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Abstract

Classi�cation systems group heterogeneous objects such as products into categories called

�codes� and de�ne what level of policy, such as tari�s, will be applied to each group. I develop

a theory of endogenous classi�cation and show that accounting for the motives underlying the

design of classi�cation systems has important implications for empirical research. I build a model

in which the choice of which things to group together re�ects the objectives of a policymaker.

A �ner classi�cation better targets policy but is harder to design and enforce. The degree to

which heterogeneous objects are grouped together will vary across codes within a classi�cation

system and may be systematically related to policies and attributes of interest to both the

econometrician and the policymaker. Taking the classi�cation of U.S. imports as a leading

example, I show that its design is consistent with this theory. Product codes vary greatly in

their size and speci�city � codes are more subdivided when tari�s are high, and when codes are

more subdivided goods within them are more similar. Heterogeneity in product attributes within

codes leads to large biases when estimating parameters such as demand and supply elasticities.

I show that the amount of heterogeneity and therefore the size of this bias is correlated with

tari�s as expected under a theory of endogenous classi�cation, and correcting it changes our

understanding of important empirical relationships such as the one between tari�s and demand

elasticities.

∗I thank Kyle Bagwell, Mostafa Beshkar, Renee Bowen, Swati Dhingra, Gene Grossman, Kyle Handley, Giovanni
Maggi, Eduardo Morales, Ezra Ober�eld, Ralph Ossa, Steve Redding, Paulo Somaini, Isaac Sorkin, Meredith Startz,
and Richard Startz for helpful comments, and gratefully acknowledge the hospitality of the International Economics
Section at Princeton University while working on an early version of this paper.
†Dartmouth College. Email: Matthew.W.Grant@Dartmouth.edu

1



1 Introduction

Classi�cation systems group objects into �codes� according to common features, such as product

type, industry, or occupation. A primary purpose of these systems is to de�ne the application of

policy. For instance, the de�nition of codes may determine which tari�s apply to which products or

which workers are covered under collective bargaining agreements. However, they also govern the

collection and transmission of government data that are commonly used by researchers � we often

observe data on international trade at the product code level and wages at the industry level. While

such systems aggregate objects that are heterogenous in their actual characteristics � for instance,

a single code in the trade data contains products with many di�erent barcodes � economists rarely

consider why classi�cations are designed as they are, or what the implications might be. To the

extent that we do, it is often viewed simply as a practical data cleaning challenge, such as how to

concord data sets in which de�nitions of codes change over time. In this paper, I introduce a theory

of endogenous classi�cation, and show empirically that the gap between how a classi�cation system

is designed by a policy maker and the way it is typically treated by the econometrician can matter

a great deal.

The classi�cations we see could have been de�ned di�erently. Why do we observe the aggregation

that we do? I begin by showing that a classi�cation system can be thought of as a tool for targeting

policy. I model the decision of a policymaker who simultaneously sets policy and chooses how to

group together objects into codes that de�ne how the policy will be applied. The model implies

that the extent of aggregation will vary within a single classi�cation system, in ways that are

systematically related to both policy and the underlying characteristics of the objects being classi�ed.

I take the classi�cation of traded goods in the United States as a leading example, and show that the

design and application of the system is consistent with this theory of classi�cation. This, in turn,

means that many empirical estimates that rely on data reported at the code level will not only be

biased, but that the extent of this bias will covary with policy. Accounting for the endogeneity of

the classi�cation system substantially changes the conclusions we reach about important parameters

used to estimate the gains from trade, and reverses the sign of the empirical relationship between

import elasticities and tari�s, restoring the relationship predicted by theory.

This paper is motivated by the observation that trade data are highly aggregated, and throughout

the paper I will take trade as an important example of a broader set of insights about classi�cation,

policy, and government data. The Harmonized Tari� Schedule (HTS) is used to classify products

imported into the United States and determines which tari� will be applied. Even at the �nest

widely available level of aggregation, imports into the U.S. are measured at the level of roughly

twenty thousand 10-digit HTS categories. For example, all men's cotton shirts fall under a single

code. As a consumer, it is clear that products within this category are far from uniform in price,

style, and so on. However, what is visible to the researcher are measures aggregated to the level

of the code: in 2015, the U.S. imported roughly 16 million kilograms of such shirts at a total cost

of about $1 billion, for a weighted average price of $66.39 per kg. This type of code-level weighted

average is the most common sort of data used in empirical trade research. While this research

typically takes codes as given, they are in fact far from uniform or constant. HTS 8-digit codes,
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which de�ne the application of tari�s, vary wildly in size, and the classi�cation changes frequently

� nearly half of codes changed at least once over the period 1989-2004 (Bernard, Jensen, Redding,

Schott (2009)).

To help explain these facts, I develop a model of endogenous classi�cation. While there is a

large literature devoted to modeling policy choices as a function of a policy maker's objective,

this literature has not previously considered the system that de�nes the mapping from policies

to objects as a choice variable. Decisions about how to de�ne the targeting of policy are a core

function of government and lawmaking. We can understand a classi�cation system as the outcome

of an optimization problem of a policy maker (who I refer to as the classi�er), who simultaneously

divides up a set of objects (e.g. traded products) into codes and chooses the level of a policy to

apply uniformly within each code.1 The policy maker may choose more or less broad categories in

order to trade o� the bene�ts of more �nely targeted policy against the costs of implementing a

more nuanced system. Because both the value of targeting and the e�ective costs of creating more

homogeneous codes may vary in di�erent parts of the object space, the coarseness of classi�cation

will vary along with the classi�er's objective. In the context of the HTS, this means that some codes

contain a relatively homogeneous set of products, while others are more heterogeneous.

I use several key insights to impose order on the problem. First, I obtain tractability by treating

the classi�er's payout on each classi�ed object as quadratic, which can be thought of as a second

order-approximation to a general objective. Second, I transform the problem to show that maximiz-

ing the objective is equivalent to minimizing the losses due to mistargeting that arise from setting

policy at the code level rather than treating every object separately, subject to the costs of de�n-

ing and enforcing the classi�cation. I show that the cost of policy mistargeting is related to the

heterogeneity of objects within each code, which is a weighted function of the covariances across

�properties� of each object that the policymaker may care about.

To microfound the costs of classi�cation, I distinguish between these "properties", which the

policymaker cares for policy, and �characteristics�, which the classi�er may or may not care about

per se but which are veri�able features that can be used to de�ne and enforce groups in practice.

Since the classi�er has to use de�nitions in terms of characteristics to control the way objects are

grouped in terms of their properties, the local relationship between characteristics and properties

will determine the di�culty (and hence costliness) of designing the classi�cation. For instance, the

classi�er may care about the elasticity of demand when setting tari�s, but since this is not readily

veri�able or enforceable in court, has to use characteristics such as the horsepower of an engine or the

thickness of a sheet of metal to de�ne codes in the classi�cation. To the extent that these veri�able

characteristics don't correspond perfectly to the properties of true interest, it will be di�cult and

costly for the classi�er to create homogenous codes that reduce policy mistargeting.

In equilibrium under the chosen classi�cation, within-code heterogeneity will be smaller in parts

of the object space where policy mistargeting is particularly costly to the classi�er and larger in the

1Although I focus on implications for measurement in this paper, the insight also applies to systems that de�ne
the application of policy but are not used in empirical research. For instance, in the U.S., income tax di�erentiates
between types of earnings (e.g., salary vs capital gains) and expenditures (e.g., regular expenditure vs. mortgage
interest or charitable giving). The U.S. Clean Air Act discriminates across types of sources (e.g., cars vs factories)
and regions (e.g., everywhere else vs non-attainment regions). Choices about how to de�ne the set of objects over
which aspects of these policies apply are analogous to the model I lay out below.
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parts of the object space where describing the classi�cation is more di�cult. For example, variation

in within-code elasticities of import demand will be particularly costly for the classi�er in HTS

codes with low average elasticities of import demand. Policies are set according to the average level

properties across objects in a code, so a low average elasticity in the code implies a high tari�, and

consequently ampli�es the costs of mistargeting.

Next, I derive some predictions of this theory of classi�cation that can be taken to data in an

international trade setting, and show that these insights apply to the HTS classi�cation system.

The model predicts that, in the absence of a policy targeting motive, there is no reason to create

additional codes, while when there is policy to be applied, the gains from additional subdivision

will be increasing in the level of the policy and the number or value of objects. Consistent with

these predictions, I show that the United States almost never subdivides codes when the applied

tari� is zero, while the number of subdivisions is increasing in the tari� and the size of trade �ows,

both in the cross-section and over time. The theory also predicts that there will be variation in

the extent of within-code heterogeneity across di�erent parts of the classi�cation system. Using

trade microdata that allow for �ner disaggregation of products than the HTS, I show that there is

substantial variation in the degree of heterogeneity within each code in terms of prices and import

shares. There is less within-code heterogeneity in parts of the HTS where the U.S. government uses

more codes to divide the product space. Consistent with the theory, this subdivision is �ner and

within-code heterogeneity is lower where tari�s are higher, both across codes and within codes over

time. These patterns strongly suggest that these codes are a conscious choice of the U.S. government

in service of government objectives.

Why does it matter that the classi�cation is designed with policy objectives in mind? In the �nal

section of the paper, I show how failing to account for the endogeneity of the classi�cation system

when using classi�ed data can substantially distort or even overturn the conclusions we reach from

empirical analysis. I examine a particular source of bias related to data aggregation, which arises

from taking a non-linear function of data averaged at the code level, and provide a formula for

correcting it to a second order. This bias arises in a speci�c case that is crucial in empirical trade:

estimating import elasticities from trade data using average weighted import prices and shares at

the HS code level. When I implement a lower-bound correction for this bias using trade microdata,

I �nd that the elasticities of import demand and foreign export supply are substantially downward

biased � the median corrected estimates are nearly twice as large as the uncorrected ones. This

di�erence has quantitatively important implications � for instance, using the method of Arkolakis,

Costinot, and Rodriguez-Clare (2012), the implied gains from trade are 58% lower once this bias is

accounted for. Critically, the size of the bias also varies in systematic ways across products, and

is negatively correlated with the level of tari�s. The empirical trade literature has been puzzled

by a positive correlation between elasticities and tari�s across products, which is contrary to most

theoretical models of tari�-setting. When the bias due to endogenous classi�cation is corrected, the

sign �ips and we obtain the relationship predicted by theory.

The motivation for and empirical work in this paper builds on a small literature in trade that has

noted how changes in classi�cation have been used to manipulate policy and has documented frequent

changes in the classi�cation system. Gowa and Hicks (2018) observe that in a series of bilateral U.S.
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agreements, the U.S. split its tari� lines to reduce free-riding on via MFN. Similarly, Gulotty (2018)

shows that tari� lines were subdivided in order to balance a trade agreement between the U.S. and

France in the early 19th century. Tavares (2006) �nds that reclassi�cation can be a �sneaky� way of

raising tari�s when tari�s are bound (by moving goods from low-tari� to high-tari� lines) and �nds

that reclassi�cation is correlated with lobbying. Schott (2003), Schott (2004), and Hallak and Schott

(2011) explore how goods classi�ed under the same code actually vary substantially across source

countries. Bernard, Redding, Jensen, and Schott (2009) and Pierce and Schott (2012) document that

classi�cations change frequently over time; the changes in classi�cation suggest that classi�cations

are not perfect descriptions of goods: if multiple codes can be derived from a single code when it is

subdivided or multiple codes can be merged together into a single one, then the trade codes must

aggregate together multiple di�erent goods.

My main contribution is to explain theoretically how we can think of a classi�cation system as an

endogenous choice of a policy maker, and what this tells us about why we observe the classi�cation

that we do. The spirit of my approach is most similar to that of the literature on endogenously

incomplete contracts (see Dye (1985); Battigalli and Maggi (2002)). This literature contains some

analogies to the theory in this paper, showing why contracts are more detailed regarding states of

the world that are more important to the parties of the contract. I also contribute to a longstanding

literature on tari�-setting objectives, including (among many others) Baldwin (1987), Grossman

and Helpman (1994, 1995), Bombardini (2008), and Ossa (2011), and empirical investigations in

Goldberg and Maggi (1999), Gawande and Bandyopadhyay (2000), and McCalman (2004). While

this literature models policy choices as a function of a policymaker's objective, it has not previously

considered the system that de�nes the mapping from policies to objects.

In dealing with biases in empirical estimation that arise from classi�cation systems, this paper

shares some applications with work on bias from aggregation or mismeasurement. Aggregation bias

has been shown to be important in the case of trade elasticities by Imbs and Mejean (2015), who

�nd lower elasticites at the industry level than at more disaggregate levels of classi�cation, and

in price adjustment of imports to exchange rate shocks in Imbs, Mumtaz, Ravn, and Rey (2005).

Understanding the extent of the bias I document is related to the concept of �aggregation factors�

in the aggregation bias literature. By providing a theory of the source of the aggregation itself � the

classi�cation system � I show not only why this bias arises but why the extent of bias is likely to be

correlated with the parameters of interest in ways that further confound empirical analysis. I show

that the bias can be corrected to a second order using only some limited moments describing the

underlying heterogeneity in a way that is related to the work of Chesher (1991) on errors-in-variables.

Finally, I make use of techniques and estimates from a long literature focused on estimating

trade elasticities, which originated with Feenstra (1994). Other works include Broda and Weinstein

(2006), Broda, Green�eld, and Weinstein (2017), Broda, Limao, and Weinstein (2008), Soderberry

(2015), Hottman, Redding and Weinstein (2016), Soderberry (2018), and Redding and Weinstein

(2018). Recent work estimating consumption elasticities has been trending towards using scanner

bar code data, in which every product is a di�erent observation. Assuming that barcodes yield

observations at the level of the data generating process, this reduces or eliminates the sort of bias I

identify in this paper (see, e.g. Broda and Weinstein (2008) for an early use of bar code data in this
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literature, although there are many other examples including papers previously listed). However,

this data is generally limited in scope and does not cover goods that comprise a large fraction of

trade. As a result, the majority of the empirical trade literature continues to rely on estimates based

on HTS-classi�ed data.

2 The HTS classi�cation

I take the Harmonized Tari� Schedule (HTS) as a leading example of the design and implications of

classi�cation systems. In this section, I begin by introducing the design of the HTS and exploring

some of the empirical patterns in its application that motivate the need for a model of endogenous

classi�cation.

2.1 Institutional context of the HTS

The HTS is a set of codes used to classify imports into the United States. Codes are divided into

broad groups called �sections�, which are the coarsest level of classi�cation. Each section contains

2-digit codes, called �chapters�. In turn, chapters are divided into one or more 4-digit �headings�,

6-digit �subheadings�, 8-digit �tari� lines�, and 10-digit �statistical reporting numbers�.

The �rst six digits of all codes (i.e. sections, chapters, headings, and subheadings) are called the

Harmonized System (HS) and are shared by nearly all countries.2 The HS codes are administered by

the World Customs Organization (WCO), an international organization that is jointly managed by

its members. The broad objective of the WCO is trade facilitation, and it has a number of activities

beyond managing the HS codes. One objective of the HS system is to facilitate classi�cation of

traded goods, so that an exporter who knows the classi�cation its good falls under in one country

will be able to classify the good in a di�erent country. The HS codes also make it easier to compare

trade �ows across countries.

The last four digits of all HTS codes are unilateral choices of the U.S. government, and are

managed by the U.S. International Trade Commission (U.S. ITC). The U.S. ITC changes the set of

tari� lines following changes in trade policy in order to implement the policy changes. For example,

as a consequence of the trade policies of the Trump Administration, nearly 200 pages of additional

classi�cations and their descriptions were added to the HTS.3 The 8-digit code determines the tari�

treatment of the good, while 10-digit codes permits tracking of trade �ows in greater detail within

the 8-digit tari� line.

The classi�cation of goods in the HTS is hierarchical. Goods are �rst assigned to the section that

�ts best; next, they are assigned to the best-�tting chapter within that section, and so forth. Thus it

is possible to classify any traded product, regardless of whether there is a code that �ts the good in

question well or not.4 Changes to the HTS are sometimes interpreted in the literature as re�ecting

2With the exception of Section 22, which is Chapters 98 and 99.
3Similarly, the U.S. ITC releases revised editions of the HTS as the policies change; a typical year might see 2 or

fewer revised editions; 2018 saw 16 such revisions, 2019 saw 20 revisions, and there were 28 revisions in 2020. This
was a direct consequence of the frequent changes to trade policy during the Trump Administration

4In fact, it's possible to classify goods that do not exist. Were the reader to come into possession of a Martian
heat-ray gun from H.G. Wells's The War of the Worlds, it would be classi�ed under 9301.90.90.90.
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changes in the underlying set of products being described (see, e.g., Broda and Weinstein (2006)).

While changes may indeed be motivated by the arrival of new product varieties, it is important to

note that this is not mechanically true, since hierarchical classi�cation means all new goods can be

�t into the existing set of codes. Instead, splitting or adding codes is necessarily a conscious decision

by the U.S. ITC that it is worthwhile to alter the classi�cation to better capture the current set of

varieties.

A related point is that codes do not generally correspond to unique product varieties, although

they are often treated that way in practice in the empirical trade literature for lack of a better

approach. In fact, multiple real-world products or product varieties are almost always aggregated

into a single code. The level at which one de�nes a �true� product and might ideally want to observe

data may depend on the application � the barcode level might be a good approximation in many

cases � but the HTS code level is essentially always an aggregation of these underlying objects. It is

therefore sensible to talk about heterogeneity within a code, where heterogeneity means di�erences

in the characteristics of the underlying products or varieties that are being aggregated together. For

instance, in the case of men's cotton shirts presented in the introduction, it is clear that there is

variation in the actual price of di�erent types of shirts within the code, as well as in their color,

style, quality, and so on.

