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Abstract

Blood donations by volunteer non-remunerated donors can only meet less than
50% of demand in 56 countries where blood banks had to adopt replacement
donor programs to provide blood to patients in return for donations made by their
donors. These programs are inefficient, as they limit the direct exchange of donors
among patients. We introduce a novel framework and propose a general mecha-
nism class accommodating efficiency objectives that embed current practices and
other plausible fairness criteria. These mechanisms are incentive-compatible for
patients to truthfully reveal their utility functions and replacement donors. Our
framework also applies to other multi-unit exchange problems.
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1 Introduction
Transfusions are commonly used to treat various medical conditions to replace lost

blood or add inadequate blood components. Replacements of red blood cells and
other blood components such as platelets, plasma, and clotting factors are essential
for patients going through certain procedures such as surgery, chemotherapy, and
childbirth, and for patients with trauma and blood diseases.1 In the US, according to
Pfuntner, Wier, and Stocks (2013), blood transfusion was the most common procedure
performed during hospitalizations in 2011. Even though transfusion is an essential
procedure in health care, many patients around the world do not have access to safe
blood due to significant shortages.

Around the world, the collection and distribution of blood is organized through
blood banks where donated blood is processed and stored. Unlike most solid human
organs and tissues, blood replenishes after donation, and most blood products can
be stored for a period of time. Different compatibility requirements apply for each
blood component — see Appendix A for medical and institutional details of blood
transfusion.

The most adequate and reliable supply of blood is through volunteer non-
remunerated donors (VNRDs), who mostly donate blood, often repeatedly, through
blood drives or other campaigns. These donors provide the safest supply of blood
since the prevalence of blood-borne infections is lowest among this group of donors.2

However, according to the World Health Organization (WHO), only 79 countries (38
high-income, 33 middle-income, and 8 low-income) collect more than 90% of their
blood supply from VNRDs (WHO, 2020).

Although it seems relatively costless to donate blood, there are severe blood short-
ages in many developing countries, as well as seasonal shortages in developed coun-
tries (Gilcher and McCombs, 2005). Cultural and religious factors create frictions that
deter VNRDs, especially in some developing countries. Furthermore, some blood
components, such as platelets, have short shelf life, are in high demand, and are more
difficult to collect than other components. This leads to shortages of such components
even in the developed world.

1Since most patients require a specific blood component for treatment, whole blood is rarely used in
modern transfusion medicine except in some low-income countries (WHO, 2020).

2Blood is forbidden to be exchanged using valuable remuneration in most countries. Nevertheless,
it is reported that 16 countries collect blood through paid donations as of 2018 (WHO, 2020). The paid
donors are considered to be the least safe, as they are usually in poorer health than VNRDs. Such donors
may also have incentives to hide their health status, causing adverse selection problems.
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In 56 countries worldwide (9 high-income, 37 middle-income, and 10 low-income),
more than 50% of the blood supply is met by replacement donors and, in some rare cases,
through paid donors (WHO, 2020). As an effective method to boost blood component
reserves, blood banks in many places — including highly populated countries such as
India, Brazil, Pakistan and China — employ official or unofficial replacement donor pro-
grams. Such a program requires each patient to nominate a number of willing donors,
who are typically family members, to donate blood in order for the patient to receive
transfusion. Notwithstanding the important role they play in addressing blood short-
ages, existing replacement donor programs suffer from two major shortcomings.

The first one is the loss of welfare due to the lack of optimization. As far as we
know, there is no explicit optimized allocation method based on patients’ needs and
donor screening in current replacement donor programs, and most programs use allo-
cation schemes that work as first-come first-serve (FCFS) procedures. Such procedures
can be highly inefficient as patients are allowed to exchange donor blood only with
the bank ruling out exchanges among patients. However, in many places, the blood
bank cannot carry enough inventory to make intermediated exchanges close to effi-
cient. In the face of chronic shortages, a natural policy objective can be to optimize
the transfusion volume by organizing exchanges among the patients and the blood
bank inventory properly. Indeed, Tagny (2012) notes that (especially in the context of
programs in Sub-Saharan Africa):

“Effective procedures of the management of family donors are not yet clearly worked out and

reported. All the current international recommendations refer to only VNR donation, from

donor recruitment to donor retention. The data from family blood donors, related to blood

collection, processing and delivery including information on the potential recipient, cannot be

managed by the current software. Actually, family replacement donation is mainly used in a

decentralised model based on the hospital blood banks (Tagny et al., 2012). Thus, adapted

or hybrid centralised models must be clearly defined to integrate an effective management of

family replacement donation.”

The second shortcoming is that replacement donor programs generally operate on
exogenously fixed exchange rates between units (of blood) received by the patient
and units supplied by the patient through her replacement donors, which can induce
unfair, unethical, and inefficient outcomes. Certain patients may not be able to recruit
the required number of donors that they are obligated to provide, making it difficult to
receive transfusion. This gives rise to coercion and black markets through which third
parties are paid to assume the role of replacement donors. In addition, the rules are
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sometimes bent in favor of some patients with few or no paired donors, inducing ad
hoc and informal endogenous exchange rates.3 Around the world, replacement donor
programs appear to be highly non-transparent in their blood allocation operations,
and it is difficult to find institutional guidelines (see Appendix A for more details).
Even in the absence of these problems, a fixed exchange rate regime based exclusively
on units of blood received or supplied without any regard to blood types limits the
scope of admissible exchanges and allocations, leading to welfare loss.

In this paper, we model blood allocation with VNRDs and replacement donors, and
design new allocation schemes to address these shortcomings. The problem is inher-
ently discrete: as blood components are stored and allocated in packs, they are effec-
tively treated as indivisible goods. Thus, we introduce a general theory on multi-unit
discrete exchange with compatibility-based preferences, which can also be applied to
other similar market design contexts.

In the model, each patient has a maximum need of compatible blood4 that is usually
determined by her medical condition. She has a (possibly empty) set of replacement
donors as her endowment, which is private information. Each donor can donate one
unit of blood. The blood bank also has an inventory of existing blood of each type,
which can be interpreted as originating from VNRDs.

The replacement donor program is a centralized entity with the goal of assigning
each patient a schedule, which designates the amount of blood she receives and the
amount of blood she supplies (or the amount her donors donate). A patient has a
separable utility function over schedules, defined as the difference of a concave blood
valuation function and a convex cost function for blood supply.

We start off with the case of quasi-linear utility, where there is a common valuation
function for all patients, and the cost function is linear with a privately known slope

3For example, such accounts were communicated through personal communication with the director
of the Tucuman Blood Bank in Argentina, Dr. Felicitas Agote, on 07/07/2020.

4We explain the details of compatibility requirements in Appendix A.1. To give a concrete ex-
ample, consider red blood cell transfusion. The set of blood types relevant for compatibility is
B = {O+, O−, A+, A−, B+, B−, AB+, AB−}. Signs + and − represent Rh D+ and Rh D− types,
respectively, and letters denote the ABO types. Two separate compatibility requirements are needed.
First, Rh D− red blood cell packs can be transfused to all while Rh D+ packs can only be transfused
to Rh D+ patients. Second, there are different regional standards for ABO compatibility depending on
how the packs are prepared, which usually requires ABO-identical transfusion or ABO-cellular compatible
transfusion. In the former case, every pack can only be transfused to patients of its ABO type. In the
latter case, type O packs can be transfused to all, type A (resp. type B) packs can be transfused to type
A (resp. type B) patients and type AB patients, and type AB packs can only be transfused to type AB
patients.
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representing the patient’s type. The type captures her marginal rate of substitution
between receiving and supplying blood. In this case, the revelation problem is also
simplified, making it more practical to implement. We show later that our results
mostly carry over to the case of general utilities.

Incentivizing truthful revelation of both donor sets and utility functions (or types)
is essential for efficiency and increasing the overall transfusion level, as well as obtain-
ing a fair system that levels the playing field for patients (cf. Pathak and Sönmez, 2008).
In order to achieve incentive compatible and efficient blood allocation while accom-
modating flexible and endogenous exchange rates, we introduce two interdependent
policy levers.

The first one, a feasible schedule menu, is novel in market design as it makes it pos-
sible to deal with unrestricted multi-unit exchanges. In particular, many replacement
donor programs operate with non-uniform exchanges, i.e., a patient does not neces-
sarily supply one unit for each unit received. This cannot be addressed by the existing
tools in the literature, which, as far as we know, all rely on the classical assumption of
one-for-one exchange. The feasible schedule menu of each patient is an idiosyncratic
function specifying the collection of schedules that she can possibly be assigned for
any set of donors she provides. A profile of individual feasible schedule menus then
constrain the allocations that a mechanism — our second policy lever — will choose
from. More specifically, for any given feasible schedule menus, a mechanism chooses
an allocation for each problem so that every patient’s schedule in the allocation is fea-
sible. Therefore, a patient’s eventual exchange rate in her assigned schedule can be
endogenously determined by the mechanism.5

The current blood allocation practices can be formally assessed using these tools.
We map the existing exchange rate policies into feasible schedule menus, and start
by showing that, while the FCFS mechanism in practice can often be incentive com-
patible under such feasible schedule menus, it is inefficient and can even be Pareto
dominated by an incentive compatible mechanism under the most commonly used
exogenous and fixed exchange rates (Theorem 1). This entails that current blood allo-

5The more traditional approach would be avoiding defining the concept of feasible schedule menus
altogether, and defining the combination of a single feasible schedule menu profile and an allocation
rule respecting this feasible schedule menu profile as a mechanism. We do not follow this approach
to highlight limitations caused or possibilities created by these two levers separately as usually differ-
ent feasible schedule menus are used together with the same allocation rule, FCFS, in most real-life
practices. Thus, we effectively refer to a pair of allocation rule–feasible schedule menu profile as a
mechanism.
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cation practices can be improved upon leading to unambiguous gains for both patients
and the bank. Our subsequent simulation results (in Section 5.2) further reveal that the
size of improvement can be significantly large in real-life scenarios.

The Pareto-improving mechanism is still not necessarily Pareto efficient. A natural
efficient solution that also minimally interferes with the current institutions is to re-
place FCFS with a priority mechanism, which essentially incorporates exchanges among
patients into the sequential utility optimization scheme of FCFS.6 Then, to embed
more complex prioritization schemes or other objectives popular in similar medical ex-
change problems (such as maximizing total transplantations in kidney exchange), we
propose a broader and intuitive class of new mechanisms. A weighted utilitarian mech-
anism is defined with respect to some positive weights assigned to individual utilities.
Given a profile of feasible schedule menus, the mechanism chooses a feasible alloca-
tion that maximizes the weighted sum of utilities for each problem. The weighted
utilitarian mechanisms nest both priority mechanisms and maximal mechanisms, which
are the only previously studied incentive compatible mechanisms in similar allocation
problems — albeit studied only under the one-for-one exchange rate (see Section 6 for
more on this and the related literature).

The weighted utilitarian mechanisms together with properly designed feasible
schedule menus overcome the two shortcomings of current replacement donor pro-
grams outlined above.

First, any weighted utilitarian mechanism is Pareto efficient for the given feasible
schedule menus (Proposition 1). Moreover, in the simulations, we find that the coun-
terpart to FCFS in our class, a priority mechanism, almost Pareto dominates FCFS. Be-
sides efficiency, more egalitarian allocations can be achieved by choosing appropriate
weights of patients. We show that, if the feasible schedule menus satisfy a discrete con-
vexity notion, L(attice)-convexity, and the blood valuation function is strictly concave,
then some weighted utilitarian mechanism approximately satisfies equal treatment of
equals (Proposition 2).

Then, as a prelude to incentive properties of the weighted utilitarian mechanisms,
we show that they satisfy a weak and basic incentive criterion of donor monotonicity,
i.e., concealing some donors never enables a patient to receive more blood, when three
natural properties are satisfied by the feasible schedule menus (Theorem 2): the menus

6Such a solution is in line with the recent minimalist market design paradigm, formally advocated by
Sönmez (2023).
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are L-convex;7 if a patient can potentially receive more (or less) blood, then she can
potentially receive this amount by supplying more (or less); and the feasible schedule
set becomes weakly more favorable for a patient as her donor set expands. Achieving
donor monotonicity is particularly important in this context as it helps align patients’
individual incentives with the blood bank’s objective of increasing transfusion.

