗. This mapping is strictly positively monotonic.

Since the RHS of the differential equations (7) is continuous, the solution to these
equations is also continuous in the initial value c∗.22 The continuity of solutions with
respect to initial value further implies that the slopes, ϕ′

1(b) and ϕ′
2(b) also change

continuously.

If H(c∗t ) = bt for some c∗t , i.e., ϕ1(bt) = ϕ2(bt) when ϕ1(b
R) = c∗t , then ϕ′

2(bt)

ϕ′
1(bt)

= M−q2
M−q1

and ϕ2(b) − ϕ1(b) < 0 for b < bt since solution curves intersect just once. Now
consider IVP system P̃ the with same ODEs as (7), and slightly perturbed initial
value ϕ̃1(b

R) = c∗t − ω, ω → 0+. Given the continuity of IVP solution to initial
values, ϕ̃1(bt)− ϕ̃2(bt) = ϵ(ω) → 0, and ϕ̃′

2(bt)

ϕ̃′
1(bt)

→ M−q2
M−q1

. Continuity and monotonicity

of ϕ̃1(bt), ϕ̃2(bt), then imply that ∃δ(ϵ(ω)) → 0, such that ϕ̃1(bt − δ(ϵ(ω))) = ϕ̃2(bt −
δ(ϵ(ω))). Thus, H(ct −ω) = bt − δ(ϵ(ω)) for some δ(ϵ(ω)) → 0, thereby establishing
continuity of H(c).

So far, we have established continuity and strictly positive monotonicity of H(c).
Notice further that H(c̄) = c̄ because we can always set ϕ1(b

R) = ϕ2(b
R) = c̄ for the

IVP. Therefore, using Extreme Value Theorem we can say that H(c) will attain it’s
minimum, which is equal to ι, for exactly one value of c. This result holds ∀ι > 0,
and in particular for ι → 0. Thus, the solution to IVP given by equations (7),
ϕ1(b

R) = c∗, ϕ2(b
R) = c̄, is such that lim

b→0
ϕ2(b) = lim

b→0
ϕ1(b) = 0.

The proof of theorem is then completed by Steps 5 and 6, which themselves don’t
require any proof.

B 2 player extensions

In this section, I present two extensions with asymmetric cost information. In the
first extension the 2 bidders have cost distributions which can ordered as per their
Reversed Hazard Rates. In the second extension, I assume that the distribution of
one of the bidders is truncated version of that of another bidder. While both cases
enable me to extend the equilibrium result for the case with same cost distribution,
the second is important for the formalisation of 2P1F equilibrium characterisation.

22See Hirsch, Smale, and Devaney, 2012 chapters 7 and 17 for results on sensitivity analysis of
IVP.
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B.1 Different reversed hazard rates

Suppose ci
i.i.d∼ Fi(c), and ci ∈ [0, c̄] for each i. Denote reversed hazard of Fi(c) by

σi(c). Suppose that they can be ordered in terms of their reversed hazard rate, i.e
σi(c) < σ−i(c). Furthermore assume that lim

c→0+
σ′
i(c) = lim

c→0+
σ′
−i(c). Then, as before,

I can characterise the equilibrium in following lemma:

Lemma 2. For each Bi, βi(c) constitutes a non-trivial BNE of the asymmetric 2
player button auction with rationing if and only if it satisfies following properties:

(i) βi(c) is non-decreasing in c.

(ii) βi(c) is continuous and atomless for b < bR for both i.

(iii) βi(0) = 0 ,∀i.

(iv) For each player Bi, βi(c) solves:

σ−i(β
−1
−i (βi(c)))β

−1′

−i (βi(c))(βi(c)− c)(q1 + q2 −M) = (M − q−i) (8)

(v) If σ1(c)
σ2(c)

> M−q1
M−q2

,∀c, ∃c∗1 such that β1(c
∗
1) = bR ,∀c ∈ [c∗1, c̄], and β2(c̄) = bR. If

σ1(c)
σ2(c)

< M−q1
M−q2

,∀c, ∃c∗2 such that β2(c
∗
2) = bR ,∀c ∈ [c∗2, c̄], and β1(c̄) = bR.

Proof. Proof of (i), (ii), (iii), (iv), are same as in case with same cost distributions
for each bidder. For (v), I can proceed in the same way as before. Define ϕi as

ϕi(b) :=

β−1
i (b) for b < bR

Inf{c : βi(c) = bR} for b = bR

At any point of intersection of ϕ1(b) and ϕ2(b), I can write
ϕ′
2(b)

ϕ′
1(b)

=
(M − q2)σ1(ϕ1(b))

(M − q1)σ2(ϕ2(b))
.

If σ1(c)
σ2(c)

> M−q1
M−q2

,∀c, ϕ′
2(b) > ϕ′

1(b) at point of intersection. Given the assumption
lim
c→0+

σ′
i(c) = lim

c→0+
σ′
−i(c), I can use same arguments as in proof of Lemma 1 to show

that B1 will bunch.

However, if σ1(c)
σ2(c)

< M−q1
M−q2

,∀c, then B2 bunches at bR.

The result here implies that B2 will bunch only if the likelihood that she has higher
cost than B1 is large. This provides a larger marginal benefit of reducing the bid,
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as there is now a higher probability of B2’s exit. If it is large enough, B1 would
be more aggressive as it offsets the effect of having a larger residual, which leads to
higher cost of competition.

Existence and uniqueness can be proved with steps similar to the case of same
distribution for both bidders.

B.2 Asymmetric support, same RHR

For each Bi, ci ∈ [0, c̄i]. σ(c) is same for both i for c ∈ [0,mini{c̄i}]. If other words,
cost distribution of one of the bidders is truncation of that of the other. Equilibrium
is characterised by the lemma below:

Lemma 3. For each Bi, βi(c) constitutes a non-trivial BNE of the 2 player asym-
metric button auction with rationing if only if it satisfies following properties:

(i) βi(c) is non-decreasing in c.

(ii) βi(c) is continuous and atomless for b < bR for both i.

(iii) βi(0) = 0 ,∀i.