2.2 Changes in trade classi�cations over time

Both the HTS and the HS classi�cations undergo changes. Changes to the HS codes occur infre-

quently at semi-regular intervals. Since their introduction in 1988, the HS codes have changed six

times: in 1996, 2002, 2007, 2012, 2017, and 2022. In contrast, changes to the unilateral portions

of the HTS occur frequently and can happen at any time. For example, Pierce and Schott (2012)

�nd that in the 15 year period from 1989 to 2004, nearly 45% of all 10-digit HTS codes changed,

and these codes encompassed nearly 60% of all U.S. imports in 2004. These changes include merg-

ing multiple codes into one, splitting one code into multiple codes, and dividing and re-combining

multiple codes into multiple new codes.

There are a large number of codes at the �ner levels. As shown in Figure 1, the number of HTS

8-digit codes has been increasing while the number of HS 6-digit codes has stayed largely consistent

over time (although there are many reorganizations within a roughly constant number of 6-digit

codes). At the start of 1989, the HTS included 8,552 8-digit codes, while the HS included 4,954

6-digit codes. By the end of 2016, this had increased to 12,583 8-digit codes and 5,316 6-digit codes.
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Figure 1: HTS 8-digit and HS-6 digit codes over time

2.3 Subdivision of HS 6-digit codes

Because the number of 6-digit codes has stayed relatively constant, the increase in the number of 8-

digit codes is driven by U.S. government choices about how much to subdivide the internationally-set

codes.

One might think that subdivision is targeted at maintaining codes of roughly equal size. In fact,

HTS 8-digit codes vary widely in the value of trade �ows within them. The average coe�cient of

variation for import values across HTS 8-digit codes within a year is 11.5 from 1989-2016� i.e. within

a given year the standard deviation of import values across codes is 11.5 times the mean import

value.

There is also substantial variation in the extent of heterogeneity across varieties of goods within

a single HTS 8-digit code. To see this, I use import data disaggregated by the district of entry and

district of unlading pair.5 I observe the total value of imports and the weighted average price of

goods within each HTS8, arriving via di�erent districts of entry and terminating in di�erent districts

of unlading. Using this data, I �nd that the coe�cients of variation for within-code variation in price

and expenditure share6 are 87.6 and 1,147, respectively. This implies that some codes have relatively

little within-code heterogeneity in the varieties of goods they contain while other codes have much

more.7

5This disaggregation is made public by the U.S. Census and broadly disseminated by Schott (2008).
6This expenditure share is the share of expenditure in a category on goods which enter through a particular district

of entry and particular district of unlading.
7Although these numbers seem large, they are consistent with prior investigations of large within-code dispersion

in price in some codes. For example the 1995 GAO report �Unit Values Vary Widely for Identically Classi�ed
Commodities� investigated dispersion of average prices within a code for fax machines, because the GAO was worried
about fraud. Instead, it found that the same code encompassed fax machine parts, �nished fax machines, and
commercial telegraphs used for communicating with stock exchanges, and that there was truly a 5 order-of-magnitude
di�erence in the price of these di�erent goods.
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Instead, the extent of subdivision is clearly associated with policy decisions. Table 1 shows

variation in the extent to which 6-digit codes are subdivided into 8-digit tari�-line codes over the

period 1989-2017.8 On average, there are 2.01 8-digit codes per 6-digit code, but this masks sub-

stantial variation: the most-divided 6-digit code nests 62 8-digit codes, while many only have one.

Furthermore, the extent of subdivision is related to tari�s (using measures of tari�s from Feenstra,

Romalis, and Schott (2002) and Besedes, Lake, and Kohl (2020)). When there is no tari�9 on any

part of a 6-digit code � which is the case for 12,034 code-year pairs � it is almost never subdivided,

while when there is a tari� on at least part of a 6-digit code, it is more likely to be divided.10 This

is consistent with the fact that tari�s are legally de�ned at the 8-digit level; i.e. tari�s may di�er

across HTS 8-digit codes but are by de�nition the same across products within one.11

HTS8 per HS6 Mean SD Min Max Count

All 2.02 2.50 1 62 144,432
No tari� 1.00 0.0637 1 2 12,034
Any tari� 2.11 2.59 1 62 130,076

Note that the second and third rows do not add up to the �rst because tari� information is missing for some lines: I omit a
HS6-year pair if any of the HTS8 subcodes is missing tari� information in rows 2 and 3.

Table 1: Subdivision of 6-digit codes into 8-digit codes, 1989-2017

The design of the HTS de�es simple explanations � the classi�cation does not correspond me-

chanically to homogenous products, the arrival of new product varieties, or division into bins of a

consistent size. In contrast, it is clearly related to policy choice, both in the sense that it legally

de�nes the application of trade policies and that the extent of subdivision is empirically correlated

with those policies. The institutional structure of the HTS and these patterns suggest the need for

a model of intentional classi�cation choices, which I turn to in the following section. The model will

suggest a set of more precise predictions about the design and application of classi�cation systems,

which I will then examine empirically in application to the HTS in Section 4.

3 A theory of endogenous classi�cation

In this section, I model the problem of a classi�er who decides how to group a set of objects into

codes and how to set policy based on those groupings. I use general notation, as the theory applies

8This �gure excludes Section 22, which overrides other sections of the classi�cation. Within Section 22, HTS
10-digit codes can map to 6-digit codes anywhere in the classi�cation.

9I.e. no Column 1 / MFN tari� and no Column 2 tari�.
10An alternative interpretation of Table 1 might be that 6-digit codes that contain more subcodes may be mechan-

ically more likely to have a tari� on at least one subcode, if for instance the probability of any tari� were randomly
and uniformly distributed across HTS8s. Two supplemental facts suggest this is not the case. First, Table 4 (in
Section 4 of the paper) shows that changes in subdivision are also related to changes in the level of the tari�. Second,
if the relationship were mechanical, we would expect many 6-digit codes to have multiple subcodes with zero tari�.
However, this almost never happens: only 0.4% of all HS 6-digit code-year pairs have multiple subcodes with zero
tari�s. These rare examples are likely due to cases where 8-digit codes are also being used to implement other policies
such as rules of origin or the Generalized System of Preferences.

11This is true for Column 1 and 2 tari�s which are the primary tari� instruments of the U.S. government, but
temporary trade barriers and other special policies may di�er within an 8-digit code. Furthermore, other policies
(beyond the Column 1 and Column 2 tari�s) such as rules of origin, special rates of duty, etc. can also be set at the
HTS 8-digit code.
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to a wide range of classi�cation systems. To �x ideas, however, one can think of the case of U.S.

imports, in which the classi�er is the U.S. government, objects are imported goods, and the codes

are those of the HTS.

This section proceeds in four parts. First, I provide a formal de�nition of a classi�cation and set

up the problem of the classi�er. Second, I show that when policy is set on a group of objects rather

than separately for every object, the costs of policy mistargeting will depend on the variances and

covariances across properties of objects within the group. Third, I solve the problem of a classi�er

simultaneously grouping objects and setting policy based on those groups in a simpli�ed setting.

And fourth, I show that this solution generalizes to encompass additional aspects of classi�cation

systems which are not included in the baseline model. Throughout, I relegate proofs and derivations

to the Appendix.

3.1 Problem and general setting

A classi�cation is a mapping from a set of objects to groups called codes. Each object is assigned

to only one code, and a code can encompass a set of objects. The purpose of a classi�cation system

is to implement policy.12 Codes de�ne the set of objects that will be treated together: objects in

the same code will be subject to the same policy. Thus, the overall problem for the classi�er is to

maximize its payout from objects in the set X by simultaneously choosing a set of codes, indexed

by i, and the policy applied to each code. Formally, the classi�er chooses a partition of the set of

objects, P, and the policy γi that is applied to each code i ∈ P.13 I will refer to the vector of the

level of the policy across codes by ~γ ≡ (γ1, γ2, . . .). The classi�er chooses the classi�cation and sets

policy to maximize the sum of payouts from all codes less the costs of the classi�cation:

max
P, {γi}i∈P

[∑
i∈P

(∑
x∈i

φ (~γ,P, x)

)
− C (P)

]
(1)

The payout from each code i is the sum of payouts from each object in the code. In turn, the payout

from each object x, denoted φ (~γ,P, x), depends on the policy applied to the object and the attributes

of the object itself, in addition to the policies applied to other objects and the attributes of those

objects. The classi�er also incurs costs of classi�cation (C (P)), which may depend on the sets of

objects within each code or other aspects of the partition such as the number of codes. Consequently,

this expression permits the possibility that the classi�er's payout from any given object may depend

on policies applied to other objects (either within that code or outside of it). However, I assume

that the costs of classi�cation are separable from the applied policies.

Objects are equivalent to a bundle of �characteristics�. Characteristics capture all the �funda-

mental� attributes of an object, such as form, function, color, density, size, elasticities of supply

and demand (if these elasticities are exogenous), other fundamentals of supply and demand (such as

productivity and taste shifters in a CES supply and demand system), and so on. I assume there are

12Later, I will discuss how classi�cation can be used to collate information, as in the ten-digit statistical reporting
categories of the HTS. This is isomorphic to the problem of a classi�cation used to implement policy.

13In the Appendix, I show that the theory extends readily to a setting with multiple policies.
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�nitely many characteristics numbering K and indexed by k. For tractability, I assume that every

characteristic k can be expressed as a continuous real-valued variable between zk,min and zk,max

where there is no requirement that either of these bounds be �nite. Consequently, objects lie in

Euclidean characteristic space of arbitrary dimension. I will denote a given bundle of characteristics

using the vector z = (z1, z2, . . . , zK). The entire set of objects X in characteristic space is continu-

ously distributed according to the pdf f (z), and I am implicitly assuming that there is a measure of

objects in order for f (z) to be continuously distributed.14 Throughout, I assume the classi�er has

perfect information about the distribution of characteristics. The partition maps objects to codes

in terms of their characteristics, so that I can denote the code for a particular bundle of character-

istics z by the function i (z). The distribution of objects in code i is fi (z), where fi (z) = f (z) if

z ∈ i and fi (z) = 0 otherwise.15 Thus, I can write the classi�er's payout from objects in code i as´
z
φ (γ (z) , z) fi (z) dz1 · · · dzK , where policy γ (z) is applied to an object with characteristics z.

3.2 The classi�er's payout and the costs of mistargeted policy

If there were no costs of classi�cation, the classi�er would simply set a policy for each object.

Implicitly, this is the way the literature has approached the problem of optimal policy setting. For

example, the tax literature describes the optimal tax on a speci�c good as a function of features of

that good, such as the elasticity of demand. Goods with di�erent features should face di�erent tax

rates. Non-trivial classi�cation arises, therefore, because there is some cost of treating each object

separately that leads the policymaker to group them together into codes. However, when policy is

set at the code level, the classi�er experiences some loss from applying a di�erent policy to objects

in the code than would be optimally applied if each were treated separately, i.e. a cost of policy

mistargeting. This trade-o� between the cost of classi�cation and the cost of policy mistargeting

is what drives the choice of classi�cation. In this section, I characterize policy mistargeting while

holding the classi�cation constant. In the main text, I examine a setting in which payouts are

separable across objects (i.e. the payouts to a given object do not depend on policies applied to

other objects). This setting captures all of the important intuition, and in this setting I establish

Proposition 1, which relates the classi�cation to the cost of policy mistargeting, in this setting.

Afterwards, I will (brie�y) explain how the main intuition extents to a general setting in which

payouts are not separable. Full details for this more general setting are provided in the Appendix.

3.2.1 Mistargeting when payouts are separable across objects

In order to describe how the costs of mistargeting are related to the distribution of characteristics of

objects in i, I assume that the classi�er's payout is quadratic in policies and characteristics.16 This

14This distribution is of the �types� of object and is assumed to be exogenous to policy choices of the classi�er. Some
measure of the number of objects might respond to the policy (e.g. trade �ows may respond to tari�s). However, these
�ows can be predicted in terms of the fundamentals � z � and the endogenous policy choice, and thus are indirectly
a components of φ (·).

15This function exists because the set of i are elements in a partition � i.e. every z maps to exactly one i. To
give an example of such a function, consider the case in which z is a scalar and codes are sequential intervals of the
characteristic; in this case i (z) is a step function.

16When applying this theory to the HTS at the end of this section of the paper, I will use a second-order approxi-
mation to capture a more general form of the objective functions while still applying these results.
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assumption greatly simpli�es the problem: I will show in Proposition 1 that under this assumption

the costs of policy mistargeting are proportional to a weighted average of the covariances across

characteristics within a code. When payouts are separable across objects, the payout on an object

with characteristics z can be expressed as φ (γ, z), and I show in the Appendix that this quadratic

payout simpli�es to

φ (γ, z) =φ̂ (z) + φγγ + ~φγz · zγ +
1

2
φγγγ

2 (2)

The term φ̂ (z) is a function of the objects characteristics and, while it a�ects the level of the

classi�er's payout, is invariant to the policy and so does not a�ect the optimal policy or mistargeting.

The terms φγand φγγ are constants, while ~φγz = (φγz1 , . . . , φγzK ) is a vector of constants. I assume

that payouts are strictly concave in policy (i.e. φγγ < 0).

If the classi�er could set policy separately on every object, which I refer to as perfect targeting,

the optimal policy would be γ∗ (z), and this would yield a payout (ignoring classi�cation costs) of´
z

Φ (γ∗ (z) , z) fi (z) dz1 · · · dzK over the set of objects in code i. In contrast, when the classi�er

sets a uniform level of policy to all objects in code i, the optimal choice of which I denote γ∗i , the

payout (again ignoring classi�cation costs) is
´
z
φ (γ∗i , z) fi (z) dz1 · · · dzK .17 Consequently, the cost

of mistargeting, ∆Φi, will be

∆Φi =

ˆ

z

[φ (γ∗ (z) , z)− φ (γ∗i , z)] fi (z) dz1 · · · dzK (3)

which is the di�erence between the payout from policy with perfect targeting and the payout from

code-level policy.

I next turn to evaluating the cost of policy mistargeting for the classi�er. It follows immedi-

ately from the quadratic payout that the optimal policy under perfect targeting for an object with

characteristics z is

γ∗ (z) =
φγ + ~φγz · z
−φγγ

(4)

while the optimal code-level policy is

γ∗i =
φγ + ~φγz · E [z|z ∈ i]

−φγγ
(5)

where I use E [z|z ∈ i] to denote the weighted average of characteristics of objects falling within the

code. Thus, under perfect targeting the classi�er takes the characteristics of each object into account,

while under code-level policy the chosen policy only re�ects the weighted average characteristics.

As a result, the classi�er's payout is higher under perfect targeting. The payout for for any given

17Conditioning the code on z is redundant because I integrate with respect to fi, which is zero for bundles of
characteristics that do not fall into code i. I adopt this notation to better distinguish between the notation for
uniform policy and perfect targeting.
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object under perfect targeting is

φ (γ∗ (z) , z) = φ̂ (z) +

(
φγ + ~φγz · z

)2

−2φγγ
(6)

While under code-level policy the payout for the same object is

φ (γ∗i , z) = φ̂ (z) +

(
φγ + ~φγz · z

)2

−2φγγ
+

(
~φγz · [z− E [z|z ∈ i]]

)2

2φγγ
(7)

This payout is the same as under perfect targeting except for the 3rd term. This term is weakly

negative because of the assumption that the objective is strictly concave in the policy. This term

will be strictly negative if the policy under perfect targeting is di�erent from the code-level policy,

i.e. if there is at least one characteristic k for which φγzk 6= 0 and where the object has a di�erent

value of characteristic k than the code-level average. In fact, the di�erence in policy under perfect

targeting from code-level policy is one measure of the distance of a given object with characteristics z

from the code level average, and as this distance increases the mistargeting increases and the payout

decreases. Thus, for codes with greater heterogeneity, there is more heterogeneity in object-level

optimal policy, and therefore more mistargeting.

In what follows, I leave the di�erence in payouts in terms of characteristics (rather than expressing

it as a di�erence in levels of policy). By taking the di�erence between Equations (6) and (7) and

integrating over the set of z in code i, I immediately obtain Proposition 1, which provides an

expression for the costs of policy mistargeting in code i.

Proposition 1:

For a given code i, the cost of policy mistargeting is

∆Φi = Fi

K∑
k′=1

K∑
k=1

Lkk′σ
2
ikk′

where

Lkk′ =
φγzkφγzk′
−2φγγ

This proposition says that the cost of policy mistargeting is a weighted sum of the covariances

of characteristics across objects within a code. Intuitively, if there were no heterogeneity in charac-

teristics of objects within a code, then the code level policy and the policy with perfect targeting

would necessarily be the same for every object, and so there would be no cost of mistargeting. Thus,

mistargeting is related to within-code heterogeneity, and under the assumption that payouts are

quadratic, the heterogeneity that matters is the covariances of characteristics across objects within

a code. Under a more general payout function, the classi�er would care about many more moments

of heterogeneity (skewness, kurtosis, etc.) and the problem would quickly become intractable, but

the idea that within-code heterogeneity is responsible for policy mistargeting is perfectly general.

The simplicity of Proposition 1 (and the analogous result when payouts are not separable) keeps the
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problem tractable without sacri�cing intuition.