Results on stronger incentive criteria are developed from the above theorem. After
strengthening the third property of the feasible schedule menus, the weighted utili-
tarian mechanisms are incentive compatible in the particularly plausible scenario of
lexicographic preferences (Theorem 3), where the transfusion amount is always of
first-order importance to every patient. Without restricting preferences, if we take the
schedule (0, 0) as the outside option and further require the feasible schedule menus
to exhibit a mild property of individual rationality, then the priority mechanisms, in-
cluding the maximal mechanisms, remain incentive compatible (Theorem 5), while the
whole class of weighted utilitarian mechanisms is at least incentive compatible with
respect to the revelation of donors (Theorem 4).

Second, the innovation of feasible schedule menus allows for various exchange
rates between units received and supplied, while weighted utilitarian mechanisms
endogenously determine these exchange rates. This helps to rectify the shortcoming
caused by a fixed exchange rate in current programs, as the feasible schedule menus
can be tailored fairly for patients who can intrinsically recruit fewer donors or for dif-
ferent medical conditions, which may alleviate ethical and health problems associated
with black markets. Our approach provides a framework to assess and improve the
effectiveness of the existing replacement donor programs, and makes it possible to
offer rigor and transparency to their organization. Further toward this goal, we pro-
vide concrete policy designs with feasible schedule menus that can help achieve equi-
table blood allocation, scarce blood type targeting, and approximating fixed exchange
regimes with better incentives and welfare.

2 The Model
We focus on the design of blood markets and use the corresponding terminology,

although the model introduced below applies to general multi-unit discrete exchange
with compatibility-based preferences.

7Besides its important roles in fairness and incentives, L-convexity also guarantees that the outcome
of a weighted utilitarian mechanism for certain patient utility functions can be found in polynomial
time (see the earlier draft of our paper, Han, Kesten, and Ünver, 2021).
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Consider the market for a single blood component, which we simply refer to as
blood. Let I be a set of patients and B be the set of blood types. Each X ∈ B denotes
a specific blood type used in compatibility requirements.8

• Blood need. A given patient i ∈ I has type βi ∈ B blood and needs a maximum
of ni units of compatible blood, which is a positive integer. Let β I = (βi)i∈I

and n = (ni)i∈I . For each blood type X, C(X) ⊆ B, where C(X) ̸= ∅, is the
set of blood types compatible with a type X patient. Compatibility requirements
depend on the blood component and the medical context.9

• Blood supply. Each patient i has a (possibly empty) set of willing replacement
donors10 Di such that each donor d ∈ Di can provide one unit of type βd ∈
B blood.11 Let D = (Di)i∈I , βD = (βd)d∈⋃i∈I Di , and a positive integer δ be a
commonly known upper bound on the number of donors any patient can bring
forward. Moreover, the blood bank, denoted as b, has vX units of type X blood
in its inventory for each blood type X. Let v = (vX)X∈B.

• Patient preferences and utilities. Each patient i has strict preferences over her
blood allocation schedules, each of which is a non-negative integer vector (r, s),
where r denotes the amount of compatible blood received and s denotes the
amount of blood supplied through her replacement donors. Such preferences
are represented by a one-to-one separable utility function ui such that for every
(r, s) ∈ {0, 1, . . . , ni} × {0, 1, . . . , δ},

ui[r, s] = ρi(r)− σi(s),

where
8Our baseline model can be slightly extended to cover several blood components at the same time,

using a more general specification of patient and donor types. Although in practice replacement donor
programs function for each blood component independently, it is plausible that higher welfare gains
can be achieved by integrating these markets. For instance, a patient requesting red blood cells can
have her donors donate platelets to another patient, while the latter patient’s donors donate red blood
cells to the former patient.

9See Appendix A.1 for medical details of compatibility.
10Eligibility requirements for a replacement donor are regulated in many countries. For example,

they are often called family (replacement) donors in the literature (see, for instance, Tagny, 2012, Allain and
Sibinga, 2016, and Kyeyune-Byabazaire and Hume, 2019), as they need to have a familial relationship
with the patient, to prevent black markets. Therefore, this donor set is usually well-defined at the onset
of the problem.

11We normalize that each donor donates a single unit. For whole blood or red blood cell donations,
which are the most common blood donations, each donor typically donates one single unit, and thus,
there is no need for normalization.
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– her blood valuation function ρi : {0, 1, . . . , ni} → R is strictly increasing and
concave12 — the patient prefers to receive more blood up to her maximum
need,13 and the marginal utility from blood is decreasing,

– her cost function for blood supply σi : {0, 1, . . . , δ} → R is strictly increasing
and convex — the patient prefers to have fewer of her donors to donate and
the marginal cost of supplying blood is increasing, and

– for any 0 ≤ r < ni and 0 ≤ s < δ,

ui[r + 1, s + 1] > ui[r, s].

That is, she always would like to supply one more unit to receive one more
unit of blood. In other words, the marginal rate of substitution (MRS) of sup-
ply over receipt is always greater than 1.14

For the ease of exposition, and to focus more on the transfusions received by
patients, we start with the slightly more restricted case of linear cost functions.
Moreover, we assume all patients share the same and commonly known blood
valuation function ρ :

{
0, 1, . . . , max{ni : i ∈ I}

}
→ R without loss of generality.

That is, each patient i has the following quasi-linear utility function

ui
[
(r, s), θi

]
= ρ(r)− θi · s,

where θi > 0 denotes the type of the patient i. Therefore, we are able to simply
use a single parameter to capture patients’ potential differences in MRS. We as-
sume that there is a finite type space Θ, and let θ = (θi)i∈I ∈ Θ|I|. In Section 4.4,
we discuss that our design of efficient and incentive compatible blood allocation
mechanisms mostly carries over to the general case where each patient reveals a
convex cost function as well as her own valuation function.

• Blood bank utility. Finally, the blood bank cares about the remaining blood
level of each type in its inventory, (rX)X∈B, and possibly the total transfusions to
the patients, rt. We simply assume that it views the different types of blood as
substitutes with different marginal rates of substitution, and its preferences are

12For a one-variable function f on a discrete and integer domain, concavity and convexity are defined
in the standard way. That is, f is concave (or convex) if for any x − 1, x and x + 1 in the domain,
f (x)− f (x − 1) ≥ f (x + 1)− f (x) (or f (x)− f (x − 1) ≤ f (x + 1)− f (x)).

13The monotonic nature of preferences is motivated in Appendix A.2.
14Additionally, the hardbound of donor number at δ and satiation of need at ni generate implicitly

zero MRS for large receipt or supply levels.
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represented by a linear utility function ub such that

ub

[
(rX)X∈B, rt

]
= ∑

X∈B
(λX · rX) + λt · rt,

where λX > 0 for each X ∈ B, λt ≥ 0, and ub is one-to-one with respect to
(rX)X∈B.15

A blood allocation problem is denoted by a list
[
I, β I , n, D, βD, θ, v, ub

]
. We fix

I, β I , n, v, and ub. Then a problem is represented by a donor profile and type profile
pair (D, θ).16

Allocations. Given a donor profile D, an allocation α is the vector of non-negative
integers

• αX(i) for each patient i and her compatible blood type X ∈ C(βi) indicating the
amount of type X blood received by i,

• α(d) ∈ {0, 1} for each donor d indicating whether the donor d is selected to
donate blood or not, and

• αX(b) for each blood type X indicating the amount of type X blood left in the
inventory

such that:

1. for every patient i, ∑
X∈C(βi)

αX(i) ≤ ni, and

2. for every blood type X,

(
∑

i : X∈C(βi)
αX(i)

)
+ αX(b) =

(
∑

d : βd=X
α(d)

)
+ vX.

The first condition requires that no patient receives more blood than her maximum
need. The second one is a market clearing condition and makes sure that, for each
blood type, the total volume allocated is equal to the sum of the existing blood at the
blood bank and the blood collected from the patients’ donors. Denote the set of all
allocations for D as A(D).

15We generally employ the blood bank utility function as a tie-breaker among various allocations by
keeping λX > 0 for each blood type X ∈ B. On the other hand, λt = 0 is possible. Although the
efficiency definition relies on this utility function, we can rather think of Pareto efficiency as a con-
strained efficiency axiom subject to certain health authority objectives. For example, when λt > 0 and
is sufficiently larger than each λX , this utility represents a priority of a benevolent health authority to
maximize total received amounts, a common objective in scarce medical resource allocation.

16Without loss of generality, we use this notation for brevity, assuming βD is determined once D is
given.

10

Electronic copy available at: https://ssrn.com/abstract=3858158



Only the schedules induced by an allocation will be economically relevant in the
analysis. Thus, given an allocation α ∈ A(D), for brevity we use α(i) =

(
αr(i), αs(i)

)
,

where

αr(i) = ∑
X∈C(βi)

αX(i) and αs(i) = ∑
d∈Di

α(d),

to denote the schedule of patient i, and α(b) =
(
αX(b)

)
X∈B to denote the eventual

inventory schedule of the blood bank. Thus, allocation α induces the schedule profile((
α(i)

)
i∈I , α(b)

)
.

Given a problem (D, θ), an allocation α ∈ A is Pareto efficient within A for a
subset of allocations A ⊆ A(D), if there is no allocation α′ ∈ A such that

• ui
[
α′(i), θi

]
≥ ui

[
α(i), θi

]
for every patient i,

• ub

[
α′(b), ∑

i∈I
α′r(i)

]
≥ ub

[
α(b), ∑

i∈I
αr(i)

]
, and

• either uj
[
α′(j), θj

]
> uj

[
α(j), θj

]
for some patient j or

ub

[
α′(b), ∑

i∈I
α′r(i)

]
> ub

[
α(b), ∑

i∈I
αr(i)

]
.

2.1 Two Policy Levers: Feasible Schedule Menus and Mechanisms
In our current setup, a patient’s schedule induced by an allocation is uncon-

strained, and might be normatively and practically unacceptable. In fact, blood banks
around the world typically use various exchange regimes to control the rates at which
blood received will be traded for blood supplied. On the other hand, the donor sets and
preferences over schedules, or patient types, are private information and unknown to
the blood bank. To incorporate these two important aspects of blood allocation in
practice, we introduce two interdependent policy levers that the policy designer can
use in conjunction to allocate blood for reported donors and types.

The first one is the concept of a feasible schedule menu, which allows us to formally
incorporate (potentially endogenous) exchange rates between supplied and received
units of blood, and the second one is an allocation mechanism which together with fea-
sible schedule menus makes it possible to organize patient incentives while also en-
suring efficient blood allocation. It is important to highlight that the two levers are in-
separable in a multi-unit exchange setting such as ours. The feasible schedule menus
alone are insufficient to pin down an allocation. They do not specify what patients
get and which donors donate. Similarly, a mechanism needs to operate together with
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a suitable set of feasible schedule menus so that exchange regimes are respected and,
more subtly, proper incentives are provided to patients.

Feasible Schedule Menus. The first policy lever constrains the possible schedules
for the patients. The blood bank presents a menu to each patient, which shows the
collection of schedules that are feasible to her, as a function of her reported donor set.
Formally, for each patient i, a feasible schedule menu Fi is a function that assigns a
non-empty set of schedules Fi(Di) to each donor set Di such that

Fi(Di) ⊆ Si(Di) =
{

0, 1, . . . , ni
}
×
{

0, . . . , |Di|
}

,

where Si(Di) denotes the set of all schedules that do not exceed the maximum need
and donor capacity of the patient.

Let F = (Fi)i∈I denote a profile of feasible schedule menus. An arbitrary fea-
sible schedule menu profile may not guarantee the existence of at least one feasible
allocation, especially when there is not enough inventory in the bank. It is also com-
mon practice around the world that banks with enough inventories define a minimum
guaranteed amount for a patient to receive when she brings forward some minimum
number of donors. We explicitly define such guarantees for patients and tie them
with feasible schedule menus so that the existence of an allocation that induces fea-
sible schedules is ensured. We assume there exists a non-negative integer vector of
minimum guarantees g = (g

i
)i∈I ≤ n such that

1. for any non-empty subset of blood types B′ ⊆ B,

∑
i : βi∈B′

g
i

≤ ∑
X∈⋃Y∈B′ C(Y)

vX, and

2. for each patient i, her feasible schedule menu Fi and donor set Di,

Fi(Di) =
{
(0, 0)

}
or min

{
r : (r, s) ∈ Fi(Di)

}
= g

i
.