(iv) For each player Bi, βi(c) solves:

σ−i(β
−1
−i (βi(c)))β

−1′

−i (βi(c))(βi(c)− c)(q1 + q2 −M) = (M − q−i) (9)

(v) ∃∆ such that if c̄2 − c̄1 < ∆, ∃c∗1 such that β1(c) = bR ,∀c ∈ [c∗1, c̄1] and
β2(c̄2) = bR, else, ∃c∗2 such that β2(c) = bR ,∀c ∈ [c∗2, c̄2] and β1(c̄1) = bR

Proof. Proof of (i), (ii), (iii), (iv) are same as in case with same cost distributions
for each bidder. As before, define ϕi(b) as inverse of βi(c). For (v), it can be seen
in the same way as in proof of Lemma 1 that ϕ2(b) > ϕ1(b),∀b > 0 for a given set
of least upper bounds (LUBs) of support of cost distribution, {c̄1, c̄2}. Consider a
bid δ/n, where δ → 0+ and n ≥ 1 is some natural number. Then ϕi(δ/n) = ϵi(δ/n)

such that ϵi(δ/n) → 0. Therefore, as in 2P0F, I can write

ϕ′
2(δ)

ϕ′
1(δ)

=
ϕ2(δ)− ϕ2(δ/n)− δ2κ2(δ, δ/n)

ϕ1(δ)− ϕ1(δ/n)− δ2κ1(δ, δ/n)
=

ϵ2(δ)− ϵ2(δ/n)− δ2κ2(δ, δ/n)

ϵ1(δ)− ϵ1(δ/n)− δ2κ1(δ, δ/n)
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where κi(.) is a bounded function. From the FOCs, I can further infer that:

ϕ′
2(δ)

ϕ′
1(δ)

=
M − q2
M − q1

σ(ϕ1(δ)

σ(ϕ2(δ)

δ − ϵ2(δ)

δ − ϵ1(δ)

=⇒ ϵ2(δ)− ϵ2(δ/n)− δ2κ2(δ, δ/n)

ϵ1(δ)− ϵ1(δ/n)− δ2κ1(δ, δ/n)
=

M − q2
M − q1

σ(ϕ1(δ)

σ(ϕ2(δ)

δ − ϵ2(δ)

δ − ϵ1(δ)

=⇒ M − q2
M − q1

=
ϵ2(δ)

ϵ1(δ)

δ − ϵ1(δ)

δ − ϵ2(δ)

ϵ2(δ)− ϵ2(δ/n)− δ2κ2(δ, δ/n)

ϵ1(δ)− ϵ1(δ/n)− δ2κ1(δ, δ/n)

(10)

Using the same reasoning as in Appendix A.1, I can conclude that ϵ2(δ) > ϵ1(δ)

If c̄1 > c̄2, B1 would bunch because ϕ2(b
R) = c̄2 which needs to be higher than

ϕ1(b
R). This would imply that ϕ1(b

R) < c̄2 < c̄1.

Consider the case where c̄1 ≤ c̄2. Consider two pairs of supremum of support of
(c1, c2), (c̄1, c̄1) and (c̄1, ˆ̄c2) such that ˆ̄c2 > c̄1. Denote the corresponding equilibrium
inverse bid functions generated from these suprema as ϕi(b) and ϕ̂i(b) respectively.
From Lemma 1, we know that ϕ1(b

R) = c∗ < c̄1 and ϕ2(b
R) = c̄1 and that lim

b→0+
ϕi(c) =

0 for both i.

With regards to ϕ̂i(b), there are 2 possibilities- either ϕ̂2(b
R) > ϕ2(b

R) = c̄1 or
ϕ̂2(b

R) = ĉ∗2 < ϕ2(b
R) = c̄1.

Let’s consider the first case. Suppose ∃bt s.t. ϕ̂2(bt) = ϕ2(bt), then ϕ̂′
2(bt) > ϕ′

2(bt).
This implies that σ(ϕ̂2(bt))ϕ̂

′
2(bt) > σ(ϕ2(bt))ϕ

′
2(bt), which implies that ϕ̂1(bt) >

ϕ1(bt). This, further implies that ϕ̂1(b) > ϕ1(b), ∀b > 0. Otherwise there are two
solutions to IVP characterised by ODEs given by 9, and boundary values given
by point of intersection of ϕi(b), ϕ̂i(b) for each i, defined over any compact interval
in (0, bR] containing the point of intersection. This violates the Cauchy-Lipschitz
theorem.

Next, let’s look at ϕi(b) and ϕ̂i(b) in the immediate neighbourhood of 0. For this, I
can write following, as in (11),

M − q2
M − q1

=
ϵ̂2(δ)

ϵ̂1(δ)

δ − ϵ̂1(δ)

δ − ϵ̂2(δ)

ϵ̂2(δ)− ϵ̂2(δ/n)− δ2κ̂2(δ, δ/n)

ϵ̂1(δ)− ϵ̂1(δ/n)− δ2κ̂1(δ, δ/n)
,

where κ̂i(.) is a bounded function. Above implies that ϕ̂2(b) > ϕ̂1(b). I can further
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infer that:

ϵ2(δ)

ϵ1(δ)

δ − ϵ1(δ)

δ − ϵ2(δ)

ϵ2(δ)− ϵ2(δ/n)− δ2κ2(δ, δ/n)

ϵ1(δ)− ϵ1(δ/n)− δ2κ1(δ, δ/n)
=

ϵ̂2(δ)

ϵ̂1(δ)

δ − ϵ̂1(δ)

δ − ϵ̂2(δ)

ϵ̂2(δ)− ϵ̂2(δ/n)− δ2κ̂2(δ, δ/n)

ϵ̂1(δ)− ϵ̂1(δ/n)− δ2κ̂1(δ, δ/n)

=⇒ ϵ2(δ)

ϵ̂2(δ)

δ − ϵ̂2(δ)

δ − ϵ2(δ)

ϵ2(δ)− ϵ2(δ/n)− δ2κ2(δ, δ/n)

ϵ̂2(δ)− ϵ̂2(δ/n)− δ2κ̂2(δ, δ/n)
=

ϵ1(δ)

ϵ̂1(δ)

δ − ϵ̂1(δ)

δ − ϵ1(δ)

ϵ1(δ)− ϵ1(δ/n)− δ2κ1(δ, δ/n)

ϵ̂1(δ)− ϵ̂1(δ/n)− δ2κ̂1(δ, δ/n)

Above relation should hold for all n. As δ → 0 and κi(.) and κ̂i(.) are bounded
functions δ2κi(δ, δ/n) ≈ 0 and δ2κ̂i(δ, δ/n) ≈ 0 for both i. Since both ϕi(b) and
ϕ̂i(b) converge to 0+ as b → 0+, I can further say that ϵi(δ/n) ≈ ϵ̂i(δ/n) as n → ∞.
If ϵ̂2(δ) > (<)ϵ2(δ), then LHS is above (below) 1. Thus, RHS will be above (below)
1 only if ϵ̂1(δ) > (<)ϵ1(δ).