Furthermore, within-code heterogeneity as captured by the covariances in characteristics trans-

lates into a cost of policy mistargeting through the weights Lkk′ . These weights are related to how

the optimal policy under perfect targeting responds to the characteristics in question (i.e. the cross

derivatives of the payout between the optimal policy and the characteristic). Thus, some of these

weights could be zero. In particular, if for some characteristic k, φγzk = 0, then for all k′, Lkk′ will

be zero and so none of the covariances involving k will matter for the classi�er's payout from policy.

Consequently, the characteristic will have no in�uence on the classi�cation. For example, the color

of an object may not matter in setting an optimal tax. I refer to the subset of characteristics for

which φγzk 6= 0 as �properties relevant to the optimal policy�, or �properties�. And although some

weights might be negative, the weighted sum is always weakly positive, which follows from the fact

that covariance matrices are positive semi-de�nite.

For convenience, I will index the covariances of properties by m, and denote their total number

as M (note that if I number by K̂ ≤ K, then M = K̂2+K̂
2 ). The costs of mistargeting are therefore:

∆Φi = Fi

M∑
m=1

Lmσ
2
im (8)

where if m indexes the covariance between characteristics k 6= k′, then Lm =
φγzkφγzk′
−φγγ , while if

k = k′, then Lm =
φγzkφγzk′
−2φiγγ

.18

3.2.2 Mistargeting when payouts are not separable across objects

The idea of Proposition 1 � that when payouts are quadratic, the cost of policy mistargeting is a

weighted sum of covariances of characteristics across objects within a code � still holds true even

when payouts are not separable across objects, for instance if there are cross-elasticities in demand

across products. However, the weights on these covariances will now re�ect additional terms which

capture how policies on one good a�ect the classi�er's payout on other objects.

Whereas in the separable case, policy on an object is chosen to maximize payouts from the object

itself, now the choice of the level of policy also re�ects how the level of policy a�ects the payouts

from other goods. However, both of these e�ects only vary based on an object's characteristics (in

a linear way). Consequently, when objects are grouped together into codes, the choice of policy will

re�ect weighted average levels of characteristics across objects in the code, and the mistargeting of

policy will re�ect deviations of an object's characteristics from the weighted average characteristics

in the code. This is the same as in the separable case and so the form of the expression for the

mistargeting of policy will be the same.

I provide full details and a derivation in the Appendix.

18This is because σ2
ikk′ = σ2

ik′k, so that covariances appear twice in the expression for ∆Φi in Proposition 1 while
variances only appear once.
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3.3 Codes and the optimal classi�cation

Having characterized the cost of policy mistargeting conditional on the classi�cation, I now consider

the optimal choice of the classi�cation itself. As described in Section 3.1, the classi�er's problem is

to choose a partition of the set of objects, P, and the policy γi that is applied to each code i ∈ P.
This is optimally done to maximize a payout that is decreasing in policy mistargeting as speci�ed in

Section 3.2, and in the cost of classi�cation itself. If the partition involves choosing a discrete number

of codes, then classi�cation is a combinatorial optimization problem. To make the problem more

tractable while preserving the generality of the objective function, I therefore make three further

assumptions. The �rst concerns the form of the cost of classi�cation, while the second and third

make the problem di�erentiable.

First, I assume the costs of classi�cation take the form of a �xed cost, C, of adding additional

codes. This implies that the total cost of administering a classi�cation system is increasing in the

�neness of classi�cation. This cost could be thought of as a cost of de�ning or enforcing a code. 19

Second, I assume codes take the form of hyperrectangles in characteristic space, so that the

classi�cation problem is a choice of how large each code is in each dimension. If there were only

one characteristic, each code would be an interval along a line; with two characteristics, codes are

rectangles in characteristic space; and so forth. I use the vector Di to denote the distances (or

width) of code i in every characteristic. Note that the measure of objects and covariances across

properties within the code can be written as functions of these distances and the location of the

code in space. E.g., if code i has center (in characteristic space) given by the vector qi, then the

mass of objects in the code is given by

Fi =

qK+
DiK

2ˆ

qK−
DiK

2

· · ·

q2+
Di2
2ˆ

q1−
Di2
2

q1+
Di1
2ˆ

q1−
Di1
2

f (z) dz1dz2 · · · dzK

with analogous expressions for the means and covariances in properties across characteristics within

the code.

Finally, I relax the classi�er's problem by treating all codes as in�nitesimal; this is equivalent

to assuming there are a continuum of �small� codes (by which I mean each code is measure zero in

every dimension, so that such a code has length D1dz1 in dimension 1).20 In e�ect, I am allowing

the classi�er to choose a non-integer number of codes, and am permitting the classi�er to separately

manipulate every part of a code in each dimension. The second and third of these assumptions mean

I can abstract from considerations about the geometry of codes (i.e. ensuring codes cover the entire

characteristic space without overlapping so that they form a partition of the characteristic space)

and from the restriction that the classi�er choose an integer number of codes.

19The assumption that this cost is the same across codes could be relaxed � it could be indexed by code, Ci, which
implies costs could be functions of things like the size of a code (i.e. it is more di�cult to describe a narrow code
than a broad one), as long as the costs are separable across codes and continuous in code space. However, I assume
costs are the same across codes going forward.

20This is analogous to models which assume a continuum of �rms, workers, or goods, often with a goal of relaxing
integer constraints.
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3.3.1 A one-dimensional example

I start with a simpli�ed problem to build intuition, in which there is a single characteristic � which I

assume matters to the classi�er for setting policy, and is therefore also a �property�. While working

with a single dimension in characteristic space, I will temporarily suppress k subscripts and convert

vectors to scalars.

I permit the classi�er to use a continuum of �small� codes, i ∈ [0, N ], where N is the total

measure of codes. Code i has location in characteristic space given by z (i).21 When I describe a

code as small, I mean that it can be treated as an in�nitesimal fraction di of a code with measure

1 with the same location and width. Suppose there were a large code (centered around z (i)) with

width Di, a cost of mistargeting FiLσ
2
i � where Fi is the mass of objects in the code, L is the cost

of within-code heterogeneity, and σ2
i is the variance in property i � and classi�cation cost C. Then

when the code is small it has cost of mistargeting FiLσ
2
i di and classi�cation cost Cdi.

Thus, the classi�er's payout can be expressed as

N̂

0

(
FiLσ

2
i + C

)
di

and the classi�er has the constraint that these codes partition the characteristic space, which requires

Di > 0 and that these codes line up end to end to full cover the characteristic space

z (i) = zmin +

n̂

0

Didi

Maximizing the classi�er's objective is equivalent to minimizing the sum of classi�cation costs

and policy mistargeting costs such that the set of codes partitions the characteristic space. Thus I

can write the classi�er's problem as

min
N,{Di}∀ i∈[0,N]

N̂

0

(
FiLσ

2
i + C

)
di

s.t.

z (i) = zmin +

iˆ

0

Dndn

Di > 0

Using the constraint, I can use a change of variables (∂z∂i = Di) to index codes by their location in

21There is no distinction between the left and right endpoints of i because the code has measure 0 in the charac-
teristic, so the endpoints must coincide.
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characteristic space, z, instead of number i. When I do so, the classi�er's problem can be re-written

min
{Dz}∀ z∈[zmin,zmax]

zmaxˆ

zmin

(
FzLσ

2
z + C

Dz

)
dz

s.t.

Dz > 0

and in this problem the constraint that the codes partition the characteristic space is always satis�ed

(it has been fully captured by the change of variables). Consequently the problem is separable and

I can characterize optimal policy by the �rst order condition with respect to the choice of the size of

each code, Dz. It is also useful to de�ne the elasticity between Fiσ
2
i (the total variation in the code)

and the width of the code in characteristic space, ηi = Di
Fiσ2

i
· ∂
∂Di

(
Fiσ

2
i

)
. Note that this elasticity

is an equilibrium relationship and is assigned the value it would attain given the equilibrium width

of all codes in the classi�cation. Using the �rst order condition and this elasticity, I can express

within-code variance in code i as:22

σ2
i =

1

L
· C

ηi − 1
· 1

Fi

This result says that the optimal within-code variance in the property, σ2
i , will be a decreasing

function of the marginal cost of policy mistargeting per unit measure of objects, L, the measure of

objects in the code, Fi, and the strength of the local relationship between characteristic space and

the total variation in the code, captured by the elasticity ηi. The elasticity captures the e�ectiveness

of adding additional codes at reducing the within-code variance. Where this elasticity is large in

equilibrium, adding additional codes is very e�ective at reducing the cost of policy mistargeting, and

the classi�er will choose a classi�cation that yields comparatively less within-code variance in the

property. Where this elasticity is small in equilibrium, divisions are not very e�ective at reducing the

cost of policy mistargeting and the equilibrium classi�cation will have comparatively more within-

code variance in the property. The chosen within-code variance will be increasing in classi�cation

costs, C. The term C
ηi−1 can be thought of as a measure of e�ective classi�cation costs.

3.3.2 General problem

I now extend the intuition of the simpli�ed case with only one characteristic to a general setting

with arbitrarily many properties and characteristics. As in the simpli�ed case, I index codes by

i ∈ [0, N ] . I can write the location of code i in characteristic space by the vector z (i).23 As in the

single dimension case, when I say that a code is �small�, I mean that if the large code (with the same

center) and distances Di has a cost of mistargeting
∑M
m=1 FiLmσ

2
i and classi�cation cost C, then

when the code is small it has cost of mistargeting
∑M
m=1 FiLmσ

2
imdi and classi�cation cost Cdi.

22I present the result changed back into code number for consistency with earlier work.
23There is no distinction between the left and right endpoints of i in any dimension because the code has measure

0 in every characteristic, so the endpoints must coincide.
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Thus, the classi�er's payout can be expressed as

N̂

0

(
M∑
m=1

FiLmσ
2
im + C

)
di

and the classi�er has the same constraint that these codes partition the characteristic space. How-

ever, unlike in the single dimension case, it is hard to describe the location of codes such that they

form a partition.24 Thus, in the many dimensional case I will write the constraint as⋃
∀ i

{z | z ∈ i} = Z

{z | z ∈ i}
⋂
{z | z ∈ i′} = ∅ if i 6= i′

Dik > 0 ∀ i, k

which says that codes cover the entire characteristic space (denoted Z), that di�erent codes in the

set never intersect, and no code is empty.

Again, maximizing the classi�er's objective is equivalent to minimizing the sum of classi�cation

costs and policy mistargeting costs such that the set of codes partitions the characteristic space.

Thus I can write the classi�er's problem as

min
N,{Dik}∀ i,k

N̂

0

(
M∑
m=1

FiLmσ
2
im + C

)
di

s.t.⋃
∀ i

{z | z ∈ i} = Z

{z | z ∈ i}
⋂
{z | z ∈ i′} = ∅ if i 6= i′

Dik > 0 ∀ i, k

As in the single-dimensional case, I will use a change of variables to express the problem in charac-

teristic space, where it is separable. However, it is no longer possible to take this change of variables

directly from the constraint. Instead, I use the identity that the cost of a code is equal to the cost

per unit hypervolume of the code integrated over the characteristic space falling within that code:

M∑
m=1

FiLmσ
2
im + C =

ˆ

z∈i

(∑M
m=1 FiLmσ

2
im + C∏K

k=1Dik

)
dz1z2 · · · dzK

and the �rst and second constraints (every z falls into exactly one code) to write the sum across

codes as the integral across characteristic space (and to de�ne the function i (z) which maps a point

24The particularly tricky part is to describe how a change in the size of a positive measure of codes will cause the
rest of the codes to adjust to that the set of codes continues to partition the characteristic space.
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in characteristic space to the code encompassing that point).

N̂

0

(
M∑
m=1

FiLmσ
2
im + C

)
di =

zK,maxˆ

zK,min

· · ·

z2,maxˆ

z2,min

z1,maxˆ

z1,min

(∑M
m=1 Fi(z)Lmσ

2
i(z)m + C∏K

k=1Di(z)k

)
dz1dz2 · · · dzK

Then, because every code is small in every characteristic, there is a bijection between a location

in code space and a location in characteristic space.25 This means that i (z) is invertible and I can

write Dik as Dzk. This completes the change of variables and I can write the classi�er's problem as

min
{Dzk}∀ k,z

zK,maxˆ

zK,min

· · ·
z2,maxˆ

z2,min

z1,maxˆ

z1,min

(∑M
m=1 FzLmσ

2
zm + C∏K

k=1Dzk

)
dz1dz2 · · · dzK

s.t.

Dzk > 0 ∀ z, k

In this formulation, the problem is separable and I can characterize optimal policy by the �rst order

condition with respect to the choice of the size of each code in every dimension, Dzk. It is also

useful to de�ne the elasticity between Fiσ
2
im and the width of the code in characteristic k space,

ηikm = Dik
Fiσ2

im
· ∂
∂Dik

(
Fiσ

2
im

)
. This elasticity is an equilibrium relationship and is assigned the value

it would attain given the equilibrium width of all codes in the classi�cation. Using these elasticities

and �rst-order conditions with respect to every distance in characteristic space at all points, I can

obtain an expression related to the optimal within-code covariance in every characteristic. I present

this result as Proposition 2.

Proposition 2:

If Hi has rank M , then the optimal within-code covariances in code i will satisfy

~Θi =
1

Fi
(Hi)

−1
L L−1C~1

In this result, ~Θi is a vector of variances and covariances in code i (i.e. ~Θim = σ2
im), L is a diagonal

matrix of the classi�er's losses from variance (i.e. Lmm = Lm and Lmn = 0 for m 6= n), Hi is a

(rectangular) matrix of elasticities between attributes and covariances (such that Hikm = ηikm− 1),

(Hi)
−1
L is the left inverse of Hi, and ~1 is vector of ones.

The result in Proposition 2 is a straightforward extension of the one-dimensional result of the

prior section. There are two main di�erences: �rst, this is a setting with multiple characteristics,

and second, here the classi�cation is written in terms of characteristics, while the targeted moments

are covariances in properties (which number M = K̂2+K̂
2 where K̂ is the number of properties).

Consequently, for Hi to have rank M , there must be more characteristics than properties (keeping

in mind that the properties are a subset of characteristics), and that enough of the characteristics

25This is consistent with the well-known result that there is a bijection between any positive measure of real numbers
and K-dimensional Euclidean space.
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must have linearly independent relationships to the covariances of interest.26

3.4 Extensions

In this section, I provide intuition for how the theory can be extended in two directions relevant to

real world applications. First, I explain why classi�cations are not written in terms of what would

seem like natural characteristics, such as the political weights of domestic producers of objects or

elasticities of demand. And second, I explain how a classi�cation used to collate information is

consistent with the theory presented here.

In the theory, the frequency of divisions in a particular characteristic should be increasing in the

elasticity between distance in the characteristic space and covariances across properties. From this,

it would be natural to infer that the properties themselves (which are a subset of the characteristics)

should be frequently used to describe classi�cations. For example, what would be a better way

to determine within-code variance in elasticity of demand than describing the code in terms of

elasticities of demand? However, this does not happen empirically. Instead, HTS codes tend to be

described in terms of things which are unlikely to be of direct interest to a government. For instance,

goods are classi�ed according to their power output (�Of an output not exceeding 75 kVA� vs �Of

an output exceeding 75 kVA but not exceeding 375 kVA� vs �Of an output exceeding 375 kVA but

not exceeding 750 kVA� vs �Of an output exceeding 750 kVA�), their source (�Animal Products� vs

�Vegetable Products� vs �Mineral Products� vs ...), or many other features.

This is consistent with the idea that a classi�cation system must be described in terms of veri�able

characteristics. By this, I mean that in order to assign two objects to separate codes, the classi�er

must be able to describe the set of objects that fall into each code in terms of attributes which can

be readily veri�ed by, e.g., a customs inspector or a court.27 As long as there are su�cient numbers

of veri�able characteristics with proper relationships to the covariances in properties, Proposition 2

still holds; however, now Hi only corresponds to veri�able characteristics. In practice, properties of

interest to the classi�er like elasticities and political weights are unlikely to be veri�able, and so we

observe other characteristics used to de�ne classi�cations instead.

Second, some classi�cation systems are not associated with a particular policy like tari�s. It

seems likely that many of the classi�cations are used to collate information. One example is the 10-

digit HTS codes called �statistical reporting categories�. Others are the industry classi�cations used

by the U.S. government, such as the North American Industry Classi�cation System (NAICS) .28 In

26If Hi did not have rank M , it would not mean that ~Θi were under-determined: all elements can be written as
functions of only the location of the code in space, the distances in each characteristic, and the distribution fi (z).
However, the �missing� equations are di�erential equations stemming from the shared distribution which relate all
of the covariances to each other. These di�erential equations are messy, and also requires knowledge of fi (z) for
all codes. Since this distribution is not observable in many settings (e.g. data are only reported at the code level),
solutions presented in terms of fi (z) would not allow taking this theory to the data.

27In the case of traded goods, this is critical. Because di�erent codes carry di�erent tari�s, importers will try to
enter their goods under lower-tari� classi�cations if there is ambiguity in the classi�cation. In consequence, there is
monitoring at ports of entry to ensure goods have been properly declared and there are frequent court cases disputing
the classi�cation of traded goods.In this setting, clear descriptions are key to enforcing the system. For popular
reporting on this subject, see NPR's �Planet Money� Episode 501 on the classi�cation of traded goods, �When The
Supreme Court Decided Tomatoes Were Vegetables.� (NPR December 26, 2013)

28Consistent with this story, during the change between the Standard Industry Classi�cation (SIC) codes and the
NAICS codes, there was signi�cant public comment and lobbying from users of industrial classi�cations for information
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the Appendix I show how collating information using a classi�cation is isomorphic to implementing

a policy. The classi�er has full information and wishes to share at least some part of it. To do so,

it must describe which objects a particular piece of data encompasses. This is very similar to the

problem faced when setting policy, and the model already presented neatly nests these incentives. In

particular, in an information setting, properties will be features of objects that the classi�er wishes

to share information about. The classi�cation determines the level at which information to be shared

is aggregated into codes. The covariances in the properties across objects within the code re�ect the

precision of the communicated information. For instance, the U.S. Government reports the weighted

average unit value of all goods that fall within a particular 10-digit HTS code in a particular year.