The minimum guarantee is what the bank promises for each patient to receive (the first
condition ensures that the bank carries enough blood through Hall’s Theorem, Hall,
1935) if the patient’s donor set meets the basic requirement by the bank for participat-
ing in the replacement donor program (the second condition). The bank determines
the minimum guarantees based on its inventory, which can be set to zero.

In going forward, we will only consider allocations in which each patient’s induced
schedule is feasible according to the given feasible schedule menus F . That is, for any
donor profile D, we restrict attention to allocations in the set

A(F , D) =
{

α ∈ A(D) : α(i) ∈ Fi(Di), ∀i ∈ I
}

,
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which is non-empty by the definition of feasible schedule menus and the assumption
regarding minimum guarantees.

Allocation Mechanisms. A mechanism is a procedure f that maps each problem
(D, θ) to an allocation f

(
F , D, θ

)
∈ A(F , D) under every feasible schedule menu

profile F . Defining mechanisms through feasible schedule menus gives a practical and
formal method to formalize the policy outcomes if the blood bank pursues goals such
as transparency, fairness, and other systematic normative criteria besides quantifiable
optimization objectives. Moreover, if the blood bank updates the feasible schedule
menu profile used, the mechanism outcome can be transparently traced through this
general setup.

A mechanism f is Pareto efficient if for every problem (D, θ) and feasible schedule
menu profile F , its outcome is Pareto efficient within A(F , D).

Incentive Compatibility. Patients’ incentives to truthfully report donors and types
depend on the mechanism as well as the feasible schedule menus. Thus, we say a
mechanism f is incentive compatible under F if for any problem (D, θ), patient i,
donor subset D′

i ⊆ Di and type θ′i , we have

ui

[
f
(
F , (Di, D−i), (θi, θ−i)

)
(i), θi

]
≥ ui

[
f
(
F , (D′

i , D−i), (θ′i , θ−i)
)
(i), θi

]
.

That is, given any problem, no patient can be strictly better-off by concealing some of
her donors and misreporting her type.17

We will mostly separate the analysis on the two incentive considerations. The fol-
lowing weaker notion only requires that each patient cannot manipulate via under-
reporting donors. A mechanism f is incentive compatible with respect to donors
under F if for any problem (D, θ), patient i and donor subset D′

i ⊆ Di, we have

ui

[
f
(
F , (Di, D−i), θ

)
(i), θi

]
≥ ui

[
f
(
F , (D′

i , D−i), θ
)
(i), θi

]
.

Donor Monotonicity. Blood donation is not nearly as costly as solid organ donation,
leading to a much less invasive procedure and fast replenishment of blood. Therefore,
the volume of blood received is often of first-order importance for a patient. In such
cases a patient has lexicographic preferences over schedules, represented by the quasi-
linear utility function with a sufficiently small type. Formally, we assume that there is

17For the report of donor set we focus on a patient’s incentive to hide her donors. While situations in
which a patient exaggerates her donors, i.e., reports a larger set of donors than she actually has, are the-
oretically conceivable, this type of manipulation is often practically infeasible, since donor registration
requires legally verifiable donor identification information.
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a type ϑL ∈ Θ such that

ϑL · δ < ρ(r + 1)− ρ(r)

for all 0 ≤ r < max{ni : i ∈ I}.
When it is known that all patients have lexicographic preferences, we assume that

patient types are also known and Θ = {ϑL}. In this case the two incentive notions
introduce above coincide. Moreover, as long as a patient does not receive less blood,
providing more donors to the system may not be as undesirable for her. Based on this
motivation, we introduce a weak and plausible incentive property in this context. A
mechanism f is donor monotonic under F if for any problem (D, θ), patient i and
donor subset D′

i ⊆ Di,

fr

(
F , (Di, D−i), θ

)
(i) ≥ fr

(
F , (D′

i , D−i), θ
)
(i).

3 Blood Allocation Practices Around the World
To motivate our approach in this paper, we start off by discussing the current blood

allocation systems and their deficiencies in various parts of the world. The tools we
have introduced in the previous section enable us to formally describe these systems
in terms of the mechanisms and the underlying feasible schedule menus.

We first give representative examples of exchange rate policies mapped to feasible
schedule menus.

(P1) One-for-one policy. The most common exchange rate in the world is one-for-
one, i.e., the units supplied must equal the units received. Formally, this leads to
the following feasible schedule menu:

Fi(Di) =
{
(r, s) ∈ Si(Di) : s = r

}
.

(P2) Two-for-one policy. In Cameroon, Congo, and Mexico, for each unit of blood
received, two units of blood have to be supplied (Tagny, 2012; Thompson, 2020):

Fi(Di) =
{
(r, s) ∈ Si(Di) : s = 2r

}
.

(P3) Fixed donor policy. Each patient has to register x donors regardless of the
amount of blood she needs. This can be modeled as the following feasible sched-
ule menu:

Fi(Di) =

{ {
(0, 0)

}
if |Di| < x{

(r, s) ∈ Si(Di) : s = x
}

otherwise
.

For example, in Delhi, India, x = 1 (Delhi State Health Mission, 2016), and in
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Turkey x = 3.18

(P4) Forgiving policy. In some places, a combination of a strict and a relaxed forgiv-
ing policy that is idiosyncratic for each patient is used. For example, in Tucuman,
Argentina, a patient’s replacement donors donate after the transfusion, and the
rate is one-for-one. However, it is not as strictly enforced, and debts may some-
times be forgiven as mentioned in the Introduction. We can formalize such ad
hoc policy as:

Fi(Di) =
{
(r, s) ∈ Si(Di) : s ≤ r ≤ |Di|

}
.

(P5) Minimum guarantee policy. Many replacement donor programs feature mini-
mum guarantees based on the good samaritanship of the patients in the past. For
instance, in Xi’an, China, a patient is guaranteed three units for each unit she has
donated before, and the exchange rate is one-for-one beyond this guarantee (She,
2020). Let xi be the amount of previous donations from a patient i. Then, with
g

i
= min{3xi, ni}, her feasible schedule menu is formalized as:

Fi(Di) =
{
(r, s) ∈ Si(Di) : s = r − g

i

}
.

Aside from the ad hoc forgiving policy, in each case the exchange rates are exoge-
nously fixed, in the sense that the amount of supply required for each possible amount
of receipt is determined before blood is allocated.

As blood transfusion is one of the most common medical procedures, patients re-
questing blood can be highly heterogenous in terms of demographics and type of
medical condition. In the presence of such heterogeneity, with the aim of improv-
ing fairness and equity in the delivery of care, patient prioritization tools (PPTs) are
globally used for ordering patients for emergency or elective (i.e., medically neces-
sary but non-emergency) services based on various criteria. By and large, patients are
prioritized based on medical urgency and the order with which blood is requested.19

Therefore, given that blood banks do not explicitly organize exchanges among patients
and donors as far as we know, the current practice of allocating blood is similar to a

18Based on three separate personal communications with Haluk Ertan, Professor of Microbiol-
ogy at UNSW, on 05/09/2022, Seda Hatice Gökler, Post-doctoral Fellow at Sakarya University, on
05/18/2022, and Ilhan Uyaner, Doctor at Ankara Oncology Hospital of University of Health Sciences,
on 05/17/2022.

19For example, in Australia, patients with the most urgent need for surgery (Category 1) take prece-
dence over those in semi-urgent need (Category 2) who take precedence over non-urgency patients
(Category 3). Then, within each urgency category patients are treated in the same order in which they
were added to the waiting list (CBHS, 2020).
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first-come first-serve (FCFS) mechanism, where the patients are sequentially treated
based on a predetermined order. This is also consistent with the current platelet al-
location practice at a regional hospital in India as discussed by Ødegaard and Roy
(2021).20

More formally, given any feasible schedule menu profile F , FCFS with respect to
a fixed order of patients is defined as follows. The bank first reserves blood units for
each patient with a positive minimum guarantee. Then, given a problem (D, θ), in
each step k ≥ 1, the bank uses its current available inventory and the kth patient’s own
donors to satisfy the patient as much as possible, or to achieve an optimal ”individual
allocation”. That is, if the kth patient, denoted as i, has a donor set Di and type θi, and
there are vi units of compatible blood in inventory for her, then the bank selects her
donors D′

i to donate and gives her r units of compatible blood so that they solve the
following problem:

max
r≥0, D′

i⊆Di

ui
[(

r, |D′
i |
)
, θi
]

subject to

r ≤
∣∣{d ∈ D′

i : βd ∈ C(βi)
}∣∣+ vi and

(
r, |D′

i |
)
∈ Fi(Di).

Then patient i leaves, and the bank serves the next patient with the updated inventory.
An FCFS mechanism works similarly to a serial dictatorship mechanism, and pro-

vides straightforward incentives to the patients. The mechanism is incentive compat-
ible under the five policies listed above, P1-P5.21 However, a major deficiency of the
FCFS mechanism is that it can lead to large welfare loss.

Example 1 (FCFS is inefficient) Suppose that the set of patients is I = {1, 2, 3, 4, 5} and
the set of relevant blood types is B = {O, A, B, AB}. Assume ABO-identical transfusion,
i.e., C(X) = {X} for each X ∈ B. The blood bank has only one unit of type O blood in its
inventory. Let ni = 1 for all i ∈ I. Each patient’s blood type and donor set are given as follows.

• β1 = O, and Patient 1 has one type AB donor and one type B donor.

• β2 = B, and Patient 2 has one type A donor.

20Ødegaard and Roy (2021) focus on platelet inventory management and model the platelet allocation
policy at the hospital as FCFS. However, they omitted the replacement donor program with one-for-one
exchange, which is unofficially implemented at the hospital, from their framework.

21This is based on the presumption that a patient’s report of donors and types does not affect the
assignments of those before her, which is satisfied when the bank treats the patients in the order of
arrival.
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• β3 = B, and Patient 3 has one type A donor.

• β4 = O, and Patient 4 has one type B donor.

• β5 = A, and Patient 5 has one type O donor.

Suppose the exchange rate is one-for-one (policy P1) and the patients are treated in the
order of 1 − 2 − 3 − 4 − 5 under FCFS. Then Patient 1 first receives one unit of type O blood.
Depending on which one of her donors is selected to donate, there are two possible outcomes:

• If the type AB donor donates, none of the remaining patients receives any blood, and the
bank ends up with one unit of type AB blood.

• If the type B donor donates, Patient 2 receives blood and her A donor donates. Patients 3
and 4 cannot receive any blood. Patient 5 receives one unit of type A blood, and the bank
ends up with one unit of type O blood from her donor.

Assume that the weights in the blood bank’s utility function are such that λt is sufficiently large
compared to λX for each blood type X, i.e., the bank values the total transfusions sufficiently
more than its left-over blood. Then both allocations are inefficient, since there is an allocation
α∗ where α∗(i) = (1, 1) for every i ∈ I and α∗A(b) = 1.

Example 1 illustrates two main sources of welfare loss under FCFS.
The first one is due to the arbitrariness of donor selection. Since FCFS does not

have optimal donor screening based on the needs of patients, a donor whose blood
type may later be in short supply can be sent home. For example, the first allocation in
the example denies blood to all patients after Patient 1 since the ”wrong donor”, i.e.,
the type AB donor, is selected to donate.

The second source of welfare loss is due to the sequential nature of the procedure.
If a patient requests blood at the ”wrong time” when there is little or none available,
it not only hurts her but also causes her donors to be not used, which subsequently
hurts those who are served after her. For example, in the second allocation in Example
1, Patient 3 cannot receive blood despite that Patient 4 has a donor whose blood type
matches Patient 3’s. Note that Patient 4 can also use the blood from the donor of
Patient 5. In other words, if the processing order of the patients were 1− 2− 5− 4− 3,
this coordination problem would have been solved. In general, of course, there is no
way for the blood bank to foresee the correct processing order of patients.

The potentially significant welfare loss under FCFS, as will be confirmed by our
simulation results in Section 5.2, provides the main rationale for our approach in this
paper. It turns out that an FCFS mechanism is not only inefficient, but can also be
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Pareto dominated by another incentive compatible mechanism under the existing and
common policies P1 and P5, when the bank’s choices satisfy a mild consistency as-
sumption.