Now, if ϵ̂2(δ) < ϵ2(δ), then ϵ̂1(δ) < ϵ1(δ). Since ϕ̂1(bt) > ϕ1(bt), where bt is the point
of intersection of ϕ̂i(b) and ϕi(b), this implies that ϕ̂i(b) intersects ϕi(b) for both i

because ϕ̂2(b
R) = ˆ̄c2 > ϕ2(b

R) = c̄1. This situation is depicted in Figure 16. As
explained in appendix A2, such intersections violate the Cauchy-Lipschitz theorem
of unique solution. Thus, if ϕ̂2(b

R) = ˆ̄c2 > ϕ2(b
R) = c̄1, then ϕ̂2(b) > ϕ2(b)∀b > 0

which implies ϕ̂1(b) > ϕ1(b)∀b > 0 =⇒ ϕ̂1(b
R) = ĉ∗1 > ϕ1(b

R) = c∗.

ϕi(b)

b

ˆ̄c2

c̄1

ĉ∗1
c∗1

, ϕ̂i(b)

ϕ2(b)

ϕ̂2(b)

ϕ1(b)

ϕ̂1(b)

bR

Figure 16: Intersecting solution curves

The second case is where ϕ̂2(b
R) = ĉ∗2 < ϕ2(b

R) = c̄1. In this case, ϕ̂1(b
R) = c̄1, else

both players will have an atom, which is not possible in equilibrium. Thus, here,
ϕ̂1(b

R) > ϕ1(b
R). As before, I can show that any intersection between ϕ̂2(b) and

ϕ2(b) would imply intersection between ϕ̂1(b) and ϕ1(b). Hence, ϕ̂2(b) < ϕ2(b), and
ϕ̂1(b) > ϕ1(b), ∀b > 0. However, as shown above, this inequality wouldn’t hold for
the bids close to 0. Thus, this case leads to contradictions and hence, is not possible.

Therefore, when if the supremum of support of c2 is higher, i.e., ˆ̄c2 > c̄2, ϕ̂2(b) >

ϕ2(b), and ϕ̂1(b) > ϕ1(b), ∀b > 0.
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Define a function M(c̄2) : [c̄1,∞) → R
+ such that M(c̄2) maps LUB of support of

c2 to ϕ1(b
R), where c̄1 is LUB of an arbitrary support of c1. Since the choice of ˆ̄c2

above is arbitrary, we can say that M(c̄2) > 0 is an increasing function. Continuity
can be argued in the same way as in proof of Theorem 1 in Appendix A.2. Thus,
for a given c̄1, as c̄2 increases from c̄1, c∗ increases, and the size of B1’s atom at bR

reduces. The maximum value of c∗ can be c̄1, which corresponds to atom size of
0. Due to monotonicity and continuity of M(c̄2), ∃c̄T2 such that M(c̄T2 ) = c̄1. Then
for c̄2 ∈ [c̄1, c̄

T
2 ), B1 bunches at bR and for c̄2 > c̄T2 , B2 would bunch. This holds

true regardless of the value of
¯
c1. I can thus define ∆ ≡

¯
cT2 −

¯
c1, such that B1(B2)

bunches if
¯
c2 < (>)

¯
c1 +∆. This proves (v).

This result here has similar intuition as in previous extension. B2 would bunch at
bR only if it is likely to have costs much higher than that of B1. This extension
is important not only for robustness checks, but also for formalising equilibrium in
case with 2 small and 1 very small player.

Finally, I establish existence and uniqueness of this PBE in order to have character-
isation of equilibrium of 2P1F case.

Theorem 2. Equilibrium defined by Lemma 3 exists and is unique.

Proof. From Lemma 3, it can be inferred that for some given values of c̄1, c̄2, only
one of the bidders, B1 or B2 will be bunching.

The boundary value problem which gives equilibrium bid function is characterised by
the differential equation 9, and boundaries given by ϕ1(0) = ϕ2(0), and ϕ2(b

R) = c̄2

when c̄2 > c̄1 + ∆, and ϕ1(b
R) = c̄1 otherwise. Comparing to the boundary value

problem for 2P0F case, it can be noticed that the differential equation and left
boundary are the same, while right boundary can be different.

From the proof of Theorem 1, we already know that equilibrium exists and is unique
if the right boundary is ϕ2(b

R) = c̄2. Moreover, same arguments can be applied to
the case where the right boundary is ϕ1(b

R) = c̄1.
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C 3 player extension: 2 small and 1 very small bid-

der

Suppose 3 bidders B1, B2, and B3 have quantities q1, q2, and q3 respectively, such
that, q1 > q2 > q3, q1 + q2 > M but q1 + q3 < M and q2 + q3 < M . Thus, B1 and
B2 can together cover the whole demand. For B3, it is dominant to bid her cost,
for the reasons same as in section 5.1.1. In this game, exit of B1 or B2 will end the
game, but exit of B3 will start a new subgame between the other two. As before,
there are equilibria which require crazy types but the analysis here will focus on the
semi-separating equilibrium which don’t require such types. This equilibrium is also
the perfect bayesian equilibrium of this game.

Denote the set of all players by N , and set {B1, B2} by A2. In this section Bi refers
to the elements of A2 and B−i is the element of A2 \ Bi. For i ∈ {1, 2}, denote
the equilibrium bid function of Bi by βi,N (c) in the subgame with all players, and
βi,A2(c) in the subgame started by B3’s exit. b denotes the vector of bids of all
the players. If a bidder in A2 exits at any bid, she gets a strictly positive quantity
award. As such, these bidders can be called partially rationed as opposed to fully
rationed bidder, B3. A partially rationed bidder Bi bids bi, and the other partially
rationed bidder bids b−i, and B3 bids b3, her payoff when her type is ci is:

πi(bi; ci,b) =(M − q−i − q3)(bi − ci)Pr(bi = maxj{bj})

+ qiE(b−i − ci|b−i > b3, b−i > bi)Pr(b−i = maxj{bj})

+ E(π∗
i,A2(b3)|bi < b3, b−i < b3)Pr(b3 = maxj{bj})

where π∗
i,A2(b3) is the payoff for Bi in the subgame started by B3’s exit.

β3,N (c) = c. B1 and B2 best respond to that and to each other in equilibrium, which
is characterised in the following lemma:

Lemma 4. β3,N (c) = c. βi,N (c) and βi,A2(c) for i ∈ {1, 2}, give a PBE if and only
if:

(i) βi,N (c) is non-decreasing in c.