The costs of allowing greater within-code heterogeneity will be related to the changing value of

communicating the information as it becomes less precise. In this way, the model extends readily to

this case.

4 The relationship between tari�s and the HTS

In the previous section, I derived the optimal classi�cation from the perspective of the classi�er. Now,

I turn to deriving some predictions from this theory about what we should expect classi�cations to

look like and how they will relate to policy. I begin by making some general theoretical predictions,

and then make them more speci�c in the case of the HTS and tari� policy. Then, I examine

these predictions in the data, and show that the relationships between subdivision in the HTS,

heterogeneity across products within codes, and tari�s follows what would be expected under a

standard tari�-setting policy objective from the literature.

4.1 Relationships between classi�cation and policy

Section 3 describes how a classi�er will choose the way objects are grouped into codes and the

policy that is set for each code. Now, I describe how we expect the number of codes, the extent

of within-code heterogeneity, and the level of policy to be related under this optimal classi�cation.

Importantly, these predictions cannot take the form of comparative statics with respect to policy

across codes, because neither the policy nor the classi�cation is exogenous � they are endogenously

and jointly determined.

Instead, I impose order on the problem in the following way. I take two sets of objects and hold

them �xed, so that the properties of objects within each set are invariant to the classi�cation. I

then make comparisons across the two sets, and ask how the average policy in each set relates to

the extent to which the classi�er wants to subdivide objects into codes within each set. This allows

us to ask how the level of policy is related to the extent of subdivision in an �all else equal� sense,

by holding the the sets of objects across which comparisons are being made �xed.

When the classi�er uses a larger number of codes to subdivide a given set of objects, the average

heterogeneity in properties within each code must decrease. Holding classi�cation costs �xed, the

extent to which the classi�er chooses to do this will covary with the properties that determine the

purposes (e.g. market research for industry) related to the change.
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costs of policy mistargeting. The question is whether this will also covary systematically with the

level of policy chosen, which depends on how the cost of policy mistargeting (as captured by the

vector of weights L) is correlated with the level of policy. Thus the key question is whether the

vector of weights L is larger when the properties imply a higher average policy.

Consider a �xed set of objects. Without loss of generality I can normalize all properties so that

the optimal policy is weakly increasing in all of the properties, e.g. by de�ning a new property which

is the inverse of the old one. 29 Suppose that for some property k′′ all of the costs of within code

covariances, Lkk′ , are (weakly) increasing with respect to k′′, with at least one strictly increasing

� this implies that, holding the levels of other properties and the costs of classi�cation �xed, the

extent of subdivision is increasing in k′′.30 Then, comparing across two sets of objects, when the

level of k′′is higher, both the level of the average policy and the number of subdivisions into codes

will increase under the optimal classi�cation.31

Intuitively, this means that we should expect the coarseness of the classi�cation to be correlated

with policy if the properties that drive higher levels of policy also make mistargeting � driven

by greater heterogeneity in properties within a code � more costly. This will not necessarily be

true for every property and every policy. It will be the case when the variation in optimal policy

across objects and the concavity of the classi�er's payout with respect to the policy increase (or

decrease) systematically in the property of interest. Otherwise, the relationships between policy and

within-code heterogeneity is theoretically ambiguous, and will depend on the relative magnitudes

and average levels of characteristics within the codes.

4.2 The theoretical relationship between tari�s and the HTS

I now apply this general insight to the case of tari�s as a speci�c policy that is targeted using the

HTS. I show that, under standard assumptions from the trade policy literature about the drivers

of optimal tari� policy, we should expect a greater degree of subdivision in the classi�cation to be

associated with lower within-code heterogeneity and higher average tari� levels.

I consider an ad-valorem tari� on imported goods, which maximizes a government objective that

is a weighted welfare function that places a higher weight on �rm pro�ts than other components of

welfare. I adopt a partial equilibrium framework in both production and consumption, and assume

that home and foreign varieties are perfect substitutes, that both production and import demand

29In other words, the payout from policy is increasing in every property k, φγzk > 0, which also implies that the
cost of within code covariances are positive, i.e. Lkk′ > 0 for every k and k′.

30Formally, the derivative of Lkk′ with respect to zk′′ (adjusted to the form of an elasticity) is given by

zk′′

Lkk′

∂Lkk′

∂zk′′
=

[
zk′′

φγzk
φγzkzk′′ +

zk′′

φγzk′
φγzk′zk′′ +

zk′′

−φγγ
φγγzk′′

]
Therefore Lkk′ is (weakly) increasing with respect to k′′ if the elasticity of φγzk and φγzk′ with respect to zk′′ are
greater than the elasticity of φγγ with respect to zk′′ .

Note that if the payout were truly quadratic so that ~φγz and φγγ were constant and independent of the {zk}, then
this derivative is always zero. In practice, most payouts are not quadratic, even though we can think of a quadratic
payout as a local approximation to a more general payout (in the style of, e.g., Harberger Triangles). Therefore, the
reason that the the vector of weights L would di�er across sets of objects is that we are taking a local approximation
to the objective within each set.

31Another force pushing in the same direction is φγγ � a smaller φγγ drives both a higher average level of policy
and greater costs of all dimensions heterogeneity.
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areconstant elasticity functions of price, and that the country is small.32 I take the form of the pol-

icymaker's payout from a longstanding literature on tari�-setting objectives (e.g. Baldwin (1987),

Grossman and Helpman (1994, 1995), and Goldberg and Maggi (1999), Gawande and Bandyopad-

hyay (2000), McCalman (2004)), and keep the economic setting similar to the classic approach of

Baldwin (1987) and Grossman and Helpman (1994). Full details are in the Appendix.

The formula for the optimal ad-valorem tari� (denoted t∗) under these assumptions is:33

t∗ =
λy0

εMp M0

(
1 + εMp

)
− λyoεyp

where λ is the additional weight (beyond welfare) put on domestic producer pro�ts in the objective

function, y0 is the domestic supply at the world price, M0 are imports at the world price, and εyp

and εMp are the price elasticities of domestic supply and import demand. The properties of traded

goods in this framework are y0, λ, ε
y
p, and p

w.34

The costs of policy mistargeting under the government objective are also increasing in these

properties. The key intuition is that these objects all amplify each other in the optimal tari�

formula, e.g. the e�ects of a high domestic output at the world price will be higher when the

political weight λ is larger. In other words, all of the cross derivatives of the optimal tari� in these

properties are positive. This means the cost of mistargeting will increase in the square of the variance

in the tari�s under perfect targeting if the second derivative of the objective held �xed, in a way

that is analogous to the logic of Harberger Triangles.35 Formally, I show in the Appendix that y0,

λ, εyp, and p
w) are properties, derive the weights L on within-code heterogeneity, and show that all

are (weakly) increasing in the properties.

This application of the general theory to a trade setting leads to three predictions that we can

investigate empirically in the trade data. First, in parts of the HTS where there is more subdivision,

there will be less within-code heterogeneity in the properties that drive tari�s. This follows from

Proposition 2: heterogeneity in within-code properties is the source of mistargeting and the driving

force behind subdivision. Second, where average tari�s are high, there will be greater dispersion

in the optimal tari�s that would be set under perfect good-by-good targeting in the absence of the

classi�cation.36 And third, there will be a positive correlation between the average level of the tari�

and the degree of subdivision, all else equal.

32I could alternatively adopt the trade talks format of Grossman and Helpman (1995) or a large country setting
unilateral policy without a�ecting the overall result; however, these alternative frameworks introduce many additional
parameters that would complicate the exposition.

33This expression is slightly di�erent than the one used in the literature. The reason for the di�erence is that this
expression is in terms of fundamentals while the standard expression is an equilibrium relationship.

34Note thatM0 and εMp are not properties because they only enter the payout via the second derivative with respect
to the tari� � their cross derivatives of the objective with respect to the tari� are zero.

35The second derivative of the objective with respect to the tari�, 1(
εMp

)−1 − λ
(
y0
M0

)
εyp, is decreasing in the

properties, but (largely) in a �rst-order sense. Consequently, the increased variance in the tari�s under perfect
targeting, which is increasing quadratically in the properties, will win out, and the cost of mistargeting will be higher
when tari�s are high.

36This follows directly from the optimal tari� formula and the fact that all of the cross derivatives of the optimal
tari� in the properties are positive.
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4.3 Investigating classi�cation and tari�s in the HTS

In this section, I will investigate the predictions of the theory empirically in the context of trade data

organized under the HTS system. To implement this empirically, I will take an HS 6-digit code in a

given year as a set of objects with some distribution of properties. Then, I will make comparisons

across these 6-digit codes � either cross-sectionally or over time � and show how sub-division into

HTS 8-digit codes, and heterogeneity in policy and properties across and within those 8-digit codes

vary.

Prediction 1 � More subdivision of the HS6 into HTS8 codes is associated with more

heterogeneity in properties within codes

The �rst implication of the theory I investigate is that greater subdivision of an HS 6-digit code

reduces heterogeneity in the properties of subsidiary HTS 8-digit codes. The price of imported

goods is a property whose heterogeneity I can observe directly. I will also look at heterogeneity in

the expenditure share on goods within an HTS 8-digit code as this should be closely correlated with

the world price of the good.

In order to look at heterogeneity within 8-digit codes, I require information about what is hap-

pening below the 8-digit level. I do this by using the import data disaggregated by the district of

entry and district of unlading pair that was introduced in Section 2. I observe the total value of

imports and the weighted average price of goods within each HTS8, arriving via di�erent districts

of entry and terminating in di�erent districts of unlading.37 Heterogeneity across districts within

an HTS8 will be an underestimate of true heterogeneity across products, but all else equal should

be expected to be correlated with it. Using this data, I perform a variance decomposition at the HS

6-digit level: variance within the HS 6-digit code must either lie across the subsidiary HTS 8-digit

codes or be within them. The greater the share of variance across the HTS 8-digit codes, the less

that is within them, and consequently the more uniform the objects within these codes are.

Table 2 shows that this within-code heterogeneity at the HTS 8-digit level is systematically

related to how �nely the parent HS 6-digit code has been subdivided. The dependent variables are

the share of the variance in the weighted-average price within the HS 6-digit code which is across

HTS 8-digit codes and the share of the variance in expenditure share within the HS 6-digit code

which is across HTS 8-digit codes. Greater subdivision of a HS 6-digit code (i.e. more HTS8s within

the HS6) increases the share of variance in prices and expenditure shares across HTS 8-digit codes.

This holds true overall in the data, comparing across codes in Columns (1) and (3). Columns (2)

and (4) add HS6 and year �xed e�ects, showing that the same pattern also holds in changes over

time within an HS6 � increases in the subdivision of a given 6-digit code over time are negatively

correlated with the amount of variation within subordinate 8-digit codes.

37An alternative would be to look at di�erences across HTS 10-digit codes within an HTS 8-digit code. However,
because 10-digit codes are also an endogenous choice of the U.S. governemnt, observed heterogeneity in subdivisions
from HTS8 to HTS10 is also likely to be correlated with characteristics of interest. While the district de�nitions may
also be endogenous, they are shared across all goods, and thus di�erences in heterogeneity across goods are not driven
by the government's decision about how to subdivide 8-digit codes.
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(1) (2) (3) (4)
Share of Share of Share of Var. Share of Var.
Var. Price Var. Price Exp. Share Exp. Share
across HTS8 across HTS8 across HTS8 across HTS8

Number of HTS8 in HS6 0.0562*** 0.0348*** 0.0678*** 0.0382***
(0.00161) (0.00448) (0.00197) (0.00447)

Observations 129,719 129,578 129,719 129,578
Dep. var. mean 0.103 0.1023 0.125 0.125
Dep. var. SD 0.204 0.204 0.221 0.221
FEs HS6, year HS6, year
Adj. R2 0.301 0.786 0.371 0.817
Clustering HS6 HS6 HS6 HS6

Note: *** signi�cant at the 1% level, ** signi�cant at the 5% level, * signi�cant at the 10% level

Table 2: Within-code variance correlated with subdivision

Prediction 2 � Higher average tari�s in the HS6 is associated with more dispersion in

tari�s across subsidiary HTS8 codes

In Section 4.2 I established that that in the case of tari�s, a higher value of any of the properties

implies greater heterogeneity in the good-by-good optimal tari�. While we do not observe good-

by-good optimal tari�s � by de�nition, tari�s are applied at the HTS 8-digit code level and not

the good level � we should expect there to be more dispersion in HTS8 tari�s when there is more

dispersion in the (unobserved) optimal good level tari�s for a given set of goods. Therefore, we can

investigate this prediction by looking at the relationship between the average tari� at the HS6 level

and the dispersion in tari�s across subsidiary HTS8s within that 6-digit code.

Table 3 shows they are positively related, as predicted by the theory Columns (1) shows that

this relationship holds overall in the data. Column (2) shows that this is not driven mechanically

by a larger number of codes � it holds even conditional on the number of HTS 8-digit codes within

the HS6. Columns (3) and (4) add HS6 and year �xed e�ects, showing that the same relationship

holds within HS 6-digit codes as they change over time � i.e. when the average tari� increases, so

does the variation in tari�s across subsidiary codes.
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(1) (2) (3) (4)
St.Dev. MFN St.Dev. MFN St.Dev. MFN St.Dev. MFN
Tari� in HS6 Tari� in HS6 Tari� in HS6 Tari� in HS6

Avg. MFN Tari� in HS6 0.192*** 0.172*** 0.337*** 0.335***
(0.0161) (0.0155) (0.0715) (0.0713)

Count of HTS8 in HS6 0.00401*** 0.00366***
(0.000203) (0.000586)

Observations 129,271 129,271 129,113 129,113
Dep. var. mean 0.00639 0.00639 0.00639 0.00639
Dep. var. SD 0.0274 0.0274 0.0274 0.0274
FEs HS6, year HS6, year
Adj. R2 0.154 0.237 0.870 0.871
Clustering HS6 HS6 HS6 HS6

Note: *** signi�cant at the 1% level, ** signi�cant at the 5% level, * signi�cant at the 10% level.

Table 3: Tari�s correlated with subdivision of HS6 codes into HTS8 codes

Prediction 3 � HS6s with higher average tari�s are subdivided into more HTS8 codes

The most substantial implication of the theory derived in Section 4.2 is that higher tari�s will be

associated with �ner subdivision across di�erent parts of the HTS classi�cation. I investigate this

prediction in Table 4 by looking at the relationship between average tari�s at the HS6 level and the

number of subsidiary HTS8 codes within that 6-digit code.

Column (1) of Table 4 shows that, across the data as a whole, higher average tari�s are associated

with a HS 6-digit codes beings split into a larger number of 8-digit codes. One concern might be

that tari�s are correlated with import value, and that codes with a larger volume of imports might

be mechanically subdivided more for reasons other than those in the model presented. Column (2)

shows that the positive relationship between tari�s and subdivision holds strongly even conditional

on the value of trade in the HS6. Columns (3) and (4) add HS6 and year �xed e�ects to these

speci�cations, looking only at what happens as tari�s change within codes over time relative to

other codes within a given year. The coe�cients are substantially smaller, as would be expected

given that the �xed e�ects soak up much of the variation that the theory predicts, but the relationship

still holds strongly.
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(1) (2) (3) (4)
No. HTS8 No. HTS8 No. HTS8 No. HTS8
within HS6 within HS6 within HS6 within HS6

Avg. MFN Tari� in HS6 5.03*** 5.08*** 0.545*** 0.546***
(0.299) (0.300) (0.201) (0.201)

Imports in HS6 ($US trillions) 40.4 4.82
(18.0) (3.30)

Observations 129,271 129,271 129,113 129,113
Dep. var. mean 1.88 1.88 1.88 1.88
Dep. var. SD 1.99 1.99 1.99 1.99
FEs HS6 HS6
Adj. R2 0.0201 0.0237 0.981 0.981
Clustering HS6 HS6 HS6 HS6

Note: *** signi�cant at the 1% level, ** signi�cant at the 5% level, * signi�cant at the 10% level.

Table 4: Tari�s correlated with subdivision of HS6 codes into HTS8 codes

5 Endogenous classi�cation bias

Under the theory of endogenous classi�cation, the extent of subdivision, the degree of heterogeneity

across objects within codes, and the level of policy may be systematically related. I have shown

that this is the case in practice in the trade classi�cation, where the heterogeneity across product

varieties within a code is correlated with the level of the tari� applied to that code. While the

primary purpose of the HTS classi�cation is to target the application of policy, economists use this

data (or similar data from countries other than the U.S.) for essentially all empirical analysis of

international trade. In this section, I show how the fact that underlying heterogeneity in products

is aggregated up to the code level in data can bias important empirical estimates, and how this bias

is systematically correlated with policy. This in�uences relationships that an econometrician might

examine in the data such as that between tari�s and elasticities.

This section proceeds in three parts. First, I lay out the problem and describe the bias, which

follows immediately from Jensen's inequality when taking non-linear functions of aggregated data. I

also calculate the bias to a second-order approximation. Second, I examine an application to import

elasticities estimated using the method of Feenstra (1994), an approach that is widely used in the

trade literature. I explain how to correct the bias using observed within-code variation in prices and

shares. And third, I show that this bias is endogenous to the classi�cation system and a�ects the

estimated relationship between MFN tari�s and elasticities.