Note that, under P1 and P5, for a problem (D, θ), at any step k of the mechanism
there can be multiple solutions in finding an optimal individual allocation to the kth

patient, i, and the solutions are independent of the type of patient i. We then assume
the bank’s decision only depends on the relevant variables at this step: for a different
problem (D′, θ′), if D′

i = Di and the bank has the same available blood units in its
inventory at step k, then the bank gives the same compatible blood units to patient i
and selects the same donors to donate.22

We summarize the main findings on FCFS as follows.

Theorem 1 An FCFS mechanism may not be Pareto efficient. Moreover, there exists a mecha-
nism f such that, under feasible schedule menus P1 and P5, f is incentive compatible, for any
environment the utilities of every patient and the bank are weakly higher under f , and for some
environment the outcome of f Pareto dominates that of the FCFS mechanism.23

As we will explore in the next section, among the real-life polices introduced above,
only P1 and P5 satisfy the sufficient conditions for obtaining incentive compatible and
Pareto efficient mechanisms in the general class we introduce.

Theorem 1 shows that it is possible to improve upon the status quo allocation of FCFS
without giving up incentive compatibility. The recent literature on assignment prob-
lems has underscored the difficulty of obtaining strategy-proof Pareto improvements
over strategy-proof inefficient mechanisms (see, for example, Kesten, 2010, Abdulka-
diroğlu, Pathak, and Roth, 2009, Erdil, 2014, and Alva and Manjunath, 2019). Indeed,
in a number of models, Pareto improvement upon a strategy-proof mechanism often
leads to a loss of straightforward incentives, or provides rather limited welfare gains
by allocating wasted resources. Our context stands out as an interesting exception to
this strand of literature. Furthermore, the simulation results show that the welfare
gains over FCFS can be highly significant.

22This also ensures that FCFS is incentive compatible under P1 and P5.
23An environment refers to a collection of all possible elements defined in our blood allocation model

except the two policy levers. Therefore, in this theorem we allow elements such as I and v to vary.
Alternatively, if we fix an environment except the donor profile and the type profile (D, θ) (i.e., the
problem), then it can be shown that under a small inventory v, a relatively large bound on number of
donors δ, and the existing compatibility relations (see Footnote 4), there is always a problem for which
the outcome of f Pareto dominates that of the FCFS mechanism.
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We close this section with an informal description of the incentive compatible im-
provement over FCFS. The idea is based on a meticulously constructed two-stage
mechanism:24

• In the first stage we calculate the FCFS allocation.

• In the second stage, patients are first divided into three groups:

1. Patients who did not receive any blood from the inventory under FCFS (al-
though they may have received blood from their own compatible donors).

2. Patients who have the largest donor sets, i.e., δ donors, and received blood
from the inventory under FCFS.

3. All other patients.

Then we apply one of the mechanisms introduced in the next section to the orig-
inal allocation problem, under the updated feasible schedule sets for the last two
groups: for any patient in Group 2, eliminate any feasible schedule worse than
the one received under FCFS; for any patient in Group 3, the only feasible sched-
ule is the one received under FCFS.

By organizing exchanges in the second stage through our mechanism, Groups 1
and 2 could be improved. Although Group 3 is not improved, including these patients
in the improvement stage can help rectify the donor selection in FCFS. For instance,
in Example 1 if the type AB donor of Patient 1 donates, then in the second stage im-
provement, she still receives the schedule (1, 1) but her type B donor donates, which
helps Patient 2 or Patient 3 receive blood, leading to the (unique) efficient allocation
α∗ in the example.

The observation that FCFS can lead to significant welfare loss raises a natural ques-
tion: Are there any mechanisms that are both Pareto efficient and incentive compatible
under some suitable set of feasible schedule menus? In the next section, we drop FCFS
as our status quo benchmark and give a positive answer to this question by providing
a large and intuitive class of such mechanisms.

4 A New Mechanism Class and Main Results
4.1 Weighted Utilitarian Mechanisms

We study a natural class of mechanisms that choose feasible allocations to maxi-
mize the weighted sum of patient and bank utilities. Given a collection of positive

24We give details of this mechanism in the proof of Theorem 1.
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weights w = (wi)i∈I , define an objective function U such that for any feasible sched-
ule menu profile F , problem (D, θ) and allocation α ∈ A(F , D),

U(w, θ, α) = ∑
i∈I

(
wi · ui

[
α(i), θi

])
+ ub

[
α(b), ∑

i∈I
αr(i)

]
.

Assume that if there is an allocation α′ ∈ A(F , D) such that α and α′ induce different
schedule profiles, then U(w, θ, α) ̸= U(w, θ, α′).25 We say f is a weighted utilitarian
mechanism with respect to w if

f
(
F , D, θ

)
∈ arg max

α∈A(F ,D)

U(w, θ, α)

for every feasible schedule menu profile F and problem (D, θ).
Since all the weights are positive, the welfare property of such mechanisms follows

immediately from the construction:

Proposition 1 Every weighted utilitarian mechanism is Pareto efficient.

There are two familiar subclasses of weighted utilitarian mechanisms:

• Priority mechanisms. Given a priority order over the patients and the blood bank,
the priority mechanism sequentially maximizes their utilities. That is, in the first
step we find the allocations that maximize the utility of the first agent (a patient
or the bank); in Step k ∈ {2, . . . , |I| + 1} we find the allocations that maximize
the utility of the kth agent among those obtained from the previous step.26

• Maximal mechanisms. When the bank sufficiently values the total transfusions,
i.e., λt is sufficiently large compared to λX for each X, a priority mechanism with
the bank having the first priority chooses an allocation that maximizes the total
transfusions, and thus it is referred to as a maximal mechanism.

Priority mechanisms and maximal mechanisms are the most general forms of the
mechanisms that were studied in the literature for compatibility-based allocation (see
Section 6 for details), and these two principles each have been used in kidney exchange

25If U does not satisfy this assumption, the blood bank can always slightly adjust the weights (by
arbitrarily small amounts) to break all the possible ties. Specifically, it can be shown that for any vector
of positive numbers w and ϵ > 0, there exists a positive weight vector w′ with ∥w − w′∥ < ϵ such
that for any F , (D, θ), and α, α′ ∈ A(F , D), we have the following: (1) if α and α′ induce different
schedule profiles, then U(w′, θ, α) ̸= U(w′, θ, α′), and (2) if U(w, θ, α) > U(w, θ, α′), then U(w′, θ, α) >
U(w′, θ, α′).

26Such priority mechanism is a weighted utilitarian mechanism with properly chosen weights such
that, for each k, the weight for the kth agent is sufficiently larger than the sum of the weights of the
agents with lower priorities.
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programs, another application of human sourced allocation in real life.27

The idea behind priority mechanisms is similar to that behind FCFS used in practi-
cal replacement donor programs, as discussed in the previous section, with one impor-
tant difference: a patient can only exchange with the blood bank in FCFS, while, in a
priority mechanism, she can potentially exchange with patients who have either lower
or higher priority than her, in addition to the blood bank. Moreover, when there is no
simple and linear priority order for patients, the general weighted utilitarian mecha-
nisms can achieve more egalitarian allocations than priority mechanisms, by assigning
appropriate weights to patients.

Our cardinal framework and the concavity of the blood valuation function can also
help achieve fair allocations in a more nuanced way: when the valuation function ρ is
strictly concave,28 a weighted utilitarian mechanism tends to assign similar amounts
of blood to similar patients. For instance, if there are two identical patients with the
same weights and one of them receives significantly less blood than the other, trans-
ferring one unit of blood from the latter to the former would increase the weighted
sum of their utilities. However, the feasibility of such transfer hinges on the feasibility
of schedules.29 Therefore, we next introduce a discrete convexity condition on feasible
schedule menus, which will also play a central role in the incentive compatibility of
weighted utilitarian mechanisms.

Generally, a set S ⊆ Z2
+ is L-convex (where L stands for lattice) if for every x, y ∈ S,

we have ⌊
x + y

2

⌋
,
⌈

x + y
2

⌉
∈ S.

L-convexity is one of the two widely used generalizations of convexity to discrete do-
mains.30

Definition 1 A feasible schedule menu profile F satisfies L-convexity if the feasible schedule
set Fi(Di) is L-convex for every patient i and her donor set Di.

Figure 1 provides a geometric illustration with four examples of L-convex feasi-

27For example, New England Program for Kidney Exchange used a priority-based allocation scheme
while Alliance for Paired Donation has used a maximality-based allocation scheme (see Sönmez and
Ünver, 2017).

28That is, for any 0 < r < max{ni : i ∈ I}, ρ(r + 1)− ρ(r) < ρ(r)− ρ(r − 1).
29In general, a transfer of supply may also be required. For instance, under one-for-one exchange,

giving a patient one additional unit of blood requires her to supply one more unit.
30The other one is M-convexity, where M stands for matroid. See Murota (2013) for a general treatment

of discrete convexity notions and discrete convex analysis.

21

Electronic copy available at: https://ssrn.com/abstract=3858158



ble schedule sets. A special case that satisfies L-convexity is the classical one-for-one
exchange, as depicted in the last graph of Figure 1.

Figure 1: Illustration of L-convexity. The feasible schedule set Fi(Di) is the integral points of a
convex polygon with integral corners and at most six edges of slopes 1, 0, or ∞.

The next proposition shows that, under strict concavity of the blood valuation func-
tion and L-convexity of feasible schedule menus, we can construct a weighted utilitar-
ian mechanism that satisfies a discrete and approximate version of ”equal (medical)
treatment of equals”, i.e., the difference in two identical patients’ transfusions can only
be attributed to the indivisibility of blood packs.

Proposition 2 Assume ρ is strictly concave. There exists a weighted utilitarian mechanism f
such that for any L-convex feasible schedule menu profile F , problem (D, θ) and two patients
i and j, if βi = β j, ni = nj,

∣∣{d ∈ Di : βd = X}
∣∣ = ∣∣{d ∈ Dj : βd = X}

∣∣ for each X ∈ B,
Fi(Di) = Fj(Dj), and θi = θj, then∣∣∣ fr

(
F , D, θ

)
(i)− fr

(
F , D, θ

)
(j)
∣∣∣ ≤ 1.

In the proof, we show such weighted utilitarian mechanism is constructed by as-
signing sufficiently similar weights to patients.

4.2 Donor Monotonicity
We start to analyze the incentives under weighted utilitarian mechanisms by con-

sidering donor monotonicity. This will serve as the foundation for the incentive com-
patibility results later in Section 4.3. Moreover, as discussed before, donor monotonic-
ity is also a plausible incentive requirement in the common real-life scenario where it
is known that all patients have lexicographic preferences and are of the same type ϑL.

One may think that donor monotonicity is a straightforward requirement for a
mechanism to satisfy given that it should be easy to construct mechanisms that give
weakly more blood to patients when they bring forward more donors. However, this is
not true under Pareto efficiency. Donor monotonicity is an elusive property that is not
satisfied by even the most basic Pareto efficient mechanisms under general feasible
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schedule menus, such as priority mechanisms, a special case of weighted utilitarian
mechanisms. As illustrated in detail below in Example 2, the difficulty stems from
the fact that a patient can potentially under-report her donor set to alter the possible
exchanges and thus the whole set of feasible allocations, from which the mechanism
chooses its outcome. This is in contrast to an inefficient FCFS mechanism, which is
more similar to an allocation mechanism rather than an exchange mechanism. Under
FCFS, a patient’s report of donors has no effect on the assignments of those before
her, making donor monotonicity straightforward for the mechanism to satisfy. Thus,
more direct exchanges among patients to enhance efficiency may, in general, cause a
mechanism to violate donor monotonicity.

We will impose three regularity conditions on the feasible schedule menus that are
satisfied by common real-life policies such as one-for-one exchange, to ensure donor
monotonicity. All these conditions have natural interpretations.

L-convexity. The first one is L-convexity, introduced before for allocative fairness.
The key role of this property in establishing donor monotonicity is that it prevents
hidden complementarities between units of blood received, by ruling out holes in fea-
sible schedule sets. In the following example we demonstrate such complementarities
create incentives for misreporting donors under a priority mechanism. The example
also shows that the concavity of blood valuation function plays a similar role as the
L-convexity of feasible schedule sets does in incentives.