(ii) βi,N (c) is continuous and atomless for b < bR for both i.

(iii) βi,N (0) = 0 ,∀i.
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(iv) ∀i, βi,A2(ci), solve following differential equations:

(π∗
i,A2(b; ci)− (M − q−i − q3)(βi,N (ci)− ci))

f(βi,N (ci))

F (βi,N (ci))
1b≤c̄

+ (βi,N (ci)− ci)(
∑
j

qj −M)
f(β−1

−i,N (βi,N (ci)))β
−1′

−i,N (βi,N (ci))

F (β−1
−i,N (βi,N (ci)))

= M − q−i − q3

(11)

where π∗
i,A2(b; ci) is the payoff of Bi in the subgame started with exit of B3.

(v) ∃c∗1 ≤ c̄ such that β1,N (c) = bR,∀c ∈ [c∗1, c̄]. β2,N (c̄) = bR if bR > c̄ and
lim
c→c̄−

β2,N (c) = bR if bR = c̄.

(vi) βi,A2(c) for i ∈ {1, 2} are given by semi-seperating equilibrium in the subgame
started by B3’s exit at a bid b, which is characterised in Lemma 3 in Appendix
B.2.

Proof. See Appendix C.1.

PBE described here looks the same that of section 5.1.2, except that there is a kink
at b = c̄. The intuition behind a similar equilibrium as in case with 2 small bidders is
that B3’s presence affects both B1 and B2 in the same way. It reduces their residual
capacity by the same amount and the marginal probability of B3’s exit at any bid is
same for both the bidders. Thus, B1 is still less reluctant to compete vis-a-vis B2.

The proof is also similar, except for some additional steps for (i) and (v). For (v),
I show that there will be at most one point of intersection between β1(c) and β2(c).
At any point of intersection,

β′
1,N (c)

β′
2,N (c)

=
M−q2−q3−(π∗

1,A2(b,c)−(M−q2−q3)(b−c))σ(b)

M−q1−q3−(π∗
2,A2(b,c)−(M−q1−q3)(b−c))σ(b)

for b ≤ c̄.
If B3 were to exit at bid b pertaining to the point of intersection, then a subgame
same as 2P0F starts with b as reserve. As we know from Lemma 1(v), B1 of type c

pertaining to this bid, will also exit at b in this subgame. This gives us the values
for π∗

i,A2(b, c) for each i, which are such that the aforementioned slope ratio is above
1. Thus, there is only one possible point of intersection between β1,N and β2,N , and
that point is (0, 0) for reasons same as in section 5.1.2.

Furthermore, as I show in appendix, the PBE is such that in the subgame, B2 would
be bunching. This result eases the analysis for existence and uniqueness, as it gives
explicit expressions of continuation values.

Looking at the equilibrium characteristics, it can be noticed that apart from FOC,
every other property is same that of equilibrium in 2 players. FOC here is such
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that LHS is not continuous, unlike previous case. The key condition leading to
uniqueness and existence in that case was that the solution to the boundary value
problem for different boundaries is such that ϕ2(b) is lower if ϕ1(b) is higher for a
given boundary (as in Figure 7). Although, this condition still holds, the lack of
continuity leads to negative result on existence of pure strategy PBE.

If bR > c̄, there is a kink in the bidding function at c̄. In this case, B2 becomes
more aggressive on the margin at c̄. The best response for B1 is, then, to be less
aggressive in absolute manner, unless the quantities have some very specific values.
This creates discontinuity in B1’s bidding function, by a logic similar to 2P0F. This
violates property (i) of BNE described in Lemma 4. Thus, in such a case, we can
only have trivial BNE. However, such a problem doesn’t exist when bR = c̄. Thus,
the result on existence and uniqueness of equilibrium doesn’t extend to this case
when bR > c̄.

Theorem 3. If bR > c̄, equilibrium described by Lemma 4 may not always exist, but
when it exists, it is unique. If bR ≤ c̄, the equilibrium exists and is unique.

Proof. See Appendix C.2.

C.1 Proof of Lemma 4

Proof. For the very small bidder B3, it is weakly dominant to bid her cost. The
reason is same as for 1P1F case. The proof proceeds in the way similar to that
in 2P0F (Appendix A2). However, there are some additional nuances involved in
proving property (i) and (v).

As in Section A.1, I show (i) condition by proving that a player’s expected payoff
satisfies SCP-IR property, when opponent is playing as per an increasing strategy.
As before, I will show it for B1. Consider any two types c1, c

′
1 of B1, such that

c1 < c′1, and any two arbitrary bids b1, b′1, where b1 < b′1. To show monotonicity, all
I need to show is that when B2 follows a non-decreasing strategy, if π1(b

′
1, c1; b2, c3)−

π1(b1, c1; b2, c3) > 0, then π1(b
′
1, c

′
1; b2, c3)− π1(b1, c

′
1; b2, c3) > 0, where b2 is random

variable (RV) denoting B2’s bid, and c3 is RV for B3’s cost type (and equivalently,
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her bid).

π1(b
′
1, c1; b2, c3) =(M − q2 − q3)(b

′
1 − c1)Pr(b′1 = max{b′1, b2, c3})

+ q1E(b2 − c1|b2 = max{b′1, b2, c3})Pr(b2 = max{b′1, b2, c3})

+E(π∗
1,A2(c3, c1)|c3 = max{b′1, b2, c3})Pr(c3 = max{b′1, b2, c3})

π1(b1, c1; b2, c3) =(M − q2 − q3)(b1 − c1)Pr(b1 = max{b1, b2, c3})

+ q1E(b2 − c1|b2 = max{b1, b2, c3})Pr(b2 = max{b1, b2, c3})

+E(π∗
1,A2(c3, c1)|c3 = max{b1, b2, c3})Pr(c3 = max{b1, b2, c3})

(12)

Denote π1(b
′
1, c1; b2, c3)−π1(b1, c1; b2, c3) by A(b′1, b1, c1, b2, c3), or simply, A. Suppose

that A > 0 always. Furthermore,

π1(b
′
1, c

′
1; b2, c3) =(M − q2 − q3)(b

′
1 − c′1)Pr(b′1 = max{b′1, b2, c3})

+ q1E(b2 − c′1|b2 = max{b′1, b2, c3})Pr(b2 = max{b′1, b2, c3})

+E(π∗
1,A2(c3, c

′
1)|c3 = max{b′1, b2, c3})Pr(c3 = max{b′1, b2, c3})