Throughout this section I relegate derivations to the Appendix.

5.1 Non-linear functions of aggregated data yields bias

There are multiple ways in which data aggregation can lead to estimation biases. The particular

one that I focus on arises when taking non-linear functions of weighted averages. I show how this

bias can be estimated to a second order, as this is useful in settings in which perfectly disaggregate

data cannot be observed but moments of the distribution plausibly can be observed or estimated
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indirectly.

Suppose there are a set of objects that have been assigned to some �nite number of codes. I

denote observations at the object level with subscript j, outcomes at the code level with the subscript

i, and I use Ji to denote the set of objects j falling into code i. The true model at the level of the

objects, j is

f (yj) =

N∑
n=1

βngn
(
xnj
)

+ εj

where f (·) and {hn (·)}Nn=1 are functions (I consider a setting with multiple right-hand side variables

and functions which are indexed by n). 38

However, the econometrician does not observe the outcomes at the j level, and instead observes

outcomes at the code i level yi = E [yj |j ∈ Ji] and xni = E
[
xnj |j ∈ Ji

]
∀n as is common in classi�ed

data. Suppose instead the econometrician runs the speci�cation

f (yi) =

N∑
n=1

β̃ngn (xni ) + ε̃i

then the estimates β̃n will be biased if either or both of the functions f (·) and gn (·) are non-linear,
following the logic of Jensen's inequality. In order to derive the bias, I impose an additional assump-

tion, which is that the true errors are also independent of the regressors used by the econometrician.39

This bias will depend both on the local non-linearity of the functions in question and the within-

code variance for all of the left hand side and right hand side variables. I can calculate the bias to a

second order approximation. I use σ2
ni to denote the within-code variance in xn for code i and σ2

yi

to denote the within-code variance in y for code i. I use X̃ to denote a matrix of gn (xni ), while G

is a matrix of 1
2g
′′ (xni )σ2

ni and F is a vector of 1
2f
′′ (yi)σ

2
yi. The bias is

E
[
β̃|X̃

]
− β =

(
X̃′X̃

)−1

X̃′ (Gβ − F) (9)

The sign of this bias is ambiguous, and the impact on each element of β depends on the relative

size and signs of the corresponding elements of Gβ and F. This implies the sign of the bias will

depend on whether the average creates a larger bias in the outcome or the regressor, and whether

the relevant functions are convex or concave. Also, all else equal, these terms will be larger the

greater the within-code variances and the more curvature in the relevant functions.

38For simplicity, I assume that the standard conditions hold such that the estimate of βn will be consistent and
unbiased. If they do not, then the type of bias I identify here arising from aggregation may interact with other sources
of bias in complicated ways.

39Formally, I assume E
[
ε|X̃
]

= 0,where ε is vector of the true errors and X̃ is a matrix of the function applied to

within-code averages, gn
(
xni
)
.
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5.2 Application to trade elasticities

In this section, I explain how to apply this insight to estimating elasticities of supply and demand

across varieties of a good calculated following the method of Feenstra (1994). First, I explain why

this method su�ers from bias of the type I identify in the prior subsection. Second, I show how to

correct this bias using the microdata introduced in Section 2. I present corrected elasticities and

show that this correction matters substantively for estimates of the gains from trade.

The price elasticity of import demand de�nes how much the quantity of a good imported into

a particular country will increase in response to change in the cost of that good. These elasticities

are key parameters for answering essentially all questions in empirical trade, such as measuring the

gains from trade and the welfare costs of trade policy, among many others. Although the type of

bias I highlight would arise under essentially any approach to estimating elasticities (due to the

log-log form), I focus on trade elasticities calculated using the Feenstra (1994) method because it is

widely used and well-understood.40

In the Feenstra (1994) method, trade is assumed to be in the style of Armington, so that each

country supplies a unique variety of a given good.41 Then, it assumes CES supply and demand of

product varieties to obtain an estimating equation to jointly estimate elasticities of demand (σi) and

supply (ωi) (
∆kPict

)2
= θi1

(
∆kSict

)2
+ θi2

(
∆kSict

) (
∆kPict

)
+ εict (10)

where ict subscripts denote good i from country c at time t, P denotes log price, S denotes log

share, ∆k denotes the time and reference-country di�erence in a variable, and εict is a mean zero

error. The coe�cients θi1 and θi2 are functions of the elasticity of supply and demand given by

θi1 ≡ ωi
(σi−1)(1+ωi)

and θi2 ≡ ωiσi−2ωi−1
(σi−1)(1+ωi)

). Feenstra (1994) estimates this equation using country

dummies as instrumental variables, and then inverts the θi1 and θi2 to obtain σi and ωi.

The method treats a source country-HTS8 code pair as a variety, and so applies the model

to country-code level average prices and shares. To consider the bias that will arise if there are

in fact multiple product varieties aggregated within a country-code pair, I keep all of the original

assumptions except that I allow there to be some set of varieties that fall within each code, and

assume that the relationships posited by Feenstra (1994) hold true at the variety level. Formally, I

suppose that there are some varieties j that fall into code i and that there is CES utility over the

ijc varieties. This implies CES demands over the ij varieties, each of which is uniquely produced in

some country c. Thus the true estimating equation is

(
∆kPijct

)2
= θi1

(
∆kSijct

)2
+ θi2

(
∆kSijct

) (
∆kPijct

)
+ εijct (11)

where the coe�cients θi1 and θi2 are functions of the elasticity of supply and demand as previously

40It is also well-suited to answering questions about endogenous classi�cation for some of the same reasons that it is
so popular as a method for estimating elasticities to begin with. In particular, it does not require data from multiple
countries (which cannot be easily constructed at disaggregate levels, precisely because tari�-line level classi�cations
are unilateral choices and not internationally concorded), and it does not require instruments, which is critical when
examining thousands of traded goods).

41Or, as Feenstra (1994) notes, this is analogous to a continuum of goods which are all sold at the same price, as
in this case there is an isomorphism between taste and measure of variety.
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de�ned.

When the true structural relationships are those re�ected in equation (11), but the estimating

equation (10) is used instead, the estimates of the coe�cients θi1 and θi2 (and consequently the

parameters of interest σi and ωi) will be biased in the way described by equation (9), because the

estimating equation takes non-linear functions of variety-level objects aggregated to the country-

code level.42 Note that this bias will arise even when the true parameters σ and ω are assumed to

be uniform across all varieties within each country-code group, which distinguishes this from what

is most commonly thought of as �aggregation bias�.

Fortunately, the second-order approach used to calculate the bias can also be used to correct

these estimates if the second moments of the joint distribution of pijct and sijct for every source

c and time t are available. The Feenstra (1994) method would yield unbiased estimates if it were

applied to correctly constructed price and consumption indices instead of prices and expenditure

shares averaged at the code level. The correction I propose is roughly analogous to taking second-

order approximations to these indices. In particular, by taking second order approximations of the

�true� estimation equations and taking averages within a code, I can obtain an analogue of the

unbiased estimation equation.

To obtain corrected estimates, I estimate the following instead of Equation (10):

Yict = θi1X1ict + θi2X2ict + υict (12)

where θi1 and θi2 are de�ned as before, υict is a mean zero shock, and Yict, X1ict, and X2ict are

corrected versions of the ∆kSict and ∆kPict that appear in Equation (10). The full expressions

for these terms are quite complicated, and are shown in full in the Appendix.43 Because they

involve terms that require knowing the within-code variances and covariances in expenditure and

quantity, implementing this correction in practice requires some empirical measure of within-code

heterogeneity. To get these terms, I use the variance across districts of entry and unlading.

When I estimate the corrected system of equations,44 I obtain signi�cantly higher elasticities

of substitution and smaller inverse elasticities of foreign export supply (implying larger elasticities

of foreign export supply) than if I apply the same Feenstra (1994) technique on HS8-level data

42I show formally in the Appendix that taking double-di�erences does not solve this problem unless there are
precisely parallel time-trends in the bias across country pairs. Generically, this will not be true.

43There are two main issues. First, Equation (11) involves nonlinear transformations of time and reference country
di�erences of variables. This implies that not only does the correction involve the joint distribution of pijct and
sijct, but also the correlation of these variables with reference country variables and the autocorrelations in these
variables. To remove these nuisance terms and simplify the resulting expressions, I make assumptions about the form
of the supply and demand shocks and take a third reference country di�erence. This greatly simpli�es the empirical
implementation but with su�cient data is not strictly necessary. And second, Equation (11) references prices. In
the data, �prices� (or �unit values�) are actually quantity-weighted average prices. However, the observed average
expenditures are not quantity weighted. Consequently, when I take averages of a second order approximation, to
obtain an expression in terms of the observed quantity-weighted average price I would need to put di�erent weights
in the expression than I would use to obtain average shares. Due to the log form, the Feenstra (1994) estimating
equation is isomorphic to an expression in terms of aggregate expenditure and aggregate quantity. I thus use this
isomorph to get around the trouble of using observed prices.

44In practice, I employ the limited-information maximum likelihood (LIML) approach of Soderberry (2015) to
estimate these relationships; this also involves including a constant to correct for measurement error and inverse-
variance weighting at the supplying country level. In the event that this approach fails to produce economically
reasonable estimates of σi and ωi, then I combine the LIML approach of Soderberry (2015) with a grid search
following Broda and Weinstein (2006).
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without running this correction. I summarize these results in Table 5.45 Notably, the bias does

not always have the same sign � sometimes the corrected elasticity is larger than the original and

sometimes it is smaller � and so the average change understates the average absolute value of

the change. The di�erence between the corrected and uncorrected elasticities has quantitatively

important implications. If I use the median elasticity and apply the formula of Arkolakis, Costinot,

and Rodriguez-Clare (2012) to calculate the implied gains from trade, I �nd that they are 58% lower

using the corrected elasticity.46

Estimated σ 25th Percentile Median 75th Percentile

Uncorrected 1.4 2.0 4.9
Corrected 1.9 3.9 11
Di�erence -0.75 1.0 7.7

Abs. value of di�. 0.91 3.6 19

Estimated ω 25th Percentile Median 75th Percentile

Uncorrected 0.093 0.57 2.5
Corrected 0.052 0.28 0.97
Di�erence -1.7 -0.11 0.36

Abs. value of di�. 0.21 0.87 3.3

Table 5: Comparison of corrected and uncorrected elasticity estimates

In addition to yielding substantially di�erent elasticity estimates, the corrected data also �t the

Feenstra (1994) model better. Using the correction, I am able to obtain viable estimates for more

HTS8s. Without the correction, I do not obtain viable estimates for 2,464 HTS8s (out of a total of

40,428), while with the correction I do not obtain viable estimates for only 1,594 HTS8s; reducing

the set of unviable HTS8s by over a third relative to the uncorrected data. Additionally, the data

yield viable estimates with fewer constraints. I �rst estimate the model without any constraints,

and if I obtain viable estimates (σ ≥ 1 and ω ≥ 0), then I adopt the resulting numbers. If not, I run

constrained GMM as in Soderbery (2015) and if I obtain viable estimates I stop. Finally, if not I

use a grid search procedure as in Broda and Weinstein (2006). With my correction, many more of

the parameters are estimated without constraints relative to the uncorrected estimates. The results

are summarized in Table 6.

Method Unconstrained Constrained Grid search Total estimates

Uncorrected 0.397 0.161 0.442 37,964
Corrected 0.467 0.156 0.376 38,834

Table 6: Comparison of estimation techniques for corrected and uncorrected data

45Note that estimates are actually implemented for each HTS8-version � the HS6 changes over time, and I take
each HTS8 within a given version of the HS6 to be a separate code to avoid complications related to concordances in
the HS6.

46If I use the method of Ossa (2015) to take into account variation in the estimated elasticities and the correlation
between trade elasticities and import share, I �nd that gains from trade with the corrected elasticities are roughly
one quarter of the gains from trade from uncorrected ones. The di�erence is because the gains from trade are a
convex function of the elasticity, so that the function of the average elasticity is less than the average of the function.
Also, the share of expenditure on foreign goods and the elasticity are complements in the gains from trade formula.
Taking into account both of these forces (and their importants to di�erent degrees for the corrected and uncorrected
elasticities) is the reason for the change in result.
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5.3 The degree of bias is endogenous

Bias in the elasticity estimation arises from the fact that there is heterogeneity across true product

varieties within an HTS code. I showed in Sections 2 and 4 that the degree of heterogeneity varies

substantially in di�erent parts of the HTS, suggesting that the extent of the bias will also vary.

Further following the logic of Section 4, the amount of within-code heterogeneity is correlated with

the level of the tari�, and so we should expect bias in the elasticity estimates to covary systematically

with tari�s as well.

This is precisely what the data show. In Table 7, I show that the di�erence between the corrected

and uncorrected elasticity is negatively (and signi�cantly) correlated with variation in subdivision,

i.e. that the bias is smaller in HS 6-digit codes that are more subdivided. In these regressions, the

dependent variable is the normalize bias in the elasticities of substitution (σ) and inverse foreign

export supply (ω), de�ned as the di�erence between the corrected and uncorrected value divided by

the average of the corrected and uncorrected value.47 The right-hand side variable of interest is the

number of HTS 8-digit codes within the relevant HS 6-digit code (which has been de-meaned and

standardized to aid in the interpretation of the results).

The �rst two columns examine bias in the elasticity of demand. This bias is positive on average

and the impact of greater subdivision at the HS 6-digit level is negative; thus, greater subdivision

implies less bias. Furthermore, subdivision explains a large share of the bias � a one standard

deviation increase in subdivision explains roughly a third to a half of the variation in the bias.

Column (2) adds HS 4-digit code and year �xed e�ects, to control for potential di�erences in the

e�ectiveness of subdivision to reduce within-code heterogeneity in di�erent parts of the schedule.48

Columns (3) and (4) examine bias in the inverse foreign export supply elasticity. This bias is

negative on average and the impact of greater subdivision at the HS 6-digit level is positive; thus,

greater subdivision implies less bias. Here, the point estimate is not statistically signi�cant, but a

one standard deviation change in classi�cation reduces the bias by a �fth to a quarter. In column

(4) I include HS 4-digit code and year �xed e�ects to control for di�erences in the e�ectiveness of

subdivision to reduce within-code heterogeneity in di�erent parts of the schedule.

47I adopt this approach because some of the estimates can be quite large; as demand and supply approach being
perfectly elastic, there is little economic di�erence but a substantial re-weighting of observations in the regression; in
contrast the normalized measure gives a more equal weighting to all observations.

48I cannot used �xed e�ects at a �ner level than the HS 4-digit code because the variation on the right-hand side
is at the HS 6-digit level and there is no time variation in the outcome.
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(1) (2) (3) (4)
Bias in σ Bias in σ Bias in ω Bias in ω
(Fraction) (Fraction) (Fraction) (Fraction)

Count of HTS8 in -0.415*** -0.577*** 0.288 0.3854
HS6 (standardized) (0.154) (0.210) (0.201) (0.257)
Observations 206,525 206,525 206,525 206,525
Dep. var. mean 0.373 0.373 -0.308 -0.308
Dep. var. SD 1.12 1.12 1.51 1.51
FEs HS4, year HS4, year
Clustering HS6 HS6 HS6 HS6
Adj. R2 0.0003 0.133 0.0001 0.136

Note: *** signi�cant at the 1% level, ** signi�cant at the 5% level, * signi�cant at the 10% level

Table 7: Correlation between tari�s and bias

The fact that bias in elasticity estimation is correlated with the level of tari�s suggests that our

understanding of the relationships between tari�s and elasticities could be a�ected by endogenous

classi�cation bias. Essentially all theories of tari� setting suggest that the relationship between

tari�s and elasticities should be negative (see, e.g., Baldwin (1987); Grossman and Helpman (1994,

1995)).49 In Table 8, I investigate whether this theoretical relationship comes through in the data,

and whether it is a�ected by the correction for classi�cation bias in the elasticity estimates.

The �rst two columns of Table 8 relate the MFN tari�s to the corrected elasticities. In Column

(1), I regress MFN tari�s against the corrected demand elasticity alone. In Column (2), I also

include the inverse foreign export supply elasticities in order to account for any potential terms-

of-trade motive for tari�s.50 I also regress MFN tari�s against the uncorrected demand elasticity

alone (Column (3)) and against both the uncorrected demand and inverse foreign export supply

elasticities (Column (4)). Since I do not observe import penetration ratios and political weights at

the HTS 8-digit level, I control for these missing variables with HS 6-digit code �xed e�ects in all

speci�cations. This approach should pick up the part of these omitted variables which is correlated

across all HTS 8-digit codes within the same HS 6-digit code.

When using the corrected elasticities (Columns (1) and (2)), the results are consistent with the

theory and statistically signi�cant. If I regress MFN tari�s on demand elasticities alone (Column

(1)), I obtain a negative relationship which is signi�cant at the 1% level. Thus, if the MFN tari�s

are the politically optimal ones, they have the relationship with the elasticities as suggested by the

theory. If I regress MFN tari�s on demand elasticities and inverse foreign export supply elasticities

49An important caveat is that this prediction does not hold in the case that tari�s are motivated solely by terms-
of-trade manipulation, and for industries that are not politically organized in Grossman and Helpman (1995) and
examined empirically in Goldberg and Maggi (1999). However, Goldberg and Maggi (1999) also �nd that most
industries are organized.