Example 2 (Violation of L-convexity) Suppose that the set of patients is I = {1, 2} and
the set of relevant blood types is B = {O, A, B, AB}. Each patient’s blood type, maximum
need and donor set are given as follows.

• β1 = O, n1 = 3, and Patient 1 has three type B donors.

• β2 = A, n2 = 2, and Patient 2 has one type O donor and two type B donors.

The blood bank has two units of type O blood and one unit of type A blood in its inventory.
Assume ABO-cellular compatible transfusion, where C(A) = {A, O} and C(O) = {O}.

The exchange rate is one-for-one for both patients, except that (2, 2) is never a feasible
schedule for Patient 1. Therefore, when she reports three donors, her feasible schedule set{
(0, 0), (1, 1), (3, 3)

}
is not L-convex.

Consider a priority mechanism with the order 1 − 2 − b, and any type profile θ. When
both patients truthfully report their donors, Patient 1 receives three units of type O blood, all
of her donors donate, Patient 2 receives one unit of type A blood and her type O donor donates.
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However, if Patient 2 conceals her type O donor, Patient 1 can only receive one unit of type
O blood due to the hole in her feasible schedule set. Then Patient 2 receives more compatible
blood, i.e., one unit of type A blood and one unit of type O blood, and her utility is increased.

Remark 1 Decreasing marginal utility is not only a plausible assumption on the consumption
of blood products, but also crucial for the incentives to report donors under general weighted
utilitarian mechanisms, since a strictly convex valuation function ρ can also create comple-
mentarities as a non-L-convex feasible schedule set does. To see this, suppose the exchange rate
is one-for-one for both patients in Example 2, θ1 = θ2, and ρ(3)− ρ(2) is sufficiently larger
than ρ(2) − ρ(1), i.e., there is a similar complementarity between the second and the third
units of compatible blood for Patient 1. Then Patient 1 receives three units of O blood under
some weighted utilitarian mechanism where w2 is slightly larger than w1, when both patients
truthfully report. However, if Patient 2 conceals her O donor, she receives one more unit of
blood due to her higher weight, and her utility is increased.

Feasibility of Positive Price. The second property generalizes the idea that each unit
of blood has a positive “price.” It says that when a patient can potentially receive more
(or less) blood, there is a feasible schedule in which she receives this amount by also
supplying more (or less) blood. Note that the patient does not necessarily supply more
when she receives more: this property only requires that such a schedule is feasible.

Definition 2 A feasible schedule menu profile F satisfies feasibility of positive price if for
every patient i and her donor set Di, the following holds:

• if (r, s), (r′, s′) ∈ Fi(Di), r′ > r and s < |Di|, then there exists s′′ > s such that
(r′, s′′) ∈ Fi(Di); and

• if (r, s), (r′, s′) ∈ Fi(Di), r′ < r and s > 0, then there exists s′′ < s such that (r′, s′′) ∈
Fi(Di).

Geometrically, this property rules out a “flat top” or a “flat bottom” in the shape
of a feasible schedule set except for the two extreme cases of s = |Di| and s = 0. The
one-for-one exchange rate policy satisfies feasibility of positive price: each additional
unit received costs exactly one unit supplied.

Both L-convexity and feasibility of positive price are novel in the market design
literature, and the two properties are logically independent.31 For example, the two-

31At a very high level, the role of the first two properties and concave valuation function ρ is similar to
the role same-side substitutes and cross-side complements play in matching with trading networks for hav-
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for-one exchange rate policy satisfies feasibility of positive price but not L-convexity;32

the second feasible schedule set in Figure 1 violates feasibility of positive price as it has
a “flat top” at s = 5 < |Di| and a “flat bottom” at s = 1 > 0, while it is L-convex. The
other sets in this figure satisfy feasibility of positive price, although the third one has
a “flat top.” This is because it occurs at the maximum possible supply s = |Di|.

As illustrated in Example A.3 in Appendix C, a flat top in a patient’s feasible sched-
ule set imposes a constant upper bound on her supply and thus can restrict her oppor-
tunity of exchanging donors with other patients, which may incentivize the patient to
under-report her donor set, in order to reduce her current supply, or to reach a differ-
ent feasible schedule set where she can be involved in more exchanges. On the other
hand, a flat bottom can give the patient an advantage when she is competing for blood
from the bank with other patients, since allocating more blood to her may not require
more supply, leading to a larger increase in utility. Therefore, the patient has an incen-
tive to hide donors if such feasible schedule set with a flat bottom can only be reached
when she has less donors (see Example A.4 in Appendix C).

Non-diminishing Favorability in Donors. Until now both properties are imposed on
the feasible schedule set for a given donor set. One can imagine that if the feasible
schedule set becomes very unfavorable for the patient when more donors are pre-
sented to the blood bank, the patient would naturally hide these extra donors. Thus,
we formalize this intuition through the last property.

Definition 3 A feasible schedule menu profile F satisfies non-diminishing favorability in
donors if for every patient i and pair of her donor sets Di, D′

i such that D′
i ⊆ Di, we have:

• if (r, s) ∈ Fi(D′
i) and r ≥ g

i
, then there exists s′ ≤ s such that (r, s′) ∈ Fi(Di); and

• if (r, s) ∈ Fi(Di), s ≤ |D′
i | and (r, s′) ∈ Fi(D′

i), then there exists s′′ ≥ s such that
(r, s′′) ∈ Fi(D′

i).

ing stable network structures (see Ostrovsky, 2008). Although these properties are all about preferences,
while our first two properties are about feasibility, one can technically endogenize feasibility through
preferences via acceptability of feasible allocations and unacceptability of infeasible allocations. Thus,
these two properties regulate the feasible schedule sets so that received units (and supplied units) for
a patient do not induce same-side complementarities among themselves and received-supplied units
do induce cross-side complementarities. Observe that this analogy is extremely rough, as our tools are
novel and have no exact precedence in matching or mechanism design theory. In our domain, each unit
is a perfect substitute for another on the received side or the supplied side, unlike the trading networks.
Moreover, our innovation is about incentives, while the literature on trading networks focuses on the
existence of stable allocations.

32See Section 5.1 for a detailed discussion of this policy.
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That is, when the donor set expands from D′
i to Di, Fi(Di) is weakly more favorable

than Fi(D′
i): (i) for any schedule in Fi(D′

i) such that the amount received is at least
the minimum guarantee, there is a schedule in Fi(Di) where the patient receives the
same amount by supplying weakly less blood; (ii) for any schedule in Fi(Di) such that
the amount supplied does not exceed the number of donors in D′

i , whenever there is a
schedule in Fi(D′

i) where she receives the same amount of blood, there is a schedule
in Fi(D′

i) where she receives this amount by supplying weakly more blood.
Non-diminishing favorability in donors manifests itself geometrically as Fi(Di) be-

ing an expansion of Fi(D′
i) in the direction of receiving more blood, and/or a down-

ward shift of Fi(D′
i). The one-for-one exchange rate policy satisfies this property as

well, since the feasible schedule set simply expands when the number of donors in-
creases. In Figures 2 and 3, we give two examples involving endogenously determined
exchange rates to further illustrate the implications of non-diminishing favorability in
donors in conjunction with L-convexity and feasibility of positive price.
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ini ni ni
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|Di | = 3 |Di | = 4 |Di | = 5
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Figure 2: An illustration of a feasible schedule menu Fi satisfying L-convexity, feasibility of
positive price, and non-diminishing favorability in donors. This particular policy relies only
on the number of donors brought forward but not other specifics of the donor set. The first
four graphs illustrate Fi(Di) for |Di| = 0, . . . , 5, while the last graph shows how the feasible
schedule set changes as the number of donors increases.
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Figure 3: An illustration of a feasible schedule menu Fi satisfying L-convexity, feasibility
of positive price, and non-diminishing favorability in donors. The first four graphs illustrate
Fi(Di) for |Di| = 1, . . . , 4. The last graph shows how the feasible schedule set changes as the
number of donors increases.

The main result of this section is as follows:
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Theorem 2 If a feasible schedule menu profile F satisfies L-convexity, feasibility of positive
price, and non-diminishing favorability in donors, then every weighted utilitarian mechanism
is donor monotonic under F .33

A sketch of the proof of this theorem is given in Appendix B, before it is formally
proved. Each of the three properties on feasible schedule menus is indispensable,
which is established for the first two properties by Example 2, and Examples A.3 and
A.4 in Appendix C. It is straightforward to show that non-diminishing favorability in
donors cannot be dropped either. For example, for every patient i, Fi(∅) =

{
(1, 0)

}
,

and the blood bank has enough inventory to satisfy her minimum guarantee of one
unit; if Di ̸= ∅, then Fi(Di) shrinks to

{
(0, 0)

}
. Such feasible schedule menu pro-

file F violates non-diminishing favorability in donors, but satisfies L-convexity and
feasibility of positive price. Under F , no mechanism is donor monotonic.

It is also worth mentioning that even if we only want to ensure the donor mono-
tonicity of priority mechanisms, each of the properties, except the absence of flat bot-
tom in feasibility of positive price, is indispensable, as shown by the examples men-
tioned above.

In the end, as stressed before, the classical one-for-one exchange satisfies all the
properties. Another interesting special case that satisfies these properties is when the
feasible schedule menus are given by the universal consumption grids, i.e., for ev-
ery patient i and her donor set Di, Fi(Di) = Si(Di). Therefore, if we do not impose
any feasibility restriction on schedules, the weighted utilitarian mechanisms are donor
monotonic.

4.3 Incentive Compatibility
We first consider the plausible real-life scenario where it is known that every pa-

tient has lexicographic preferences, i.e., Θ = {ϑL}. Under a weighted utilitarian mech-
anism with feasible schedule menus that satisfy the properties in Theorem 2, a patient
may be able to conceal some donors so that she receives the same amount of blood by
supplying less. To prevent such manipulations, we need a stronger restriction on how
feasible schedule sets can change when a patient reports different donor sets.

Definition 4 A feasible schedule menu profile F satisfies strong non-diminishing favora-
bility in donors if for every patient i and pair of donor sets Di, D′

i such that D′
i ⊆ Di, we

33In fact, we prove a stronger version of this theorem: If the three properties are imposed on a patient
i and only L-convexity is imposed on the other patients, then patient i cannot receive more blood by
under-reporting her donor set.
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have:

• if (r, s) ∈ Fi(D′
i) and r ≥ g

i
, then there exists s′ such that (r, s′) ∈ Fi(Di); and

• if (r, s) ∈ Fi(Di) and (r, s′) ∈ Fi(D′
i), then s ≤ s′.

It is straightforward to see that strong non-diminishing favorability in donors im-
plies non-diminishing favorability in donors. Therefore, under L-convexity, feasibility
of positive price, and strong non-diminishing favorability in donors, the weighted
utilitarian mechanisms are donor monotonic by Theorem 2. Moreover, in this case, if a
patient reports a subset of her donors and still receives the same amount of blood, then
the second condition in the above definition implies that her donors do not donate less
blood. Hence, we have the following result.

Theorem 3 Assume Θ = {ϑL}. If a feasible schedule menu profile F satisfies L-convexity,
feasibility of positive price, and strong non-diminishing favorability in donors, then every
weighted utilitarian mechanism is incentive compatible under F .

In Figure 4, we give an example of a feasible schedule menu that satisfies the
above properties and involves endogenous exchange rates. When the feasible sched-

Figure 4: An illustration of a feasible schedule menu satisfying L-convexity, feasibility of pos-
itive price, and strong non-diminishing favorability in donors. The patient i has a maximum
need of ni = 5, and δ = 5.

ule menus feature exogenous exchange rates, i.e., for any patient i and donor set Di

there do not exist (r, s) ∈ Fi(Di) and (r, s′) ∈ Fi(Di) such that s ̸= s′, the strong
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and regular versions of non-diminishing favorability in donors are equivalent, and
the above properties lead to an extension of one-for-one exchange.