π1(b1, c
′
1; b2, c3) =(M − q2 − q3)(b1 − c′1)Pr(b1 = max{b1, b2, c3})

+ q1E(b2 − c′1|b2 = max{b1, b2, c3})Pr(b2 = max{b1, b2, c3})

+E(π∗
1,A2(c3, c

′
1)|c3 = max{b1, b2, c3})Pr(c3 = max{b1, b2, c3})

(13)
which implies,

π1(b
′
1, c

′
1; b2, c3) =(M − q2 − q3)(b

′
1 − c′1 + c1 − c1)Pr(b′1 = max{b′1, b2, c3})

+ q1E(b2 − c′1 + c1 − c1|b2 = max{b′1, b2, c3})Pr(b2 = max{b′1, b2, c3})

+E(π∗
1,A2(c3, c

′
1)|c3 = max{b′1, b2, c3})Pr(c3 = max{b′1, b2, c3})

+E(π∗
1,A2(c3, c1)|c3 = max{b′1, b2, c3})Pr(c3 = max{b′1, b2, c3})

−E(π∗
1,A2(c3, c1)|c3 = max{b′1, b2, c3})Pr(c3 = max{b′1, b2, c3})

π1(b1, c
′
1; b2, c3) =(M − q2 − q3)(b1 − c′1 + c1 − c1)Pr(b1 = max{b1, b2, c3})

+ q1E(b2 − c′1 + c1 − c1|b2 = max{b1, b2, c3})Pr(b2 = max{b1, b2, c3})

+E(π∗
1,A2(c3, c

′
1)|c3 = max{b1, b2, c3})Pr(c3 = max{b1, b2, c3})

+E(π∗
1,A2(c3, c1)|c3 = max{b1, b2, c3})Pr(c3 = max{b1, b2, c3})

−E(π∗
1,A2(c3, c1)|c3 = max{b1, b2, c3})Pr(c3 = max{b1, b2, c3})

(14)
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∴π1(b
′
1, c

′
1; b2, c3)− π1(b1, c

′
1; b2, c3)

=A+ (M − q2 − q3)(c1 − c′1)Pr(b′1 = max{b′1, b2, c3})− (M − q2 − q3)(c1 − c′1)Pr(b1 = max{b1, b2, c3})

+ q1E(c1 − c′1|b2 = max{b′1, b2, c3})Pr(b2 = max{b′1, b2, c3})− q1E(c1 − c′1|b2 = max{b1, b2, c3})Pr(b2 = max{b1, b2, c3})

+E(π∗
1,A2(c3, c

′
1)|c3 = max{b′1, b2, c3} − π∗

1,A2(c3, c1)|c3 = max{b′1, b2, c3})Pr(c3 = max{b′1, b2, c3})

−E(π∗
1,A2(c3, c

′
1)|c3 = max{b1, b2, c3} − π∗

1,A2(c3, c1)|c3 = max{b1, b2, c3})Pr(c3 = max{b1, b2, c3})
(15)

From Lemma 3, I can write continuation value in the subgame following B3’s exit,
π∗
1,A2(c3, c1), as:

π∗
1,A2(c3, c1) = Max

b′′1≤c3

[
(M − q2)(b

′′
1 − c1)

F (ϕsg
2 (b′′1))

a(c3)
+ q1

∫ c3

b′′1

(x− c1)
dF (ϕsg

2 (x))

a(c3)

]
where ϕsg

2 (b) is given by Lemma 3 in Appendix A.3.2 and a(c3) denotes the proba-
bility that B2’s cost type is from that subset of [0, c̄] which bids less than c3 in the
subgame with preceding B3’s exit. I can further write,

π∗
1,A2(c3, c1) =Max

b′′1≤c3

[
(M − q2)(b

′′
1 − c1 + c′1 − c′1)

F (ϕsg
2 (b′′1))

a(c3)
+ q1

∫ c3

b′′1

(x− c1 + c′1 − c′1)
dF sg(ϕ2(x))

a(c3)

]
=⇒ π∗

1,A2(c3, c1) ≤Max
b′′1≤c3

[
(M − q2)(x− c′1)

F (ϕsg
2 (b′′1))

a(c3)
+ q1

∫ c3

b′′1

(x− c′1)
dF (ϕsg

2 (x))

a(c3)

]
+Max

b′′1≤c3

[
(M − q2)(c

′
1 − c1)

F (ϕsg
2 (b′′1))

a(c3)
+ q1

∫ c3

b′′1

(c′1 − c1)
dF (ϕsg

2 (x))

a(c3)

]
=⇒ π1(c3, c

′
1)− π1(c3, c1) ≥−Max

b′′1≤c3

[
(M − q2)(c

′
1 − c1)

F (ϕsg
2 (b′′1))

a(c3)
+ q1

∫ c3

b′′1

(c′1 − c1)
dF (ϕsg

2 (x))

a(c3)

]
(16)

Since we have supposed that B2 has non-decreasing strategies in the subgame before
B3’s exit, and Lemma 3(i) states that ϕsg

2 (x) is an increasing function, (16) implies

π1(c3, c
′
1)− π1(c3, c1) ≥ −Max

b′′1≤c3

[
(M − q2)(c

′
1 − c1)

F (ϕsg
2 (b′′1))

a(c3)
+ q1(c

′
1 − c1)

a(c3)− ϕsg
2 (b′′1)

a(c3)

]
=⇒ π1(c3, c

′
1)− π1(c3, c1) ≥ −q1(c

′
1 − c1)

(17)
where the last line follows from the idea that this objective function will be max-
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imised when b′′1 = 0.