50It is not clear whether the MFN tari�s re�ect full elimination of terms-of-trade manipulation or not; Ossa (2014)
�nds that most but not all terms-of-trade manipulation has been removed from applied tari�s. Theoretically (see
e.g. Grossman and Helpman (1995)), the MFN tari�s should be between the politically optimal tari�s from an
e�cient trade agreement and the Nash tari�s of a trade war. The politically optimal tari�s should in equilibrium be
negatively correlated with the elasticity of import demand (in this setting the analogue is the elasticity of substitution
across varieties) and should also be positively correlated with other variables like political weights and inverse import
penetration ratios. The Nash tari�s should incorporate the same relationships as for the politically optimal tari�, but
should also be positively correlated with the inverse foreign export supply elasticity.
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(Column (2)), I obtain a negative relationship to the import demand elasticities and a positive

relationship to the inverse foreign export supply elasticities. Again, these are the relationship with

the elasticities as suggested by the theory.51

In contrast, when using the uncorrected elasticities (Columns (3) and (4)), the results do not

support the theory. If I regress MFN tari�s on uncorrected demand elasticities alone (Column (3)),

I obtain a positive relationship. Thus, if the MFN tari�s are the politically optimal ones, they

have the opposite relationship with the elasticities as would have been suggested by the theory. If I

regress MFN tari�s on uncorrected demand elasticities and inverse foreign export supply elasticities

(Column (4)), I obtain a positive relationship to the import demand elasticities and a positive

relationship to the inverse foreign export supply elasticities. Again, the sign on the import demand

elasticity is wrong, and in this speci�cation although the inverse foreign supply elasticity has the

right sign, it is not statistically signi�cant.52

Thus, correcting the elasticities changes the correlation between U.S. Column 1 tari�s and import

demand elasticities from a positive relationship to a negative one, so correcting the elasticities restores

the relationship between tari� and elasticity suggested by the theory. Prior work has been surprised

by a positive correlation between tari�s and elasticities. Most notably, Kee, Nicita, and Olarreaga

(2008) �nd that tari�s are positively correlated with elasticity across a large sample of countries.

This relationship is attributed to omitted variables � in particular, that political weights might be

positively correlated with elasticity, and they conclude that this is an important direction for study

in lobbying models. However, the results in Table 8 suggest a simpler explanation: endogenous bias

arising from di�erent degrees of within-code heterogeneity in parts of the classi�cation where tari�s

are high relative to parts of the classi�cation where tari�s are lower.5354

51In this speci�cation, the �xed e�ect also needs to control for an additional omitted variable: potentially nego-
tiations will have reduced tari�s di�erentially on di�erent goods. I need the �xed e�ects to control for any such
di�erential reductions.

52In the Appendix, I extend this analysis to the Column 2 tari�s. If we interpret the Column 2 tari�s as the Nash
or unilateral tari�s as in Ossa (2014), this extension has the advantage of a clearer relationship to the elasticities, but
on the other hand Column 2 tari�s aren't as well measured as MFN tari�s. The results are very similar in spirit to the
result in the main text. In Table 8, I also constrain the sample to be the same for all 4 columns. Some observations
have corrected elasticities but not uncorrected ones, or vice-versa. By restricting the sample to only observations
which have both corrected and uncorrected elasticities, I avoid the possibility that di�erences in sample composition
drive the change in the sign of the correlation with import demand elasticity. In the Appendix, I show that this is not
necessary for my result: I obtain the same change in sign if I include all potential observations in both regressions.

53An important di�erence is that Kee, Nicita, and Olarreaga (2008) work at the HS 6-digit level, while I work at
the HTS 8-digit level. I believe these results are consistent: the objectives of the WCO (which manages the 6-digit
codes) and regression results for the U.S. classi�cations (available on request) suggest that the WCO creates �ner
6-digit codes in parts of the good space where countries tend to have a �ner level of classi�cation. This would explain
why there are similar impacts at the 6-digit level, and this tends to be true across many countries.

54In general, data is not available at a �ne enough level to control directly for other forces that might a�ect the
relationship between tari�s and elasticities (such as residual terms of trade manipulation which has not been eliminated
through international agreements or the political weight placed on particular industries). Instead, I include �xed e�ects
at the HS6 and year levels. It is possible that remaining variation in omitted variables across HTS8s within an HS6
could contribute to the positive correlation between tari�s and the uncorrected elasticities. Since these factors are
present in both the regressions with the corrected and the uncorrected elasticities, the results still suggest that the
correction substantially changes our understanding of the relationship between tari�s and elasticities
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(1) (2) (3) (4)
MFN tari� MFN tari� MFN tari� MFN tari�

Corrected -2.66e-8*** -2.66e-8***
Sigma (7.22e-9) (7.22e-9)
Corrected 1.34e-7***
Omega (5.58e-9)
Uncorrected 2.88e-7 2.88e-7
Sigma (2.11e-7) (2.11e-7)
Uncorrected 4.42e-6
Omega (7.52e-6)
Observations 205,674 205,674 205,674 205,674
Dep. var. mean 0.0490 0.0490 0.0490 0.0490
Dep. var. SD 0.0676 0.0676 0.0676 0.0676
FEs HS6, year HS6, year HS6, year HS6, year
Adj. R2 0.570 0.570 0.570 0.570
Clustering HS6 HS6 HS6 HS6

Note: *** signi�cant at the 1% level, ** signi�cant at the 5% level, * signi�cant at the 10% level

Table 8: Correlation between tari�s and elasticities

6 Conclusion

Classi�cations have always been a nuisance for empirical research. Many researchers know the

headache of concording data organized by multiple di�erent classi�cations or correcting data for

changes through time to create a panel. However, in wrestling with the practicalities we may miss

the deeper issues related to classi�cation and endogenous bias. While it would be easier if the

econometrician could treat data organized under such systems as objective re�ections of reality �

or at least constant, exogenous ones � this is not consistent with the way classi�cations appear to

work and change over time in practice. As James Scott writes in Seeing Like A State, �These state

simpli�cations... did not successfully represent the actual activity of the society they depicted, nor

were they intended to; they represented only that slice of it that interested the o�cial observer.�

I ask why classi�cation systems in general, and the HTS in particular, are designed in the way that

they are. I argue that classi�cations are used to implement policy, and the design of a classi�cation

system trades o� the bene�ts of better targeted policy with the greater costs of designing and

enforcing the system. Economists often think about policies as the choice of a policymaker with

a particular objective function. Although decisions about how to target those policies are a key

function of government and lawmaking, the economics literature has not previously considered the

system that de�nes the mapping from policies to objects as a choice variable. I bridge that gap in

this paper.

I show that the degree to which heterogeneity in individual objects is aggregated into codes will

vary, and may often be correlated with the policy the classi�cation system is designed to implement.

For parts of economic activity that �interest the o�cial observer�, great attention may be paid to �ne

distinctions. For those that do not, perhaps because they will not be taxed anyway, very di�erent

things may be lumped together indiscriminately.
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Given a standard tari� setting objective, I show that imported product classi�cations should be

more disaggregate where tari�s are higher. Digging into the details of the HTS classi�cation system,

I show that, consistent with the theory, where tari�s are high, codes are more subdivided and the

imports within them are more homogeneous. Within-code heterogeneity introduces substantial bias

in our estimates of trade elasticities. Since within-code heterogeneity is inversely related to tari�s,

this causes tari�s to be inversely correlated with aggregation. In fact, the bias changes the sign of

the correlation between tari�s and elasticities, and correcting the elasticities restores the relationship

predicted by theory.

Although I focus on the HTS, there are many classi�cation systems that are important to em-

pirical research in economics. What policy objectives drives these other classi�cation systems, such

as industrial classi�cations, and how might this a�ect empirical work using those classi�cations?

Understanding the motives underlying the design of classi�cation systems may also point toward

other ways that we can learn from them. For instance, many classi�cations including the HTS

change substantially over time. What information, if any, can be extracted from these changes? Or,

can we learn something about how policymakers' ability to describe or enforce di�erential policies

across groups has changed from the use of �ner classi�cations? Future research should consider what

purpose a classi�cation was originally designed to serve, and how that may a�ect its design.
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Appendix

Proofs and derivations from Section 3

The classi�er's payout when payouts are separable across objects

If the payout is quadratic across objects in characteristics and policy, then

φ (γ, z) =

K∑
k=1

φzkzk +
1

2
φzkzkz

2
k +

∑
k′ 6=k

φzk′zkzk′zk

+ φγγ + ~φγz · zγ +
1

2
φγγγ

2

If I de�ne

φ̂ (z) ≡
K∑
k=1

φzkzk +
1

2
φzkzkz

2
k +

∑
k′ 6=k

φzk′zkzk′zk


then I immediately obtain the form for the payout presented in the text.
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Proposition 1: For a given code i, the cost of policy mistargeting is

∆Φi = Fi

K∑
k′=1

K∑
k=1

Lkk′σ
2
ikk′

where

Lkk′ =
φγzkφγzk′
−2φγγ

Proof of Proposition 1: I start with Equation (3) from the text and substitute from Equations

(6) and (7) the payouts for each object under optimal uniform policy and optimal policy with perfect

targeting

∆Φi =

ˆ

z

[φ (γ∗ (z) , z)− φ (γ̂∗ (i (z)) , z)] fi (z) dz1 · · · dzK

=

ˆ

z


(
~φγz · [z− E [z|z ∈ i]]

)2

−2φγγ

 fi (z) dz1 · · · dzK

≡ Fi
K∑
k′=1

K∑
k=1

Lkk′σ
2
ikk′

where the terms Lkk′ are de�ned as in the statement of the Proposition.

Mistargeting when payouts are not separable across objects

As in the separable case, I assume a quadratic payout function. I will focus attention on the payout

for some object z with level of policy γ; this payout will have the same terms as in the separable

case55 along with additional terms which capture the impact of policies applied to other objects.

These additional terms will capture the �rst and second order e�ects of the policy applied to other

objects and a set of cross-terms between the policies on other objects and their characteristics. To

understand these terms, consider two additional (arbitrary) objects whose characteristics and level

of policy I denote with a ′ and ′′ superscripts. The object z′ will contribute terms φγ′γ
′, 1

2φγ′γ′ (γ
′)

2
,

and ~φγ′z′γ
′ · z′ to the payout from z by itself. Furthermore, in conjunction with object z, it will

contribute ~φγz′γ · z′, ~φγ′zγ′ · z, and φγγ′γγ′. to this payout. And �nally, in conjunction with object

z′′ it will contribute ~φγ′z′′γ
′ · z′′ and φγ′γ′′γ′γ′′ to this payout.56 Thus, I integrate over the set of all

z′ and z′′to obtain the impacts of policies applied to other objects and obtain the payout for object

z:

55Technically, the �rst term now re�ects the characteristics of all objects and not just the object's own characteristics,
but as it does not a�ect the payout from policy it is not important to what follows.

56Note that cross-derivatives between γ′′ and z′ are redundant with cross-derivatives between γ′ and z′′.
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φ (γ,~γ−z, z,~z−z) =φ̂ (~z) + φ̃γγ + ~φγz · zγ +
1

2
φγγγ

2 + . . .

φ̃µµ~γ + φ̃µ2µ2
~γ +

1

2
φ̃σ2σ2

~γ +

K∑
k=1

φ̃γ′z′kCov (~γ, ~zk)

In this expression, µ~γ is the average policy applied to all objects, σ2
~γ is the variance of the policy

applied to all objects, and Cov (~γ, ~zk) is the covariance across all objects between the policy on an

object and the level of characteristic. As in the separable case, φ̃ (~z) a�ects the level of the classi�er's

payout but is invariant to the policy and so does not a�ect the optimal policy or classi�cation (now,

however, it is a function of the characteristics of all objects). Similarly, the terms φ̃γand φγγ are

constants, while φ̃γz is a vector of constants, which are de�ned by

φ̃γ =φγ + F ~φγz′ · E [z′] + Fφγγ′µγ

φ̃µ =F
(
φγ′ + ~φγ′z · z + ~φγ′z′′ · E [z′′] + ~φγ′z · E [z]

)
φ̃µ2 =F (φγ′γ′′ + φγ′γ′)

φ̃σ2 =Fφγ′γ′

φ̃γ′z′k =F ~φγ′z′k

For this setting, I will think about optimal policies set jointly on an arbitrary set of z in code i;

there are also a set of objects in z which are not in code i (denoted −i); these objects are grouped
in codes which I take as exogenous57 but the code-level policies for these objects are chosen jointly.

If I integrate the object level payouts across all z (in both i and −i) I obtain the objective of the

classi�er (following Equation (2) in the text)

ˆ

z∈{i∪−i}

φ (γ,~γ−z, z,~z−z) f (z) dz1 · · · dzK =F

[
A+Bµ~γ +

K∑
k=1

CkCov (~γ, ~zk) +
1

2
Dσ2

~γ +
1

2
Eµ2

~γ

]

where as usual F denotes the measure of objects and where constants A, B, {Ck}Kk=1, D, and E are

de�ned

A = E
[
φ̃ (~z)

]
B = φ̃γ + φ̃µ + C · E [z]

C = φγzk + φ̃γ′z′k

D = φγγ + φ̃σ2

E = 2φ̃µ2 + φγγ + φ̃σ2

57These codes are of arbitrary size, and they include the possibility of perfectly disaggregated codes which would
permit perfectly targeted policy.
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So that payouts are concave in every policy choice, I assume that D < 0.

The classi�er will choose {γ (z)}z∈i∪−i to maximize this objective. For each such z, the FOC for

optimal policy under perfect targeting implies

γ∗ (z, ~γ−z,~z−z) =
B + C · (z− E [z]) + (E −D)µ~γ

−D

while under code-level policy the FOC for optimal policy implies

γ∗i =
B + C · (E [z|z ∈ i]− E [z]) + (E −D)µ~γ

−D

Using these two results, it follows immediately that γi = E [γ∗ (z, ~γ−z,~z−z) |z ∈ i]: the classi�ca-
tion does not a�ect the average level of policy across all objects within a code. Consequently, I can

solve for the average level of policy when objects in i are subject to perfect targeting via

µ~γ =
Fi
F
E [γ∗ (z, ~γ−z,~z−z) |z ∈ i] +

F−i
F

E [γ∗ (z) |z ∈ −i]

=
B + (E −D)µ~γ

−D

µ~γ =
B

E

And in turn, this yields optimal levels of policy under both perfect targeting and code-level policy

as

γ∗ (z, ~γ−z,~z−z) = B

(
1

−D
+

1

E

)
+

C · (z− E [z])

−D

γ∗i = B

(
1

−D
+

1

E

)
+

C · (z− E [z])

−D

With these optimal policies in hand, it is possible to calculate the di�erence in the classi�er's

payouts under these di�erent levels of policy. Notably, the classi�cation does not a�ect the average

level of policy across all objects within the code; thus the di�erence in payouts comes from the

di�erence in the variance of policy and the di�erence in covariance with characteristics. I calculate

these terms as

Var[γ∗i (z) |z ∈ i] = 0

Var[γ∗ (z, ~γ−z,~z−z) |z ∈ i] =

∑K
k′=1

∑K
k=1 Ck′Ckσ

2
ik′k

2D2

Cov[γ∗i (z) , ~zk|z ∈ i] = 0

Cov[γ∗ (z, ~γ−z,~z−z) , ~zk|z ∈ i] =

∑K
k′=1 Ck′σ

2
ik′k

−D

where σ2
ik′k denotes the covariance between ~zk′ and ~zk in code i.

An overall covariance (or, in the special case, variance) of some outcomes p and q can be decom-
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posed into the covariances within subgroups as

F (Cov[p, q] + µpµq) = Fi (Cov[p, q|s ∈ i] + µp,iµq,i) + F−i (Cov[p, q|s ∈ −i] + µp,−iµq,−i)

And consequently, the di�erences in variance in policy and covariance between policy and charac-

teristics will be (which I denote using a delta)

∆Cov (~γ, ~zk) =
Fi
F

∑K
k′=1

∑K
k=1 Ck′Ckσ

2
ik′k

2D2

∆σ2
~γ =

Fi
F

∑K
k′=1 Ck′Covσ

2
ik′k

−D

so that the classi�er's payout under perfect targeting is larger by

= F

[
D · Fi

F

∑K
k′=1

∑K
k=1 Ck′Ckσ

2
ik′k

2D2
+

K∑
k=1

Ck
Fi
F

∑
k′ Ck′σ

2
ik′k

−D

]

= Fi

∑K
k′=1

∑K
k=1 Ck′Ckσ

2
ik′k

−2D

this is an expression with exactly the same form as Proposition 1, except now Lk′k = Ck′Ck
−2D . To put

this in terms of the fundamentals in the payout,

Lk′k =

(
φγzk′ + Fφγ′z′

k′

)(
φγzk + Fφγ′z′k

)
−2 (φγγ + Fφγ′γ′)

i.e. mistargeting re�ects the curvature in the payout from own policy, the curvature in the payout

from cross-object policy, and how characteristics a�ect the marginal payout of own policy and cross-

object policy.

Simpli�ed setting

In this section, I derive the result for the simpli�ed setting with a single characteristic and a single

property presented in the text.

The solution follows the steps presented in the text. Once the problem is separable (i.e. presented

with all choices and payouts in terms of characteristic space), then I can take the FOC with respect

to Dz and obtain

0 =
∂

∂Dz

(
FzLσ

2
z + C

Dz

)
= −FzLσ

2
z + C

D2
z

+ ηz
FzLσ

2
z

D2
z

σ2
z =

1

L
· C

ηz − 1
· 1

Fz
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Then, using the function i (z), I can transform the result back to code space

σ2
i =

1

L
· C

ηi − 1
· 1

Fi

General setting

These results are for a general setting with arbitrarily many characteristics and properties (so long

as the characteristics are su�ciently informative about the properties).