Remark 2 Suppose that the exchange rates are exogenous, and every patient i has the abil-
ity to bring forward some donors. Then L-convexity, feasibility of positive price, and non-
diminishing favorability in donors pin down a particular class of feasible schedule menus for
every patient i. Given a donor set Di, if Fi(Di) ̸=

{
(0, 0)

}
, then there exist bounds si(Di)

and ri(Di) such that

Fi(Di) =
{
(r, s) ∈ Si(Di) : s − si(Di) = r − g

i
, g

i
≤ r ≤ ri(Di)

}
.

That is, she has to supply si(Di) units to receive her minimum guarantee, and beyond this
schedule, she has to supply one additional unit for each additional unit received, with the
maximum amount received being restricted by ri(Di). Moreover, si(Di) weakly decreases and
ri(Di) weakly increases as her donor set expands. We refer to such feasible schedule menus
as two-part tariffs, which include the one-for-one exchange rate policy and the minimum
guarantee Xi’an policy in Section 3 as special cases. Figure 5 provides a geometric illustration
of a simple two-part tariff.
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r rni ni

|Di |
|Di |
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|Di | = 2 |Di | = 3 |Di | = 4
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Figure 5: An illustration of a two-part tariff. The patient i has to supply two units to receive her
minimum guarantee of g

i
= 3 units. The first four graphs illustrate Fi(Di) for |Di| ∈ {0, . . . , 4},

while the last graph shows how the feasible schedule set changes as the number of donors
increases.

In our model, the schedule (0, 0) can be interpreted as the outside option for each
patient. Ensuring voluntary participation in the replacement donor program, or indi-
vidual rationality, is straightforward under lexicographic preferences: we only need to
make sure that any schedule (0, s) with s > 0 is not in a feasible schedule set. We next
turn to the case that patients have general quasi-linear utilities. Note that, as MRS is as-
sumed to be greater than 1, for any patient i and θi, we have ui

[
(r, s), θi

]
≥ ui

[
(0, 0), θi

]
whenever r ≥ s. We then directly impose this condition on feasible schedules to guar-
antee individual rationality:
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Definition 5 A feasible schedule menu profile F satisfies individual rationality if for every
patient i and her donor set Di, we have r ≥ s for any (r, s) ∈ Fi(Di).

In practice, it is often a common norm that a patient shall not supply more blood
than what she receives. Moreover, the examples of feasible schedule menus we gave
before in Figures 2, 3, 4 and 5 all satisfy individual rationality.

This property is also important for the incentives to truthfully report donors under
general quasi-linear utilities. Built upon Theorems 2 and 3, we show that if individual
rationality is further required, then patients cannot manipulate any weighted utilitar-
ian mechanism via under-reporting donors:

Theorem 4 If a feasible schedule menu profile F satisfies L-convexity, feasibility of positive
price, strong non-diminishing favorability in donors and individual rationality, then every
weighted utilitarian mechanism is incentive compatible with respect to donors under F .

Under a general weighted utilitarian mechanism defined through an objective
function U, a patient can potentially misreport her type to alter the function U, leading
to a better outcome for her. To prevent type manipulations, we are restricted to prior-
ity mechanisms, where the sequential utility maximization ensures truthful revelation
of types. Then, in light of Theorem 4, under a priority mechanism any patient cannot
be better-off by misreporting her type and donor set simultaneously, when the same
restrictions are imposed on the feasible schedule menus.

Theorem 5 If a feasible schedule menu profile F satisfies L-convexity, feasibility of positive
price, strong non-diminishing favorability in donors and individual rationality, then all prior-
ity mechanisms, including the maximal mechanisms, are incentive compatible under F .

As for Theorem 2, each restriction on feasible schedule menus is in general indis-
pensable (and strong non-diminishing favorability in donors cannot be weakened to
non-diminishing favorability in donors) for Theorems 3, 4 and 5, with the exception
that (only) the absence of flat bottom in feasibility of positive price is not needed for
priority mechanisms. For L-convexity and feasibility of positive price, this is still es-
tablished by the previously discussed examples, i.e., Examples 2, A.3 and A.4. In Ap-
pendix C, we give two additional examples for strong non-diminishing favorability in
donors and individual rationality.
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4.4 Beyond Quasi-linear Utilities
Suppose that each patient i has the following utility function

ui[r, s] = ρi(r)− σi(s)

with ρi being concave as before and —now additionally— σi being convex. Then each
problem is represented by a pair (D, u), where u = (ui)i∈I is a profile of utility func-
tions reported by the patients. The only limitation caused by this general formulation
to our current theory is that Theorem 2 no longer holds for all weighted utilitarian
mechanisms, while it still holds for priority mechanisms. When L-convexity, feasi-
bility of positive price, and the weaker requirement of non-diminishing favorability
in donors (instead of strong non-diminishing favorability in donors) are imposed, we
can design more flexible feasible schedule menus such as those depicted in Figures 2
and 3. In this case, if some patient has a strictly convex cost function, then under some
particular weighted utilitarian mechanisms, a large and increasing marginal cost of
supply can restrict her supply in a similar way as a flat top in feasible schedules does,
creating incentives for her to conceal donors. However, such chances of manipula-
tions are eliminated, when strong non-diminishing favorability in donors is imposed.
Therefore, Theorems 3, 4 and 5 are intact.

On the other hand, under the general utility functions we can extend Proposition
2 to supplies. It can be shown that, under L-convex feasible schedule menus, when
the cost functions are strictly convex (or the blood valuation functions are strictly con-
cave), there is a weighted utilitarian mechanism under which two identical patients’
supplies (or receipts) differ by at most one unit.

Finally, it is worth mentioning that strictly concave cost functions can lead to in-
centives to under-report donors under weighted utilitarian mechanisms, even if the
exchange rate is one-for-one for all patients, which satisfy all the properties on feasi-
ble schedule menus studied in this paper. As in Remark 1, this can also be illustrated
using the problem in Example 2. Strictly decreasing marginal cost of supply creates
complementarities between donors who do not donate, which are in the same vein as
the complementarities between received units created by strictly increasing marginal
utility of blood.

5 Policy Design for Blood Allocation
In this section, we first provide concrete designs of feasible schedule menus to il-

lustrate how certain practical challenges in blood allocation can be addressed using
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our framework. Then, we assess the performance of the FCFS mechanism in practice
and our mechanisms in simulated blood markets.

5.1 The Design of Feasible Schedule Menus
The feasible schedule menus can be designed to impose exchange rate policies and

achieve more nuanced objectives regarding fairness, efficiency, and incentives.

Equitable Blood Allocation. An important flexibility of our proposal is that the ex-
change rates can be determined endogenously. This is especially useful when some pa-
tients may potentially have few or no paired donor candidates. We can design feasible
schedule menus that accommodate for patients with and without donors as equitably
as possible.

An example is provided in Figure 6. In this example, the patient i always receives
the minimum guarantee of g

i
= 1 unit of blood, and she can receive up to her maxi-

mum need of ni = 3 units, even if she does not have any donor. The feasible schedule
menu satisfies L-convexity, feasibility of positive price, and non-diminishing favora-
bility in donors. Therefore, as she brings forward more donors, her chances of receiv-
ing more units of blood beyond g

i
= 1 under any weighted utilitarian mechanism

weakly increase by donor monotonicity.
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Figure 6: An equitable feasible schedule menu.

The proposal is also compatible with some existing equitable replacement donor
policies. For example, in leading Chinese hospitals, patients who do not live in the
city where the hospital is located are often not required to supply as many donors as
local patients. The rationale behind this policy is that relatives of patients from other
cities are usually not readily available to donate on behalf of the patients. Similarly,
in Cambodia, replacement donor requirements are waived for a patient if she has no
next-of-kin (Davies, 2004). Thus, the patient-specific nature of the feasible schedule
menus can accommodate such fairness considerations as well.

A flexible policy with endogenous exchange rates can also help address some eth-
ical concerns about replacement donor programs and enhance the overall efficiency
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of the system. Under a fixed exchange rate policy that is commonly observed around
the world, a patient without enough donors may be forced to recruit illegal profes-
sional donors, leading to the issue of black markets for blood. On the other hand, if
a fixed exchange rate, such as the one-for-one rate, is strictly enforced, then a patient
without any donor cannot receive any blood even if the blood bank does have enough
inventory for her, leading to obvious welfare loss.

In general, given the fairness, efficiency, and ethical issues of a fixed exchange rate
policy, although rules may be bent in some way in practice (e.g., the ad hoc ”forgiving
policy” in Section 3), our design formalizes flexible and endogenous exchange rates,
bringing rigor and transparency to the allocation system.

Blood Type Targeting. Blood banks occasionally fall short in blood components of
certain blood types while others are aplenty. For example, the blood type distribution
varies across different regions of the world, but AB Rh D− is almost always the rarest
type and components of this type are likely in short supply. On the other hand, al-
though ABO-identical transfusion is required for certain blood components in some
countries, this compatibility requirement is often relaxed in other cases. For instance,
under ABO-cellular compatible red blood cell transfusion, blood type O Rh D− is the
universal donor, and under ABO-plasma compatible platelet transfusion, blood type
AB is the universal donor. Therefore, it may be important for a blood bank to target
the donation of certain types of blood. Since a patient’s feasible schedule set depends
on the observable characteristics of her donor set, this goal can be achieved by in-
centivizing the provision of donors of desired blood types through feasible schedule
menu policies. In Figure 7, we give an example of a feasible schedule menu design
that favors bringing forward more type O Rh D− donors. In this case, a patient is able
to receive the same amount of blood by supplying less if she has more donors of this
type.

Approximating Fixed Exchange Beyond One-for-One. As mentioned before, Mexico
and some countries in Africa (e.g., Congo and Cameroon), for various reasons, use
two-for-one exchange rate: two units of blood need to be supplied for each unit re-
ceived. The resulted feasible schedule menu violates L-convexity, and it can be shown
that even a priority mechanism may not be donor monotonic under such exogenous
exchange rate policy.

However, we can generate endogenous exchange rate policies that closely approx-
imate the two-for-one exchange rate, such that under these policies the weighted util-
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Figure 7: A feasible schedule menu that provides strong incentives to reveal type O− donors.
In each case, the feasible schedule set of patient i includes every schedule on the graph in
which the amount supplied does not exceed her number of donors, and is

{
(0, 0)

}
if there

is no such schedule. This feasible schedule menu satisfies L-convexity, feasibility of positive
price, strong non-diminishing favorability in donors, and individual rationality. Assume that
these properties are also satisfied for the other patients. Then, under any weighted utilitarian
mechanism, if patient i has one or two type O− donors, concealing a type O− donor leads to
a strictly lower utility.

itarian mechanisms are at least donor monotonic. See Figure 8 for an example. Such
an approach can also be applied to approximate other exogenous exchange rates.
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Figure 8: A feasible schedule menu designed to approximate the two-for-one exchange rate.
The patient i is required to supply at least two units to receive her minimum guarantee. For
any s ∈ {2, . . . , 6} such that s ≤ |Di|, ( 1

2 s, s) should be a feasible schedule when s is an even
number, and we consider (

⌊ s
2

⌋
, s) and (

⌈ s
2

⌉
, s) feasible schedules when s is an odd number.

Then the above graphs illustrate the feasible schedule menu that assigns the smallest set of
schedules that include these feasible schedules in each case so that L-convexity, feasibility of
positive price, and non-diminishing favorability in donors are satisfied for patient i.

5.2 Simulations on Mechanisms
As we have discussed earlier in Section 3, most blood banks use the FCFS mecha-

nisms that do not require intricate implementation other than specifying the exchange
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rates in their policies. While FCFS is incentive compatible under most commonly used
exchange rate policies, it is not Pareto efficient. Thus, one important question that
connects our approach to practice is whether and under what conditions FCFS is ap-
proximately efficient, and when we have to use weighted utilitarian mechanisms to
implement efficient outcomes.

These conditions include policy objectives of the blood bank, running levels of in-
ventories, population density, and replacement donor recruitment ease, and countries
that employ replacement donor programs are very diverse in these aspects. For ex-
ample, rural Sub-Saharan African blood banks mostly operate with small inventories
leading to wide-spread shortages (Tagny, 2012), while shortages are not regularly seen
in some countries that also employ blood replacement programs, such as Turkey.34

For simplicity, in the rest of this section we compare different mechanisms only un-
der the most common one-for-one exchange rate. Given an FCFS mechanism, the cor-
responding direct mechanism among the weighted utilitarian mechanisms is the pri-
ority mechanism with respect to the same order of patients, where the bank is ranked
in the last place. The two mechanisms are in general not Pareto-comparable, but the
priority mechanism Pareto dominates FCFS under zero-inventory. Thus, we expect
that when the inventory level is low, the priority mechanism will induce substantially
higher utility for most patients than FCFS.