π1(b
′
1, c

′
1; b2, c3)− π1(b1, c

′
1; b2, c3)

≥ A+ (M − q2 − q3)(c1 − c′1)Pr(b′1 = max{b′1, b2, c3})− (M − q2 − q3)(c1 − c′1)Pr(b1 = max{b1, b2, c3})

+ q1(c1 − c′1)Pr(b2 = max{b′1, b2, c3})− q1(c− c1)Pr(b2 = max{b1, b2, c3})

+ q1(c1 − c′1)Pr(c3 = max{b′1, b2, c3})− q1(c− c1)Pr(c3 = max{b1, b2, c3})

= A+ (M − q2 − q3)(c1 − c′1)Pr(b′1 = max{b′1, b2, c3})− (M − q2 − q3)(c1 − c′1)Pr(b1 = max{b1, b2, c3})

+ q1(c1 − c′1)Pr(b′1 ̸= max{b′1, b2, c3})− q1(c1 − c′1)Pr(b1 ̸= max{b1, b2, c3})

= A+ (M − q2 − q3)(c1 − c′1)Pr(b′1 = max{b′1, b2, c3})− (M − q2 − q3)(c1 − c′1)Pr(b1 = max{b1, b2, c3})

+ q1(c1 − c′1)(1− Pr(b′1 = max{b′1, b2, c3}))− q1(c1 − c′1)(1− Pr(b1 = max{b1, b2, c3}))

= A︸︷︷︸
>0

+(M − q2 − q3 − q1)︸ ︷︷ ︸
<0

(c1 − c′1)︸ ︷︷ ︸
<0

(Pr(b′1 = max{b′1, b2, c3})− Pr(b1 = max{b1, b2, c3}))︸ ︷︷ ︸
>0

(18)
Pr(b′1 = max{b′1, b2, c3}) − Pr(b1 = max{b1, b2, c3}) > 0 because b′1 > b1 and event
that b1 is greater than both b2 and c3 is subset of the event that b′1 is greater than
both b2 and c3. This along with A > 0, c1 < c′1, M < q1 + q2 + q3, b′1 > b1, ensures
that above expression is positive. This proves condition (i).

Proof of (ii), (iii) is same as 2P0F. (iv) can be shown from first order conditions of
optimisation of Bi’s payoff.

For (v), consider a point of intersection (bt, ct) of ϕ1,N and ϕ2,N where bt < c̄. At
this point,

ϕ′
2,N (bt)

ϕ′
1,N (bt)

=
M − q2 − q3 − (π∗

1,A2(bt, ct)− (M − q2 − q3)(bt − ct))σ(bt)

M − q1 − q3 − (π∗
2,A2(bt, ct)− (M − q1 − q3)(bt − ct))σ(bt)

(19)

Note that π∗
1,A2(bt, ct) is the payoff if B3 exits at bt. Since this is also a point of

intersection, the subgame started by B3’s exit is same as 2P0F, with ci ∈ [0, ct].
Moreover, at this point, both players have type c and the reserve bid for 2P0F is bt.
Thus, from Lemma 1, B1 of type ct bids bt, but is bunching and hence, gets residual.
B2 of type ct will also bid bt, but is not bunching. Consequently, their continuation
value at this point are π∗

1,A2(bt, ct) = (M − q2)(bt − ct), π∗
2,A2(bt, ct) = q1(bt − ct).

Thus, we can write

ϕ′
2,N (bt)

ϕ′
1,N (bt)

=
(M − q2 − q3)− q3(bt − ct)σ(bt)

(M − q1 − q3)− (
∑3

j=1 qj −M)(bt − ct)σ(bt)
> 1

where inequality arises because M − q1 − q3 < M − q2 − q3 while
∑

j qj −M > q3.
This implies that ϕ1(b) intersects at most once with ϕ2(b) for b > 0.
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The exit of B3 starts a subgame which is same as the extension in Appendix A.3.2.
In this subgame, either B1 or B2 is bunching. This further means that at any given
bid b, if B3 exits, then Lemma 3 tells us that either B1 or B2 of the type ϕi(b) would
also exit at b and get a residual.

Consider a bid δ/n, where δ → 0 and n ≥ 1 is some natural number. Then,
ϕi,N (δ/n) = ϵi(δ/n), where ϵi(δ) → 0 by continuity. Suppose that B1 is bunching in
the subgame started by B3’s exit at (δ). Then, in the same way as in other cases, I
can write the following from the FOCs of case 2P1F:

(δ − ϵ1(δ))(q3σ(δ) + (q1 + q2 + q3 −M)σ(ϵ2(δ))(ϵ2(δ)− ϵ2(δ/n)− δ2κ2(δ, δ/n))) = M − q2 − q3

(δ − ϵ2(δ))(q1 + q2 + q3 −M)(σ(δ) + σ(ϵ1(δ))(ϵ1(δ)− ϵ1(δ/n)− δ2κ1(δ, δ/n))) = M − q1 − q3

Using the fact that σ(0)/σ′(0) = 0 and that σ′(0) = ∞, I can infer the following
from above:

δ − ϵ1(δ)

δ − ϵ2(δ)

(q3δ + ϵ2(δ)(ϵ2(δ)− ϵ2(δ/n)− δ2κ2(δ, δ/n))(q1 + q2 + q3 −M))

(q1 + q2 + q3 −M)(δ + ϵ1(δ)(ϵ1(δ)− ϵ1(δ/n)− δ2κ1(δ, δ/n)))
=

M − q2 − q3
M − q1 − q3

(20)

ϵ2(δ)(ϵ2(δ)− ϵ2(δ/n)− δ2κ2(δ, δ/n))

ϵ1(δ)(ϵ1(δ)− ϵ1(δ/n)− δ2κ1(δ, δ/n))
≈ q3

q1 + q2 + q3 −M
< 1 (21)

Inputting (21) in (20), I obtain

δ − ϵ1(δ)

δ − ϵ2(δ)

ϵ2(δ)(ϵ2(δ)− ϵ2(δ/n)− δ2κ2(δ, δ/n))

ϵ1(δ)(ϵ1(δ)− ϵ1(δ/n)− δ2κ1(δ, δ/n))
=

M − q2 − q3
M − q1 − q3

> 1

As in 2P0F, above implies that ϵ2(δ) > ϵ1(δ). However that is a contradiction
because (21) implies otherwise. Thus, B1 can’t be bunching.

Now, consider the case where B2 is bunching in the subgame started by B3’s exit at
the bid δ, δ → 0. From the FOCs for 2P1F, I can infer following using facts that
σ(0)/σ′(0) = 0 and σ′(0) = ∞:

δ − ϵ1(δ)

δ − ϵ2(δ)

(q1 + q2 + q3 −M)(δ + ϵ2(δ)(ϵ2(δ)− ϵ2(δ/n)− δ2κ2(δ, δ/n))))

q3δ + ϵ1(δ)(ϵ1(δ)− ϵ1(δ/n)− δ2κ1(δ, δ/n)))(q1 + q2 + q3 −M)
=

M − q2 − q3
M − q1 − q3

(22)

ϵ2(δ)(ϵ2(δ)− ϵ2(δ/n)− δ2κ2(δ, δ/n))

ϵ1(δ)(ϵ1(δ)− ϵ1(δ/n)− δ2κ1(δ, δ/n))
=

q1 + q2 + q3 −M

q3
(23)
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Inputting (23) in (22) gives:

δ − ϵ1(δ)

δ − ϵ2(δ)

ϵ2(δ)(ϵ2(δ)− ϵ2(δ/n)− δ2κ2(δ, δ/n))

ϵ1(δ)(ϵ1(δ)− ϵ1(δ/n)− δ2κ1(δ, δ/n))
=

M − q2 − q3
M − q1 − q3

(24)

As argued before, above requires ϵ2(δ) > ϵ1(δ) (which, unlike the previous case, is
not in contradiction with (23)).