Proposition 2: If Hi has rank M , then the optimal within-code covariances in code i will satisfy

~Θi =
1

Fi
(Hi)

−1
L L−1C~1

Proof: I follow the steps presented in the text and take the FOC with respect to every character-

istic. Then the K �rst-order conditions imply

FiHiL~Θi = C~1

And if Hi has rank at least M , then its left inverse exists, so that

~Θi =
1

Fi
(Hi)

−1
L L−1C~1

which establishes the proof.

Extensions

Multiple policies: Suppose a classi�cation is used to implement multiple policies. I show that

this will yield identical results, except now the equilibrium classi�cation will re�ect the combined

costs of mistargeting in all of the policies.

I will focus on the set of policies implemented by a given classi�cation in equilibrium.58 I will

denote this set of policies with the vector ~γ, which I index with p and WLOG has P elements. I can

then repeat the steps used to derive Proposition 1. I then obtain an analogue of Proposition 1: For

a given code i, the cost of policy mistargeting is

∆Ωi = Fi

K∑
k′=1

K∑
k=1

Lkk′σ
2
ikk′

where

Lkk′ =

P∑
p=1

φizkγpφ
i
zk′γp

−2φiγpγp

58One could imagine that the set of policies to be implemented by a given classi�cation is a choice of the classi�er,
for example, the U.S. government could adopt one classi�cation for tari�s and one classi�cation for rules of origin, or
a combined classi�cation for both policies. This is a combinatorial problem and hard to solve. However, by focusing
on the policies implemented by the classi�cation in equilibrium, I can avoid this issue.
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Thus, it is clear that the formulas and proofs for the optimal classi�cation will be exactly the

same, except that now the cost of policy mistargeting re�ects the cost of mistargeting for all policies

in ~γ.

Collating information: Suppose a classi�cation is used to collect information. In particular, for

code i, the classi�er reports information y, and this information is understood to re�ect all parts

of the characteristic space in code i. The classi�er has a payout function ψ (y, z) for information y

given about objects with characteristics z.

I again assume a quadratic payout.59 It follows immediately from the �rst order conditions that

the optimal policy in code i is y = E [z|z ∈ i], while under point-by-point classi�cation, the optimal

policy is y = z, assuming more accurate information is always valuable. Furthermore, it is possible

to follow the steps outlined in the Multiple Policies extension, above, to see that the analogue to

Proposition 1 in this setting: For a given code i, the cost of imperfect collation of information is

∆Ψi = Fi

K∑
k′=1

K∑
k=1

Lkk′σ
2
ikk′

where

Lkk′ =

K∑
p=1

ψzkypψzk′yp
−2ψypyp

Thus, it is clear that, apart from the change in the weights in Proposition 1, the formulas and

proofs for the optimal classi�cation will be exactly the same.

Proofs and derivations from Section 4

The theoretical relationship between tari�s and the HTS

The jumping o� point is for a small country which cannot in�uence the world price of any good.

The economic framework has an outside good produced 1-for-1 from only labor (and the country

has a su�cient labor endowment such that the good is produced in any equilibrium). Each good g is

produced from sector speci�c capital and labor via a CRS production function. Utility is quasilinear

in the outside good and separable across the various goods g. Domestic and foreign output of every

good are perfect substitutes. Furthermore, the production and utility functions are such that the

domestic output of good g has a constant own-price elasticity εypg and demand for imports of good g

has a constant own-price elasticity εMpg . For simplicity, I assume that the allocation of sector speci�c

capital for every good g is such that home exports the outside good and imports all goods g under

any equilibrium.

59This could be understood as a second order approximation to a more general payout).
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The government objective Ω is a weighted welfare function as described in the text

Ω = Y0 +
∑
g

(λg + 1)PSg + CSg + Revg

= Y0 +
∑
g

Ωg

where PSg denotes producer surplus (capital quasi-rents), CSg denotes consumer surplus, and Revg

denotes tari� revenue. Y0 denotes labor income and Ωg denotes the payout from good g.

I will think of Ωg as a function of the tari�, the imports and output at the world price, price

elasticities of domestic output and import demand, and the political weight. In particular, I will

approximate Ωg to a second order around the tari� t = 0,M0 and y0 (the average imports and output

across all g at the average world price), the average world price pw, and the average elasticities of

import demand and domestic output εMp and εyp across all g. The key terms in the approximation

(from the perspective of policy mis-targeting) all evaluated at the points described above are

dΩ

dt
= λy0p

w

d2Ω

dt2
=
(
λyoε

y
p − εMp M0

(
1 + εMp

))
pw

d2Ω

dtdy0
= λpw

d2Ω

dtdλ
= y0p

w

d2Ω

dtdεyp
= λy0p

w ln (pw)

d2Ω

dtdpw
= λy0

(
1 + εyp

)
d2Ω

dtdM0
= 0

d2Ω

dtd
(
εMp
)−1 = 0

First, this implies the average tari� in the code will be

tave =
λy0

εMp M0

(
1 + εMp

)
− λyoεyp

This tari� is increasing in λ, y0, σ
−1, M−1

0 , and εyp.

Second, the properties are y0, λ, ε
y
p, and p

w. These are the terms with non-zero cross derivatives

of the objective and tari�. (Note that σ−1 and M−1
0 only a�ect the optimal tari� via the second

derivative with respect to the tari�, while pw is a property even though it doesn't a�ect the optimal

tari� since it has a non-zero cross derivative). I can calculate the cost of mistargeting of the four

properties
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Ly0y0 =
λ2pw

2
(
εMp M0

(
1 + εMp

)
− λyoεyp

)
Lλλ =

y2
0p
w

2
(
εMp M0

(
1 + εMp

)
− λyoεyp

)
Lεypεyp =

(λy0 ln (pw))
2
pw

2
(
εMp M0

(
1 + εMp

)
− λyoεyp

)
Lpwpw =

(
λy0

(
1 + εyp

))2
2
(
εMp M0

(
1 + εMp

)
− λyoεyp

)
pw

Ly0λ =
λy0p

w

εMp M0

(
1 + εMp

)
− λyoεyp

Ly0εyp =
λ2pwy0 ln (pw)

εMp M0

(
1 + εMp

)
− λyoεyp

Ly0pw =
λ2y0

(
1 + εyp

)
εMp M0

(
1 + εMp

)
− λyoεyp

Lλεyp =
λy2

0p
w ln (pw)

εMp M0

(
1 + εMp

)
− λyoεyp

Lλpw =
λy2

0

(
1 + ω−1

)
εMp M0

(
1 + εMp

)
− λyoεyp

Lεyppw =
(λy0)

2
ln (pw)

(
1 + εyp

)
εMp M0

(
1 + εMp

)
− λyoεyp

As can be immediately veri�ed, all of these objects are weakly increasing in the properties λ, y0, ε
y
p,

and also the factors which increase the tari� only via the second order condition M−1
0 , and εMp .

Derivations and supplementary tables from Section 5

Derivation of the bias:

In the text, I present an expression for a second-order approximation to the bias which arises when

estimation is nonlinear and the econometrician uses functions of weighted averages as opposed to

weighted averages of the function. If E
[
ε|X̃
]

= 0, then this bias is

E
[
β̃|X̃

]
− β =

(
X̃′X̃

)−1

X̃′ (Gβ − F)

where Ỹ is a matrix of f (yi), X̃ is a matrix of gn (xni ), G is a matrix of 1
2g
′′ (xni )σ2

ni and F is a

vector of 1
2f
′′ (yi)σ

2
yi (note that I use σ

2
ni to denote the within-code variance in xn for code i and

σ2
yi to denote the within-code variance in y for code i.
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I start with the standard expression for β̃ and take the conditional expectation:

β̃ =
(
X̃′X̃

)−1

X̃′Ỹ

E
[
β̃|X̃

]
=
(
X̃′X̃

)−1

X̃′E
[
Ỹ|X̃

]
I then simplify E

[
Ỹ|X̃

]
through a local second-order approximation. In particular, for observa-

tion i within code j, I can take a second order expansion for f (·) around yi = E [yj |j ∈ Ji] and then

take expectations:

f (yj) ≈ f (yi) + (yj − yi) f ′ (yi) +
1

2
(yj − yi)2

f ′′ (yi)

E [f (yj) |j ∈ Ji] ≈ f (yi) +
1

2
f ′′ (yi)σ

2
yi

f (yi) ≈ E [f (yj) |j ∈ Ji]−
1

2
f ′′ (yi)σ

2
yi

Furthermore, returning to the true model presented in the text, I have that

f (yj) =

N∑
n=1

βngn
(
xnj
)

+ εj

and by taking a second-order expansion around xni = E [gn (xj) |j ∈ Ji] I obtain

hn
(
xnj
)
≈ gn (xni ) +

(
xnj − xni

)
g′n (xni ) +

1

2

(
xnj − xni

)2
g′′n (xni )

E [hn (xj) |j ∈ Ji] ≈ gn (xni ) +
1

2
g′′n (xni )σ2

ni

so that

f (yi) ≈
N∑
n=1

βn

[
gn (xni ) +

1

2
g′′n (xni )σ2

ni

]
− 1

2
f ′′ (yi)σ

2
yi + E [εj |j ∈ Ji]

which implies

E
[
Ỹ|X̃

]
= Gβ − F

which completes the derivation.

Bias in a di�erence and double-di�erence setting:

In the text, I assert that the bias arising from applying non-linear estimated to weighted averages

will not be corrected by taking either simple di�erences or di�erences-in-di�erences. I show that

this is the case by deriving the bias under both strategies; it is then clear that the bias is generically

not 0 in these settings.
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The true model can be expressed as

∆tf (yjt) =

N∑
n=1

βn∆tgn
(
xnjt
)

+ εjt

where I de�ne ∆tNt ≡ Nt−Nt−1, and this is perfectly analogous to the true model presented in the

derivation without �rst di�erences.

I de�ne ∆tỸ as a matrix of ∆tf (yit), and ∆tX̃ as a matrix of ∆tgn (xnit). I then use the same �rst-

order expansions as in the derivation without �rst di�erences at each point t (and make analogous

de�nitions yit = E [yjt|j ∈ Ji] and xnit = E [gn (xjt) |j ∈ Ji]) and take expectations as before:

f (yit) ≈ E [f (yjt) |j ∈ Ji]−
1

2
f ′′ (yit)σ

2
yit

E [gn (xj) |j ∈ Ji] ≈ gn (xni ) +
1

2
g′′n (xni )σ2

ni

and as before (but now taking into account that variables have been �rst-di�erenced) and taking

conditional expectations60 (and note I assume E
[
εjt|∆tX̃

]
= 0 which is analogous to the assumption

made earlier)

β̂ =
(

∆tX̃
′∆tX̃

)−1

∆tX̃
′∆tỸ

E
[
β̂|∆tX̃

]
=
(

∆tX̃
′∆tX̃

)−1

∆tX̃
′E
[
∆tỸ|∆tX̃

]
=
(

∆tX̃
′∆tX̃

)−1

∆tX̃
′ (∆tGβ −∆tF)

where ∆tG is a matrix of ∆t

[
1
2g
′′ (xnit)σ

2
nit

]
and ∆tF is a vector of ∆t

[
1
2f
′′ (yit)σ

2
yit

]
. It is clear

from this expression that neither ∆tG nor ∆tF will generally be zero.

For double di�erences, I adopt perfectly analogous notation (for which I skip de�nitions are

they're obvious) and all the analogous assumptions. The true model can be expressed as

∆k∆tf (yjtk) =

N∑
n=1

βn∆k∆tgn
(
xnjtk

)
+ εjtk

and by using the same expansions I can obtain

E
[
β̂|∆k∆tX̃

]
=
(

∆k∆tX̃
′∆k∆tX̃

)−1

∆k∆tX̃
′ (∆k∆tGβ −∆k∆tF)

Again, it is clear that this bias need not be zero.

60Also note I use β̂ to denote the biased estimate in di�erences to distinguish it from β̃ which is the biased estimate
without di�erences.
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Correction of bias in method of Feenstra (1994):

In the text, I discussion to the Feenstra method (introduced in Equation (12) in the text). In this

section of the appendix, I provide formulas for Yict, X1ict, and X2ict and I present the derivation of

this correction (and why I have adopted this approach).

First, the corrected estimating equation is

Yict = θ1X1ict + θ2X2ict + υijct

where

Yict ≡ ∆k′
[
(∆kPict)

2
]
−∆k′

[
∆kPict∆k (CV (eijct))

2
]
. . .

+ ∆k′
[
∆kPict∆kCV (qijct)

2
]
. . .

+ ∆k′
[
(CV (eijct))

2
+ (CV (eijkt))

2
+ (CV (qijct))

2
+ (CV (qijkt))

2
]
. . .

− 2∆k′
[
Cov (Ωiteijct,Ωitqijct)

eictqict
+

Cov (Ωiteijkt,Ωitqijkt)

eiktqikt

]
X1ict ≡ ∆k′

[
(∆kEict)

2
]
−∆k′

[
∆kEict∆k (CV (eijct))

2
]
. . .

+ ∆k′
[
(CV (eijct))

2
+ (CV (eijkt))

2
]

X2ict ≡ ∆k′ [(∆kEict) (∆kPict)] . . .

−∆k′
[(

∆kEict
2

− ∆kPict
2

)
∆k (CV (eijct))

2

]
. . .

+ ∆k′
[
(CV (eijct))

2
+ (CV (eijkt))

2
]
. . .

+ ∆k′
[

∆kEict
2

∆k (CV (qijct))
2

]
. . .

−∆k′
[
Cov (Ωiteijct,Ωitqijct)

eictqict
+

Cov (Ωiteijkt,Ωitqijkt)

eiktqikt

]
Second, I present the derivation of the estimating equation above. My assumptions are largely

the same as in Feenstra (1994); however, I put greater structure on the supply and demand shocks

across varieties within a code and across time. I also introduce some additional notation for my

setting. I describe all of these assumptions and notation below.

I start by de�ning notation. Following notation introduced in the body of the paper, I denote a

good with ij subscripts and a code by an i subscript. I denote by Ωit the measure of goods ij in code

i at time i. I use c subscripts to denote variables for supplying country c, and t subscripts to denote

variables at time t. Thus, for good ij sourced from country c at time t, I denote expenditure by eijct,

the quantity sourced by qijct, and the price by pijct. I denote the aggregate expenditure on good ij

in time t regardless of country of origin by eijt. Throughout, a capitalized variable denotes the log

of a variable, a ∆k denotes a reference country di�erence, and a ∆k′ denotes a time and reference

country di�erence, i.e. ∆kEct ≡ Ect − Ekt and ∆kEct ≡
(
ln ect − ln ec(t−1)

)
−
(
ln ekt − ln ek(t−1)

)
.

I assume the economic structure from Feenstra (1994): a reduced form constant elasticity export
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supply curve and a constant elasticity of substitution utility function across varieties. As in Feenstra

(1994), the economic structure follows Armington (1969): each country is assumed to perfectly com-

petitively supply a unique variety of the good. Following these assumptions, price and expenditure

for a given variety are jointly determined by the demand and supply equations

eijct = bijct

(
pijct
φijt

)1−σi
eijt

eijct = exp

(
−aijct

ωi

)
p
ωi+1

ωi
ijct

where σi denotes the elasticity of substitution across varieties, ωi denotes the inverse foreign ex-

port supply elasticity, bijct is a demand shock, and aijct is a production cost shock (alternatively,

exp
(
−aijctωi

)
is an inverse productivity shock). The exponential form of the export supply shock

and multiplicative form of the demand shock are adopted to conform to the notation of Feenstra

(1994).

I next turn to the supply and demand shocks, exp
(
−aijctωi

)
and bijct. First, I decompose these

shocks (in logs) into a country-good average across time, a code-supplier-time shock, a common

good-time shock shared by all suppliers, and an idiosyncratic good-supplier-time shock, i.e.

aijct = âijc + âijt + âijct

Bijct = B̂ijc + B̂ijt + B̂ijct

Furthermore, I assume that the âijt and B̂ict are shared across suppliers, and the âijct and the B̂ijct

are supplier-good-time idiosyncratic shocks. I normalize the time-dependent terms so that they are

mean zero � any average across time of the time dependent components can be absorbed by the âijc

and B̂ijc. I further assume that the âijt, âijct, B̂ijt, and B̂ijct are mutually uncorrelated (including

across sources, i.e. âijct is uncorrelated with âijc′t for c
′ 6= c).61 Finally, I assume heterogeneous

variances in the âijct and B̂ijct across source countries such that the ratio of these variances is

generically di�erent.

These assumptions on the supply and demand shocks are consistent with the assumptions in

Feenstra (1994), but the assumption that the components of the supply and demand shocks are

mutually uncorrelated is somewhat stronger. In particular, Feenstra (1994) assumes the residuals

of the supply and demand shocks after taking time and reference di�erences are uncorrelated with

each other. I maintain this assumption, but add the stronger assumption that these residuals are

also uncorrelated with the parts of the supply and demand shocks which are removed when taking

time and reference di�erences. More formally, the �rst part of the assumption in Feenstra (1994)

is that E
[(

∆kaijct
) (

∆kBijct
)]

= 0. This continues to hold in my framework � ∆kaijct = âijct

and ∆kBijct = B̂ijct. Furthermore, âijct and B̂ijct are uncorrelated mean 0 shocks � so that the

expectation of their product is zero. The second part of the assumption in Feenstra (1994) is

heteroskedasticity � that there exist two source countries c and c′ such that
V[∆kaijct]
V[∆kaijct]

6= V[∆kaijc′t]
V[∆kaijc′t]

;

61Note that aijct and aijc′t are still be correlated with each other for c 6= c′ due to the shared âijt term).
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my assumption on the variances of the âijct and B̂ijct across countries ensure that this condition

will be satis�ed.