On the other hand, if the blood bank has a sufficiently high inventory, then every
patient can be fully satisfied under FCFS by simply trading with the blood bank. Thus,
as the inventory level goes up, it is expected that FCFS becomes closer to the priority
mechanism.

In addition, we consider the incentive compatible two-stage mechanism that im-
proves upon FCFS (for the patients), introduced in Section 3, where in the first stage
we run FCFS, and in the second stage we run the priority mechanism under the up-
dated feasible schedule menus that are determined by the first stage.35 We refer to
this mechanism as FCFS dominating mechanism. It is equivalent to the priority mecha-
nism under zero-inventory, as in this case all patients can be improved in the second
stage. However, the significance of the improvement over FCFS is elusive under other

34Based on communications reported in Footnote 18.
35In the proof of Theorem 1 we used a slightly different priority mechanism in the second stage,

where the bank has the first priority, to improve the utilities of both patients and the bank. We focus on
the transfusions to patients in the simulations and thus give the bank the lowest priority. Nevertheless,
the incentive compatibility of the current two-stage mechanism still follows from the same arguments
in the proof.
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inventory levels.
Below, we conduct simulations to give more precise evaluations of the three mech-

anisms.

Simulation Setup. The blood types of each patient, replacement donor, and unit in
the blood bank inventory are drawn randomly and independently using the Indian
blood-type distribution in Table 1.

O+ A+ B+ AB+ O− A− B− AB−
27.85% 20.80% 38.14% 8.93% 1.43% 0.57% 1.79% 0.49%

Table 1: Blood-type frequencies in India (RhesusNegative.net, 2012-2019).

We simulate red blood cell transfusion that follows the commonly practiced ABO-
identical and Rh-D-compatible protocol. We consider two patient set sizes, |I| = 25
and |I| = 100, representing small and large hospital systems and their blood banks,
respectively. Each patient i is assumed to need a maximum of ni units, determined by
a random and independent draw from the uniform distribution with the support set
{1, 2, . . . , 6} (so that the mean maximum need is 3.5, which is the reported number in
Collins et al., 2015). Each patient i has a donor set Di such that |Di| is determined by
a random and independent draw from the uniform distribution with the support set
{0, 1, . . . , 6 − x}, where x ∈ {−1, 1}. That is, there is a slight shortage of replacement
donors on average (when x = 1, the mean donor number is 2.5, and the mean individ-
ual maximum need is 3.5), or the mean donor number is equal to the mean maximum
need (when x = −1). Finally, the number of units in the inventory is determined uni-
formly from the support set

{
0, 1, . . . ,

〈
6ι|I|

〉}
, where ι ∈ {0, 0.02, 0.04, 0.1, 0.2, 0.5, 1},

and ⟨x⟩ rounds x to the nearest integer. Therefore, ι is the ratio of the highest possible
total inventory size to the highest possible total maximum need of the population (i.e.,
6|I|).

This design with 3 mechanisms (FCFS, priority mechanism, and FCFS dominating
mechanism), 2 population sizes, 2 highest possible donor numbers, and 7 inventory
ratios gives us 84 simulations.

Simulation Results and Policy Lessons. We randomly simulated 1,000 markets and
summarize their average results through two figures. Figures 9 and 10 display the
total transfusion amounts as percentages of the mean total maximum need 3.5|I| for
|I| = 25 and |I| = 100, respectively (also see Table A.2 in Appendix D for standard
errors and actual numbers in these figures).
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Figure 9: Blood transfused to the patients in the simulations for |I| = 25 as a function of ι.

We have five main observations where the first one concerns relatively low inven-
tory, which is prevalent in many regions and one of the key reasons why replacement
donor programs are employed in the first place.

Observation 1 When the inventory rate ι → 0+, a centralized implementation of the priority
mechanism (or the FCFS dominating mechanism) is required to maximize the gains from a
replacement donor program.
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Figure 10: Blood transfused to the patients in the simulations for |I| = 100 as a function of ι.

At ι = 0, FCFS achieves about 37 − 44% of the total transfusions achieved by the
other two mechanisms, which both generate the same transfusion level. Thus, in a
place like sub-Saharan Africa, where inventory levels are historically low, running a
centralized system with the priority mechanism for patients batched in small groups
would be far superior to the current system.

On the other hand, when the highest initial inventory level approaches half of the
highest total maximum need, the performance of FCFS substantially improves.
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Observation 2 When the inventory rate ι → 0.5−, FCFS successfully approximates (from
below) the priority mechanism and the FCFS dominating mechanism.

For ι = 0.5, FCFS achieves about 96% of the total transfusions achieved by the
priority mechanism for |I| = 100, while this ratio is 91 − 92% for |I| = 25. Moreover,
when the population size is large, i.e., |I| = 100, FCFS performs well even for ι = 0.2:
it achieves about 91 − 92% of the transfusions achieved by the priority mechanism.

We should note that when ι = 0.2 and |I| = 100 the blood bank has on average 60
units of blood already in stock for 100 arriving patients (with a total maximum need
of 350 units on average), which could be a substantial amount in many places that use
replacement donor programs to mitigate blood shortages.

Our next result compares the FCFS dominating mechanism with the priority mech-
anism.

Observation 3 The FCFS dominating mechanism and the priority mechanism are close, while
the priority mechanism always achieves more transfusions on average. They most differ for
small but non-zero values of the inventory rate ι.

The FCFS dominating mechanism always achieves more than about 94% of the
transfusions in the efficient outcome of the priority mechanism. Therefore, under
small inventory levels, the current allocation system can in fact be significantly Pareto-
improved for the patients in an incentive compatible way.

The next finding is about the sensitivity of the transfusions to changes in inventory,
which can be important for robustness and fairness reasons regarding different blood
banks with different inventory levels in a region.

Observation 4 The priority mechanism is the least sensitive to the inventory rate ι, while
FCFS is the most sensitive one.

In the end, as the priority mechanism does not necessarily Pareto dominate FCFS or
the FCFS dominating mechanism, we inspect the patients’ preferences between pairs
of mechanisms. The detailed comparison results are presented in Figures A.15 and
A.16, and Table A.3 in Appendix D.

Observation 5 The percentage of patients who prefer the priority mechanism over FCFS is
54 − 65% when ι = 0, and this percentage falls as ι increases. The percentage of patients who
prefer FCFS over the priority mechanism never exceeds 1.9%, and is always less than about 1

14

of the percentage of those who prefer the priority mechanism.
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Thus, the Pareto efficient and incentive compatible priority mechanism seems to
be a perfect candidate to replace FCFS, as it almost Pareto dominates FCFS for the
patients in the simulated markets.

6 Related Literature
Our paper contributes to two strands of literature in economics: market design

with an emphasis on the economics of health care, and mechanism design with an
emphasis on multi-unit discrete goods exchange without side payments.

On the market design front, an important predecessor is studies on living-donor
kidney exchange spanned by Roth, Sönmez, and Ünver (2004, 2005), although most of
this literature is about exchanging only one organ with the notable exception of Ergin,
Sönmez, and Ünver (2017), which studies dual donor exchanges in lung, liver, and
simultaneous liver-kidney transplantation with one-for-one exchange rate. The differ-
ences in institutional details between solid organ exchange applications and our main
application are explained in Appendix A.4. Our donor monotonicity notion would
reduce to the notion introduced in Roth, Sönmez, and Ünver (2005) if patients had
unit demand and the exchange rate was one-for-one. Multi-tier priority mechanisms,
special cases of our weighted utilitarian mechanisms, are proposed and applied in the
context of kidney exchange (Andersson and Kratz, 2019 and Kratz, 2024).

The WHO guidelines suggest that blood should only come from VNRDs and eco-
nomic incentives can adversely affect both blood safety and blood donation. The posi-
tion of the WHO has been questioned based on recent evidence (Lacetera, Macis, and
Slonim, 2013). In particular, Lacetera, Macis, and Slonim (2012) provide evidence from
a natural field experiment showing that economic incentives have a positive effect
on voluntary donation and can encourage pro-social behavior. Additionally, Slonim,
Wang, and Garbarino (2014) also study blood donation from an economic perspec-
tive, and discuss methods to increase blood supply and improve the supply and de-
mand balance without market prices. Pay-it-forward and pay-it-backward incentive
schemes for encouraging COVID-19 convalescent plasma donation have recently been
proposed by Kominers et al. (2020) in a market design context.36

36They propose issuing vouchers for the convalescent plasma donation of patients who recover from
COVID-19 that can be used by these donors’ family members who may become sick in the future to
gain prioritized access to plasma therapy or for their own treatment, if they are still sick. Since one
donor can donate plasma that can treat more than one patient, the system can collect enough plasma to
treat all patients. Their paper inspects the steady-state analysis of a stylized large-market model, while
ours is on mechanism design in a finite environment.
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There are not many papers on market design for multi-unit exchange of indivisible
goods without side payments, even under the restriction of one-for-one exchange us-
ing compatibility-based preferences. The existing models are isomorphic to a model
where endowment provision costs do not matter or are simply equal to zero because
of the one-for-one exchange rate assumption they carry, unlike our setting.

Besides Ergin, Sönmez, and Ünver (2017) mentioned above, two notable other pa-
pers are Manjunath and Westkamp (2021), who study shift exchanges for medical doc-
tors, nurses, and other professionals as a market design problem, and Andersson et al.
(2021), who consider the design of time banks or favor barter markets to be cleared by
centralized clearinghouses.

In Manjunath and Westkamp (2021), for each agent there are three indifference
classes of objects: desirable objects, undesirable objects that she is endowed with, and
undesirable objects that she is not endowed with. This trichotomous preference do-
main is more general than our specification, and suits their application of shift ex-
change but not the blood allocation problem. They consider priority mechanisms and
show they are individually rational, efficient, and strategy-proof. Similar to our study,
Andersson et al. (2021) consider compatibility-based preferences, but their domain is
more restrictive, since each agent is endowed with identical copies of an object. Com-
pared to Manjunath and Westkamp (2021), they are able to achieve the stronger wel-
fare requirement of maximality in a less general preference domain. They study max-
imal mechanisms with priority tie-breakers and show that they are individually ratio-
nal and strategy-proof. The mechanisms in both studies are special cases of weighted
utilitarian mechanisms with one-for-one exchange rate. One important difference be-
tween their models and ours is that we focus on the incomplete information regarding
utilities and endowments of individuals in the mechanism design context, while they
consider incomplete information regarding the compatibility relations of individuals.
Our results can be generalized to the setting where the compatibility relations are pri-
vate information as well (see an earlier draft of our paper, Han, Kesten, and Ünver,
2021), and subsume the latter paper’s results.

Our paper as well as Andersson et al. (2021) substantially extends the priority
mechanism introduced for bilateral kidney exchange, i.e., one-for-one donor exchange
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between two patients with unit demand, by Roth, Sönmez, and Ünver (2005).37,38

Price discovery and Pareto efficient allocation through endogenously determined
exchange rates are the main features of competitive equilibrium. For the allocation of
indivisible goods, this approach was pioneered by Hylland and Zeckhauser (1979)
using pseudo-market equilibrium from equal “fake” monetary incomes. This ap-
proach fails to guarantee the existence of a competitive equilibrium with endowments
and no monetary income—as in our model—even with single-unit demand under
compatibility-based preferences and the possibility of probabilistic assignments (see
Garg, Tröbst, and Vazirani, 2020 for an impossibility). Positive results are obtained
with unit demand when some fake money is injected to the system (Echenique, Mi-
ralles, and Zhang, 2021). Moreover, competitive equilibrium as a mechanism is in
general not incentive compatible in finite markets.39

Similar to our main insight in the blood allocation context, Agarwal et al. (2019)
underline and calculate the welfare loss in the US kidney exchange due to inefficient
mechanisms and agency problems. They argue that while the number of transplants
that can be performed crucially depends on the marginal product of each patient-
donor pair, current platform rules largely ignore this variation in the social value of
submissions, much like the inefficiency caused by fixed exchange rates in blood allo-
cation.