Finally, I need to check if the necessary and sufficient condition for B2’s bunching
in the subgame are also satisfied. The FOCs of 2P0F with asymmetric support
(Appendix A.3.2) imply that when B2 bunches ∃ ϵ̃2(δ) < ϵ2(δ) such that B2 pools
for costs between ϵ̃2(δ) and ϵ2(δ). Therefore,

σ(ϵ̃2(δ))

σ(ϵ1(δ))

ϕ′
2,A2(δ)

ϕ′
1,A2(δ)

δ − ϵ1(δ)

δ − ϵ̃2(δ)
=

M − q2
M − q1

which implies that
δ − ϵ1(δ)

δ − ϵ̃2(δ)

ϵ̃2(δ)(ϵ̃2(δ)− ϵ̃2(δ/n)− δ2κ̃2(δ, δ/n))

ϵ1(δ)(ϵ1(δ)− ϵ1(δ/n)− δ2κ1(δ, δ/n))
=

M − q2
M − q1

, where

κ̃2(.) is a bounded function. Since ϵ̃2(δ) < ϵ2(δ), this further implies

δ − ϵ1(δ)

δ − ϵ2(δ)

ϵ̃2(δ)(ϵ2(δ)− ϵ2(δ/n)− δ2κ̃2(δ, δ/n))

ϵ1(δ)(ϵ1(δ)− ϵ1(δ/n)− δ2κ1(δ, δ/n))
>

M − q2
M − q1

Given the convergence of ϕi(b) to 0 as b → 0 and its continuity, ϵi(δ/n) → 0

as n → ∞. Since, ϵ̃2(δ/n) < ϵ2(δ/n), ϵ̃2(δ/n) → 0 too as n → ∞. Thus, I

can infer that inequality
δ − ϵ1(δ)

δ − ϵ2(δ)

ϵ2(δ)

ϵ1(δ)

(ϵ2(δ)− ϵ2(δ/n)− δ2κ̃2(δ, δ/n)))

(ϵ1(δ)− ϵ1(δ/n)− δ2κ1(δ, δ/n)))
>

M − q2
M − q1

should hold when B2 is bunching in the subgame.

As Lemma 3 lists all the necessary and sufficient conditions for the equilibrium, and
this inequality is derived from the conditions listed in that lemma, it is a necessary
and sufficient condition for B2 to bunch in the subgame started by exit of B3. Since
M−q2−q3
M−q1−q3

> M−q2
M−q1

when q1 > q2 and δ2 ≈ 0 when δ → 0, equation (24) implies that
the condition is satisfied.

Therefore, ϵ2(δ) > ϵ1(δ) and given that at the point of intersection, solution curve of
B2 needs to have higher slope than that of B1; the curves will not intersect. Thus,
ϕ2,N (b) > ϕ1,N (b) ∀b > 0. This would imply that ϕ2,N (bR) = c̄ > ϕ1,N (bR) = c∗1.

Finally, notice that if B2 is bunching in subgame started by B3’s exit at any bid b,
she is bunching in such a subgame for all b. Else, there exists a bid bT such that for
b < bT , B2 bunches and above that, B1 bunches in the subgame. Thus, B1’s payoff
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in the subgame, π∗
1,A2(b; ci) would fall discontinuously at bT . As such, the FOC is

satisfied only if ϕ′
2,N (b−T ) < ϕ′

2,N (b+T ). Similarly, ϕ′
1,N (b−T ) > ϕ′

1,N (b+T ). The distance
between ϕ1(b) and ϕ2(b) would increase which, as per Lemma 3, implies that B2

should bunching in the subgame started by B3’s exit at bids above bT , which is a
contradiction. As such, there is no such bT . Thus, if B2 is bunching in subgame
started by B3’s exit at any bid b, she is bunching in such a subgame for all b.

C.2 Proof of Theorem 3

Proof. The proof is similar to that of Theorem 1 (Appendix A.2). To see this, notice
that the proof of Lemma 4 tells us that B2 is bunching in the subgame started by
B3’s exit. Thus, I can rewrite the FOCs as:

(q1 + q2 + q3 −M)(b− ϕ1,N (b)))σ(b)1b≤c̄

+ (b− ϕ1,N (b))(q1 + q2 + q3 −M)σ(ϕ2,N (b))ϕ′
2,N (b) = M − q2 − q3

q3(b− ϕ2,N (b))σ(b)1b≤c̄

+ (b− ϕ2,N (b))(q1 + q2 + q3 −M)σ(ϕ1,N (b))ϕ′
1,N (b) = M − q1 − q3

(25)

Suppose first that bR > c̄. For any b ∈ (c̄, bR], the FOCs are similar to that of
2P0F. The solution to any IVP given by those FOCs, and boundary conditions
ϕ2,N (bR) = c̄, and ϕ1,N (bR) = c∗ exists for all possible c∗ and is unique. Furthermore,
a structure similar to that of 2P1F also implies that if ϕ̂2,N (b) < ϕ2,N (b), then
ϕ̂1,N (b) > ϕ1,N (b) for solutions to any two IVPs which are same except for the
initial value ϕ1,N (bR).

Thus, for any 2 such IVPs, if ϕ̂2,N (b) < ϕ2,N (b), then ϕ̂2,N (b) < ϕ2,N (c̄) and ϕ̂1,N (b) >

ϕ1,N (c̄).