Finally, my approach requires that there are at least �ve countries, where two of those countries

share at least three di�erent sets of shared consecutive years with the remaining source countries.

After taking second reference di�erences, this implies 3 remaining sources, and after taking time

di�erences, two observations for each source country. Three source countries is the minimum to

identify three parameters of interest: a supply and demand elasticity plus a constant. And two

time periods for each source is the minimum to have variances and covariances across time in price

and quantity, which are the dependent and independent variables in the regression. E�ectively, this

method requires one additional source country (with data in the necessary time periods) relative to

Feenstra (1994).

With my assumptions in hand, I turn to deriving the estimating equation itself. I start by

multiplying both the demand and supply equations by the measure of varieties in code i at time t,

Ωit, and take logs to obtain

Ẽijct = Bijct + (1− σi) (Pijct − Φijt) + Ẽijt

Ẽijct = −aijct
ωi

+

(
ωi + 1

ωi

)
Pijct + ln (Ωit)

where I de�ne Ẽijct ≡ ln (Ωiteijct) and Ẽijt ≡ ln (Ωiteijt) as variety adjusted expenditures). These

equations are in terms of the �true� variety ij, but this is not a substantive departure from Feenstra

(1994) � this is simply a question of data, not theory. However, there are two true departures from

Feenstra (1994) here, although neither is substantive. Feenstra (1994) uses expenditure shares and

does not adjust by the measure of varieties; however, in time and reference country di�erences both

adjustments drop out, and so these equations are exactly equivalent to the analogous equations in

Feenstra (1994).62

I then take reference country di�erences of both equations to remove the log of the price index

and variety-adjusted expenditure to obtain

∆kẼijct = ∆kBijct + (1− σi) ∆kPijct

∆kẼijct = −∆kaijct
ωi

+

(
ωi + 1

ωi

)
∆kPijct

At this point, Feenstra (1994) also takes a time di�erence of both equations; I omit this step for now,

as doing so would bury the time di�erence inside non-linear functions, complicating the second-order

approximations.63

62To put this another way, if all of the necessary terms were observed, I could adopt either this demand equation or
the Feenstra (1994) one and, by following the Feenstra (1994) method the rest of the way get exactly the same regressors
and regressands for any dataset. But making these changes makes the second-order approximations somewhat simpler
to follow, which is hwy I adopt them.

63In particular, it would make the approximations depend on the serial correlations of price and quantity at the
source level. In general, there is no reason to expect these serial correlations to be the same across source countries,
and so the second reference di�erence strategy I employ would not eliminate these terms. This then would be a
problem for settings with no microdata, as governments are unlikely to target these moments.This di�culty could
be overcome by taking a second time di�erence in addition to a second reference di�erence; this would remove the
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With the exception of the skipped time di�erences, I continue to follow Feenstra (1994) after the

step I have skipped. I manipulate both equations to move the price and expenditure terms onto the

left-hand side, and then I multiply both equations. By doing so, I obtain

(∆kPijct)
2 − θ1

(
∆kẼijct

)2

− θ2 (∆kPijct)
(

∆kẼijct

)
= uijct

where I de�ne

uijct ≡ −
1

ωi
(∆kaijct) (∆kBijct)

θ1 ≡
ωi

(σi − 1) (ωi + 1)

θ2 ≡
(σi − 1)ωi − (ωi + 1)

(σi − 1) (ωi + 1)

Although Feenstra (1994) de�nes θ1 and θ2 in terms of ρ instead of ω, it is straightforward to show

that my de�nitions are equivalent to his by plugging in the de�nition of ρ in terms of σ and ω. I

then follow Feenstra (1994) in moving the
(

∆kẼijct

)2

and (∆kPijct)
(

∆kẼijct

)
on to the righthand

side. Finally, I take a time di�erence and a second reference country di�erence to obtain

∆k′ (∆kPijct)
2

= θ1∆k′
(

∆kẼijct

)2

+ θ2∆k′
[
(∆kPijct)

(
∆kẼijct

)]
+ υijct

The Feenstra (1994) method relies on the average of the error being mean zero across time for

a given source country. The last task (even if a rather straightforward one) is for me to show that

this holds here as well, i.e. Et [υijct] = 0, where I place a t subscript on the expectation to denote

an expectation across time (with the ijc given). Under my assumption on the decomposition of the

shocks,

uijct = − 1

ωi
(∆kâijc + ∆kâijct)

(
∆kB̂ijc + ∆kB̂ijct

)
This term is not mean zero because of the ∆kâijc and ∆kB̂ijc terms. However, the additional time

and second reference di�erences of this expression will eliminate the ∆kâijc and ∆kB̂ijc terms (since

these are constant over time and uncorrelated with the ∆kâijct and ∆kB̂ijct), yielding an error which

is mean zero for each source country.

υijct = ∆k′uijt = − 1

ωi
∆k′

[
(∆kâijct)

(
∆kB̂ijct

)]
Next, I construct second order approximations to the nonlinear terms in the estimating equation:

(∆kPijct)
2
,
(

∆kẼijct

)2

, and (∆kPijct)
(

∆kẼijct

)
. I will then take these expressions in time and

second reference di�erences to obtain the estimating equation (note the approximation need not take

into account the time and second reference di�erences because the estimating equation is linear in

these terms).

One complication is that the observed prices are quantity weighted while expenditures are variety-

additional covariances at the cost of reducing the amount of data available to the estimator.
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weighted. This mean that if I take second order expansions around weighted average prices and

variety weighted expenditures, when I then average across the varieties j within a given code i

at least one of the �rst-order terms will not drop out (depending on the weights in the average).

This problem could be handled directly at the cost of more complicated approximations, but it is

simpler to instead use the identity pijct ≡ eijct
qijct

. This permits expansions around variety-weighted

expenditure and variety-weighted quantity, so that all the �rst order terms drop out when taking a

variety-weighted average.

Following this logic, I take second order approximations to
(

∆kẼijct

)2

,
(

∆kQ̃ijct

)2

(where I

de�ne Q̃ijct ≡ ∆t ln (Ωitqijct)), and
(

∆kẼijct

)(
∆kQ̃ijct

)
around eijct = eict

Ωit
and qijct = qict

Ωit
(where

eict and qict the aggregate expenditure and quantity for country c in code i). I start by averaging(
∆kẼijct

)2

across all j in i for source c at time t, which I denote by putting a j subscript on the

expectation,

Ej
[(

∆kẼijct

)2
]
≈ (∆kEict)

2 −∆kEict∆k (CV (eijct))
2
. . .

+ (CV (eijct))
2

+ (CV (eijkt))
2 − Cov (Ωiteijct,Ωiteijkt)

eicteikt

where CVj (eijct) denotes the coe�cient of variation of eijct across the j within code i for country

c at time t.

And for the average of
(

∆kQ̃ijct

)2

, I obtain

Ej
[(

∆kQ̃ijct

)2
]
≈ (∆kQict)

2 −∆kQict∆k (CV (qijct))
2
. . .

+ (CV (qijct))
2

+ (CV (qijkt))
2 − Cov (Ωitqijct,Ωitqijkt)

qictqikt

where CVj (qijct) denotes the coe�cient of variation of qijct across the j within code i for country

c at time t.

And �nally, for the average of
(

∆kẼijct

)(
∆kQ̃ijct

)
, I obtain

Ej
[(

∆kẼijct

)(
∆kQ̃ijct

)]
≈ (∆kEict) (∆kQict)−

∆kEict
2

∆k (CVj (qijct))
2
. . .

− ∆kQict
2

∆k (CV (eijct))
2
. . .

+

[
Cov (Ωiteijct,Ωitqijct)

eictqict
− Cov (Ωiteijct,Ωitqijkt)

eictqikt

]
. . .

−
[
Cov (Ωiteijkt,Ωitqijct)

eiktqict
− Cov (Ωiteijkt,Ωitqijkt)

eiktqikt

]
The next task is to transform the nonlinear terms in the estimating equation in terms of the

second order expansions using the identity pijct ≡ eijct
qijct

. One of the terms is trivial, as I provide the
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expression for
(

∆kẼijct

)2

above. Turning next to (∆kPijct)
2

(∆kPijct)
2

=
(

∆kẼijct

)2

− 2
(

∆kẼijct

)(
∆kQ̃ijct

)
+
(

∆kQ̃ijct

)2

Ej
[
(∆kPijct)

2
]
≈ (∆kPict)

2 −∆kPict∆k (CV (eijct))
2

+ ∆kPict∆k (CVj (qijct))
2
. . .

+ (CV (eijct))
2

+ (CV (eijkt))
2

+ (CV (qijct))
2

+ (CV (qijkt))
2
. . .

− Cov (Ωiteijct,Ωiteijkt)

eicteikt
− Cov (Ωitqijct,Ωitqijkt)

qictqikt
. . .

− 2

[
Cov (Ωiteijct,Ωitqijct)

eictqict
− Cov (Ωiteijct,Ωitqijkt)

eictqikt

]
. . .

+ 2

[
Cov (Ωiteijkt,Ωitqijct)

eiktqict
− Cov (Ωiteijkt,Ωitqijkt)

eiktqikt

]
And �nally,

(∆kPijct)
(

∆kẼijct

)
=
(

∆kẼijct

)2

−
(

∆kẼijct

)(
∆kQ̃ijct

)
Ej
[
(∆kPijct)

(
∆kẼijct

)]
≈ (∆kEict) (∆kPict)−

(
∆kEict

2
− ∆kPict

2

)
∆k (CV (eijct))

2
. . .

+ (CV (eijct))
2

+ (CV (eijkt))
2

+
∆kEict

2
∆k (CVj (qijct))

2
. . .

−
[
Cov (Ωiteijct,Ωitqijct)

eictqict
− Cov (Ωiteijct,Ωitqijkt)

eictqikt

]
. . .

+

[
Cov (Ωiteijkt,Ωitqijct)

eiktqict
− Cov (Ωiteijkt,Ωitqijkt)

eiktqikt

]
. . .

− Cov (Ωiteijct,Ωiteijkt)

eicteikt

The next step is to show that the �nuisance� covariance terms � those between source country and

reference country variables which are not plausibly targeted by the classi�er � all (approximately)

cancel out in time and second reference country di�erences. I assume that for all c and j, eijct

is reasonably close to eict
Ωit

and qijct is reasonably close to qict
Ωit

. Under these assumptions, I can

approximate for variables (in an abuse of notation to keep expressions general) x 6= y, x, y ∈
{ect, ekt, qct, qkt}, so that xij ∈ {eijct, eijkt, qijct, qijkt} and xi ∈ {eict, eikt, qict, qikt}

Cov (Ωitxij ,Ωityij)

xiyi
= E

[(
Ωitxij − xi

xi

)(
Ωityij − yi

yi

)]
≈ E [ln (xij) ln (yij)]

Turning to the equilibrium values of price and expenditure (as a function of supply and demand
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shocks and the price index),

ln (Ωiteijct) =
1− σi
σiωi + 1

aijct +
ωi + 1

σiωi + 1

(
Bijct + Ẽijt

)
+

(ωi + 1) (σ
i
− 1)

σiωi + 1
Φijt

ln (Ωitqijct) =
−σi

σiωi + 1
aijct +

1

σiωi + 1
(Bijct + Eijt) +

σi − 1

σiωi + 1
Φijt

Following the assumed decompositions of aijct and Bijct and the independence of the di�erent

components of the shocks from each other, I �nd for the four covariances of interest (note that
Cov(Ωiteijct,Ωitqijkt)

eictqikt
≈ Cov(Ωiteijkt,Ωitqijct)

eiktqict
so I only provide expressions for one of these covariances

instead of the same expression twice).

Cov (Ωiteijct,Ωiteijkt)

eicteikt
≈
(

1− σi
σiωi + 1

)2

(Ej [âijc]Ej [âijk] + Vj [âijt]) . . .

+

(
ωi + 1

σiωi + 1

)2 (
Ej
[
B̂ijc

]
Ej
[
B̂ijk

]
+ Vj

[
B̂ijt + Ẽijt

])
. . .

+

(
(ωi + 1) (σi − 1)

σiωi + 1

)2

Vj [Φijt]

Cov (Ωitqijct,Ωitqijkt)

qictqikt
≈
(

σi
σiωi + 1

)2

(Ej [âijc]Ej [âijk] + Vj [âijt]) . . .

+

(
1

σiωi + 1

)2 (
Ej
[
B̂ijc

]
Ej
[
B̂ijk

]
+ Vj

[
B̂ijt + Ẽijt

])
. . .

+

(
σ
i
− 1

σiωi + 1

)2

Vj [Φijt]

Cov (Ωiteijct,Ωitqijkt)

eictqikt
≈
(

1− σi
σiωi + 1

)(
σi

σiωi + 1

)
(Ej [âijc]Ej [âijk] + Vj [âijt]) . . .

+

(
ωi + 1

σiωi + 1

)(
1

σiωi + 1

)(
Ej
[
B̂ijc

]
Ej
[
B̂ijk

]
+ Vj

[
B̂ijt + Ẽijt

])
. . .

+ (ωi + 1)

(
σi − 1

σiωi + 1

)2

Vj [Φijt]

As can be seen, all of the expressions are either time invariant (Ej [âijc]Ej [âijk] and Ej
[
B̂ijc

]
Ej
[
B̂ijk

]
)

or source country invariant (Vj [âijt] and Vj
[
B̂ijt + Ẽijt

]
); thus all of these covariances (approxi-

mately) drop out with second reference country and time di�erences.

Note that the
Cov(Ωiteijct,Ωitqijct)

eictqict
and

Cov(Ωiteijkt,Ωitqijkt)
eiktqikt

terms need not cancel out in second

di�erences. Both eijct and qijct are functions of the âijct and B̂ijct � and these terms might have

di�erence variances across goods j within code i for di�erent source countries. Consequently, the
Cov(Ωiteijct,Ωitqijct)

eictqict
and

Cov(Ωiteijkt,Ωitqijkt)
eiktqikt

terms are likely to vary by source-reference pair.

By combining all of these terms, I obtain the estimating equation presented at the beginning of

this subsection and in the text.
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(1) (2) (3) (4)
MFN tari� MFN tari� MFN tari� MFN tari�

Corrected -1.88e-8*** -1.88e-8***
Sigma (6.53e-9) (6.53e-9)
Corrected 1.35e-7***
Omega (5.30e-9)
Uncorrected 2.73e-7 2.73e-7
Sigma (2.13e-7) (2.13e-7)
Uncorrected 4.37e-6
Omega (7.52e-6)
Observations 210,090 210,090 207,777 207,777
Dep. var. mean 0.0493 0.0493 0.0491 0.0491
Dep. var. SD 0.0741 0.0741 0.06767 0.0677
FEs HS6, year HS6, year HS6, year HS6, year
Adj. R2 0.484 0.484 0.568 0.5678
Clustering HS6 HS6 HS6 HS6

Note: *** signi�cant at the 1% level, ** signi�cant at the 5% level, * signi�cant at the 10% level

Table 9: Correlation between tari�s and elasticities

Supplementary tables for the correlation between tari�s and elasticities

In the text, I examine the correlations between the corrected and uncorrected elasticities and tari�s

in Table 8. In this section, I consider two adjustments to my approach, and I �nd similar results.

First, in Table 8 in the main body of the paper, I constrain the sample to be the same for all 4

columns. Some observations have corrected elasticities but not uncorrected ones, or vice-versa. By

restricting the sample to only observations which have both corrected and uncorrected elasticities,

I avoid the possibility that di�erences in sample composition drive the change in the sign of the

correlation with import demand elasticity. In Appendix Table 9, I show that this is not necessary

for my result: I obtain the same change in sign if I include all potential observations in both

regressions.

And second, in Table 8 in the body of the paper I use MFN tari�s as the dependent variable. This

has some advantages: MFN tari�s are broadly applied and consequently well measured. However,

their mapping to theory is also more complicated because they partly, but not necessarily entirely,

re�ect trade negotiations as discussed in the body of the paper. In contrast, the Column 2 tari�s

do not re�ect trade negotiations and so are easily to interpreted as unilateral tari�s. However, these

tari�s are applied to a tiny fraction of trade � for many goods no imports are subject to these tari�s

� and so they are much more di�cult to measure. In Appendix Table 10, I show that the �avor of

Table 8 in the body of the paper is preserved when I use Column 2 tari�s. Again there is a sign

�ip for the elasticity of import demand, although now the relationship with the corrected sigma and

omega is no longer signi�cant (while the relationship with the uncorrected sigma is the opposite of

the sign predicted by the theory and highly signi�cant).
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(1) (2)
Col2 tari� Col2 tari�

Corrected -4.15e-8
Sigma (3.95e-8)
Corrected 1.07e-8
Omega (4.47e-8)
Uncorrected 1.48e06***
Sigma (4.36e-7)
Uncorrected 5.46e-5*
Omega (3.02e-5)
Observations 203,926 203,926
Dep. var. mean 0.353 0.353
Dep. var. SD 0.268 0.268
FEs HS6, year HS6, year
Adj. R2 0.570 0.570
Clustering HS6 HS6

Note: *** signi�cant at the 1% level, ** signi�cant at the 5% level, * signi�cant at the 10% level

Table 10: Correlation between Column 2 tari�s and elasticities
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