For any bids less than c̄, the equations 25 can be rewritten as:

(b− ϕ1,N (b)))(σ(b) + σ(ϕ2,N (b))ϕ′
2,N (b)) =

M − q2 − q3
q1 + q2 + q3 −M

(b− ϕ2,N (b))

(
q3

(q1 + q2 + q3 −M)
σ(b) + σ(ϕ1,N (b))ϕ′

1,N (b)

)
=

M − q1 − q3
q1 + q2 + q3 −M

(26)
Consider a sequence { δ

2n
}n∈N. For each n, consider two initial value problems Pn

and P̂n defined on [ δ
2n
, c̄]. The problems have same ODEs as (25) except that I
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replace function ϕi,N by ϕin,N . The initial values are ϕ2n,N (c̄) = c∗2n, ϕ1n,N (c̄) = c∗1n,
and ϕ̂2n,N (c̄) = ĉ∗2n, ϕ̂1n,N (c̄) = ĉ∗1n, where c∗2n > ĉ∗2n and c∗1n < ĉ∗1n.23

Now, I can proceed as in 2P0F to show that for each n there is a unique pair of
boundary conditions ϕ1n,N (c̄) = c∗1n and ϕ2n,N (c̄) = c∗2n, such that solution to Pn

is such that ϕ1n,N (0) = ϕ2n,N (0). Furthermore, it can be shown from arguments
similar to 2P0F that the solution is positively monotonic function. Thus, I can
argue that as n → ∞, we will get solution such that ϕin,N (0) → 0. The rest of
the argument is same as before to show that there is a unique pair of initial values
(c∗1, c

∗
2) such that lim

c→0+
ϕi,N (c) = 0.

Now consider the IVP below, defined on [c̄, bR]:

(b− ϕ1,N (b))(q1 + q2 + q3 −M)σ(ϕ2,N (b))ϕ′
2,N (b) = M − q2 − q3

(b− ϕ2,N (b))(q1 + q2 + q3 −M)σ(ϕ1,N (b))ϕ′
1,N (b) = M − q1 − q3

ϕi,N (c̄) = c∗i

This IVP has a unique solution. However, there is exactly one value of bR where the
solution is such that ϕ2,N (bR) = c̄. Thus, there is no guarantee that the equilibrium
exists. However, parameters are such that it does, it is unique.

Note however that when bR = c̄, there is a singularity on the right boundary also.
However, I can still proceed as in 2P0F barring some changes.The sequence of BVPs
with ODEs as in 25, would be defined on [ δ

2n
, c̄− δ

2n
] with boundaries ϕ2n,N (c̄− δ

2n
) =

c̄− δ
2n
+ δ2

4n
and ϕ1n,N ( δ

2n
) = ϕ2n,N ( δ

2n
). The solution to BVPs will generate a sequence

of non-decreasing functions ϕin,N (b). This can be used to generate another sequence
of functions win(b)n∈N defined as:

win(b) =


ϕin,N (c̄− δ

2n
), b ∈ [c̄− δ

2n
, c̄]

ϕin,N (b), b ∈ [ δ
2n
, c̄− δ

2n
]

ϕin,N ( δ
2n
), b ∈ [0, δ

2n
]

The rest of the argument leverages the monotone convergence theorem as in 2P0F,
to show that the lim

n→∞
win converges. Define ϕi,N (b) as lim

n→∞
win, which then implies

that lim
c→0+

ϕi,N (c) = 0 for each i, and lim
c→c̄−

ϕ2,N (c) = c̄.

23Case where c∗2n > ĉ∗2n and c∗1n > ĉ∗1n is of no interest because it violates the condition that if
ϕ̂2,N (b) < ϕ2,N (c̄), then ϕ̂1,N (b) > ϕ1,N (c̄).
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D Identification illustration

Fix a set N with |N | = 3 (suppressing t from notation). Suppose we observe
S = {(B1, q1, r1, q1), (B2, q2, r2, 0), (B3, q3, r3, 0)}, where r1 ≤ r2 < r3, B3 is the
marginal qualifier, and bidder identities are arbitrary. BL = {B2, B3}, r1 < c2, r2 =

c2, r3 = c3. Here, cost order statistics c(k:3) = ck, B
(k:3) = Bk where k ∈ {2, 3}.

Denote the CDF of the event that Bi bids order statistic ck:3 by Gk:3
i (.), and the

corresponding PDF by gk:3i (.). Adapting from Song (2006), the probability density
of observing that B2 bids second order statistic c2:3 = c2, conditional on B3 bidding
third order statistic c3:3 = c3 can be written as:

p
2|3:3
2|3 (c2|c2 ≤ c3;S) =

F1(c2|cI1 ≤ c̄I1(c
I
3, q3, q1))

F1(c3|cI1 ≤ c̄I1(c
I
3, q3, q1))

f2(c2|cI2 ≤ c̄I2(c
I
3, q3, q2)))

F2(c3|cI2 ≤ c̄I2(c
I
3, q3, q2)))

h3(c3 − cI3)

h3(c3 − cI3)

=

∫∞
−∞ h1(x)

F I
1 (c2−x)

H1(c̄I1(c
I
3,q3,q1))

dx∫∞
−∞ h1(x)

F I
1 (c3−x)

F I
1 (c̄

I
1(c

I
3,q3,q1))

dx

∫∞
−∞ h2(x)

fI
2 (c2−x)

F I
2 (c̄

I
2(c

I
3,q3,q1))

dx∫∞
−∞ h2(x)

F I
2 (c3−x)

F I
2 (c̄

I
2(c

I
3,q3,q1))

dx

=
F1(c2)

F1(c3)

f2(c2)

F2(c3)

= g2:22 (c2|c2 ≤ c3;S)
(27)

Corresponding CDF is:

G2:2
2 (c2|c2 ≤ c3) =

∫ c2

¯
c

F1(t|t ≤ c3)dF2(t|t ≤ c3)

=

∫ c2

¯
c

F1(t|t ≤ c3)F2(t|t ≤ c3)

F2(t|t ≤ c3)
dF2(t|t ≤ c3))

=

∫ c2

¯
c

Pr(c2:2 < t|t ≤ c3, B
2:2 = B2) + Pr(c2:2 < t|t ≤ c3, B

2:2 = B1)

F2(t|t ≤ c3)
dF2(t|t ≤ c3)

=

∫ c2

¯
c

(G2:2
2 (t|t ≤ c3) +G2:2

1 (t|t ≤ c3))d ln(F2(t|t ≤ c3))
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Differentiating with respect to c2, we get

F2(c2|c2 ≤ c3;S) = exp

(∫ c2

¯
c

dG2:2
2 (y|y ≤ c3;S)

G2:2
2 (y|y ≤ c3;S) +G2:2

1 (y|y ≤ c3;S)

)

G2:2
i (y|y ≤ c3;S), i = 1, 2 can be observed in the data, and hence we can identify

F2(c2|c2 ≤ c3;S). Same argument can be provided for any Fi(x|x ≤ cut;S), where
cut is the cost of marginal qualifier round of auction t. The result can extends to
the cases where observed order statistics are not adjacent. The identification here
is illustrated for the simplest possible case with 2 adjacent order statistics for the
ease of exposition.
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