7 Concluding Remarks
We introduced a new market design problem and proposed a broad class of Pareto

efficient and incentive-compatible mechanisms that have practical applications. We
view our incentive compatibility notion as an important desideratum for a successful

37Matching models with unit demand and compatibility-based preferences have been studied in the
context of graph theory. The incentive and fairness properties of mechanisms on such graphs were first
analyzed by Bogomolnaia and Moulin (2004) in an economic model of two-sided matching. A recent
related paper regarding matching and assignment with compatibility-based preferences is Nicolò, Sen,
and Yadav (2019), who study the assignment of tasks to pairs of agents where each agent has separable
compatibility-based preferences over her assigned partner and task. This paper focuses on finding core
matchings in this domain. Another recent paper on the multi-unit exchange model with one-for-one
exchange rate, Aziz (2019), derives a sufficient condition for the strategy-proofness of a mechanism.

38Multi-unit exchange with one-for-one exchange rate and non-compatibility-based preferences, such
as strict responsive preferences, leads to the non-existence of any strategy-proof, individually rational,
and efficient mechanism (Konishi, Quint, and Wako, 2001). On the other hand, positive results can be
obtained if strategy-proofness is swapped with other incentive properties (for example, see Biró, Klijn,
and Pápai, 2022).

39Also see Budish (2011) for the first model of competitive equilibrium with multi-unit demand and
fake money, but without endowments.
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field implementation.
The machinery needed to study blood allocation with replacement donors is also

new and has not been developed before in the mechanism design literature to our
knowledge. The concept of feasible schedule menus overcomes, using both positive
and normative measures, the limitations put in place by the one-for-one exchange
rate. Our mechanisms also substantially generalize well-known incentive compatible
mechanisms in the context of compatibility-based preferences.

Unlike organ exchanges, dynamic analysis of the blood allocation problem is less of
an issue as patients requesting blood transfusions do not typically have long waiting
horizons. Instead, our mechanisms can be employed through batching (e.g., once in
a few days). Notably, when the blood bank inventory is low, the full power of our
approach is needed to boost blood transfusion volume, which can generate substantial
welfare gains. On the other hand, when the inventory is sufficiently high, the currently
used FCFS mechanism or other decentralized heuristics can be relatively successful.

In closing, we note that this is the first economics paper on a potentially important
practical market design problem, as far as we know. It is our wish that unexplored
features of this problem both on the more practical market design side and more ab-
stract mechanism design framework will attract the attention of future researchers.
We hope that, in addition to developing the theory for efficient blood allocation mech-
anisms with good incentive properties, our approach will be an important first step
toward blueprints for transparent, equitable, and systematic replacement donor pro-
grams that are in line with the goals of the WHO. Relaxing the constraints imposed by
fixed exchange rates, this approach can help to overcome important practical frictions
such as coercion and emerging black markets in many places around the world where
these programs are not adequately organized.
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For Online Publication: Appendices of

“Blood Allocation with Replacement Donors:
Theory and Application”

A Background for Blood Transfusion and Allocation
A.1 Main Blood Components and Compatibility

There are different transfusion protocols for different blood components, and the
medical practices also vary across different regions of the world. We mainly fo-
cus on the three most-transfused blood components—red blood cells, platelets, and
plasma—as well as whole blood, and provide a brief account starting with a general
rule of thumb for compatibility requirements.

Blood-type compatibility plays an important role for the feasibility of transfusion.
There are more than 300 human blood groups. Two of them are the most important in
clinical practices. The first one, the ABO blood group system, is the most commonly
known. A person’s ABO blood type is determined by the presence of A or B antigens
in her blood cells: her type may be O (if she has neither antigen), A (has only the
A antigen), B (has only the B antigen), or AB (has both antigens). Each person has
pre-formed antibodies in her plasma against every non-existent antigen. Antibodies
against an antigen attack blood cells that carry this antigen, which can cause poten-
tially fatal hemolysis.

Therefore, any transfusion including a significant amount of donor cells, by rule of
thumb, should respect ABO-cellular compatibility: O blood-type cells can be donated to
all, A blood-type cells can be donated to A and AB blood-type patients, B blood-type
cells can be donated to B and AB blood-type patients, and AB blood-type cells can
only be donated to AB blood-type patients.

On the other hand, any transfusion including a significant amount of donor
plasma, which carries the donor’s pre-formed antibodies, by rule of thumb, should
respect ABO-plasma compatibility: AB blood-type plasma can be donated to all as it
does not contain any antibodies, A blood-type plasma can be donated to A and O
blood-type patients, B blood-type plasma can be donated to B and O blood-type pa-
tients, and O blood-type plasma can only be donated to O blood-type patients as it
contains antibodies against both antigens.

The second crucial blood group system is Rh. The most clinically important Rh
antigen is D. Its existence and non-existence correspond to Rh D+ type and Rh D−
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type respectively. Antibodies to the Rh D antigen can only develop on an Rh D−
person after being exposed to Rh D+ red blood cells. Hence, the compatibility re-
quirement is to avoid the transfusion of Rh D+ red blood cells to an Rh D− patient,
due to the risk of hemolytic reactions.

Most blood components are packed with others in solutions. Thus, depending on
the amount of these components, different practices are followed for the compatibility
of the pack with the patient.

Next, we turn our focus to specific blood components.

Red Blood Cells and Whole Blood. Red blood cells carry oxygen from the lungs
to all parts of the body and are the most commonly transfused blood components.
Red blood cell transfusion—the de-facto modern day replacement for the older whole
blood transfusion therapy—is mostly used for patients with anemia due to cancer,
blood diseases, and other causes, followed by surgical patients. Whole blood is still
transfused in some low-income countries. For other countries, this is only occasion-
ally performed in emergencies for patients with massive blood loss due to trauma,
surgeries, etc. A person donates one unit (about a pint) of whole blood each time and
she has to wait at least eight weeks between donations. Each unit of red blood cells
is prepared from one unit of donated whole blood by removing plasma and adding
preservative solutions, and can be stored for about 42 days.

ABO-identical and Rh D-compatible transfusion is generally practiced for whole
blood transfusion.40 For red blood cells, ABO-cellular compatible and Rh D-
compatible transfusion is all that is needed in theory. However, as red blood cell packs
usually carry some amount of donor plasma, ABO-identical (and Rh D-compatible)
transfusion is often required.

Eight blood types are relevant for red blood cell or whole blood transfusion. How-
ever, in some populations, such as those in Asia, Rh D− is so rare that there are effec-
tively only four blood types.41

Platelets. These are tiny cells in the blood that form clots and stop bleeding. Platelet
transfusions are mostly given to prevent or treat bleeding in patients with thrombo-
cytopenia or abnormal platelet function, such as those undergoing chemotherapy or
receiving a bone marrow transplant. McCullough (2010) states that the use of platelets

40An exception is that type O Rh D− blood is often transfused in emergencies to patients with other
or unknown blood types. For this reason it is also dubbed as the global-donor blood type.

41For example, in China, the Rh D antigen exists in more than 99% of the population.
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has increased more than other blood components in the last 15 years. According to Red
Cross of America, every 15 seconds someone needs platelets (American Red Cross,
2020). However, due to their storage requirement at room temperature, platelets have
a much shorter shelf life than most other blood components: in most countries they
can only be stored between four and seven days (Cid, Harm, and Yazer, 2013). As a
result, platelets are in frequent shortages even in developed countries.

One unit of platelets can be prepared from 4-6 units of pooled whole blood, or
obtained from a single donation through the technique of apheresis, which only takes
platelets out of the donor’s blood, leaving the other components in the blood stream.
The whole process takes approximately three hours and a person can donate platelets
in this way once a week, up to 24 times a year.42 In addition to the efficiency in the
production process, apheresis platelets are also safer to the patients due to the mini-
mal donor exposure. Hence, it has become an increasingly common practice to give
apheresis platelets, instead of whole-blood-derived platelets. In 2017, only 4.2% of the
total transfused platelet units in the US were derived from whole blood (Jones et al.,
2020).43

For platelets, the compatibility practices vary significantly among different insti-
tutions and countries. As platelets (weakly) express the ABO antigens and they are
suspended in plasma in the platelet packs, ABO-identical transfusion is always pre-
ferred, although ABO incompatibility in platelet transfusion is generally not as risky
as in whole blood or red blood cell transfusion. Given the frequent shortages, ABO-
identical transfusion is often not possible. Both ABO-cellular compatible transfusion
and ABO-plasma compatible transfusion (due to significant plasma amount in the
packs) are commonly practiced, and there has been no consensus as to which is the
better strategy (Dunbar et al., 2015; Lozano et al., 2010; Norfolk, 2013). Finally, as the
Rh D antigen is not present on platelets, Rh D compatibility is usually not required
(for example, see Cid, Harm, and Yazer, 2013).

Plasma. It is the non-cellular, protein- and antibody-rich liquid component of blood.
The plasma used in everyday transfusion is usually fresh frozen plasma. Plasma transfu-
sion is often utilized by patients with liver failure, heart surgery, severe infections, and
serious burns. One unit of fresh frozen plasma can be prepared from one unit of whole
blood after removing the blood cells. Alternatively, a person can donate up to three

42A donor usually donates one unit of platelets through apheresis, but double or triple-unit donation
in a session may also be possible, depending on the health of the donor.

43The apheresis method has also become popular in developing countries (Eichbaum et al., 2015).

A.3

Electronic copy available at: https://ssrn.com/abstract=3858158



units through apheresis, which keeps other blood components in her blood stream
and only extracts plasma. Fresh frozen plasma has the longest shelf life among the
three main blood components: it can be stored for about a year. Its transfusion follows
ABO-plasma compatibility, without regard to Rh D compatibility (as Rh D antibodies
only form after exposure to the Rh D antigen and are not pre-formed).

Convalescent plasma, the antibody-rich plasma of a patient recovering from an in-
fectious disease with no other known cure, such as Ebola and COVID-19, is commonly
used to treat patients or to produce drugs against the disease. It can also be considered
as a type of fresh frozen plasma.

In addition to plasma used for transfusion, plasma derivatives (such as albumin,
coagulation factors, and immunoglobulins) manufactured from “source plasma” in
fractionation centers are used in the treatment of various conditions. Unlike the blood
used for transfusion, source plasma is commonly collected from paid donors in many
countries.44

A.2 Blood Demand of a Patient
The amount of a blood component needed to treat each medical condition is id-

iosyncratic. For example, Collins et al. (2015) report that, at a tertiary referral center
in the US, the average amount of red blood cell units used per surgery is close to 3.5
and this amount has a high variance due to different patient conditions. Besides the
idiosyncratic demand, receiving more units is generally better under various outcome
or preference metrics. We give three general examples of patient demand that have
this common thread.

First, it is medically acceptable and feasible to transfuse various units to a patient
with a particular condition such that more units lead to better outcomes. For exam-
ple, platelets are often transfused prophylactically to prevent bleeding when a pa-
tient’s platelet count is below a certain threshold. In such cases, both the strategy of
higher doses in lower frequency and the strategy of lower doses in higher frequency
are practiced (Stroncek and Rebulla, 2007). Norol et al. (1998) show that the high and
very high dose treatments lead to significantly better platelet increment in the patients,
compared to the medium dose treatment.

Second, the exact need of a patient can be ex-ante uncertain, with more blood lead-
ing to better outcomes on average. For example, a surgeon often orders significantly

44The US has a large source plasma industry that relies on paid donors, and it is responsible for 55%
of the world’s supply of plasma derivatives (Farrugia, Penrod, and Bult, 2010).
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more blood than the patient ends up using during a surgery for cautionary reasons.
Collins et al. (2015) report that 72% of the red blood cells ordered for surgeries go
unused. The ratio of ordered to transfused red blood cells can be as high as 11 to 1 in
elective liver resection surgical procedures (Cockbain et al., 2010). These ratios indicate
that surgeons are quite risk averse, and ex-ante a surgeon has monotonic preferences
over the amount of blood ordered.45 Required operations are still conducted, but with
less blood in hand, when there is a shortage.46

Third, blood components such as platelets and red blood cells are often transfused
routinely to patients with chronic conditions and are administered in small doses
over time. For example, Marwaha and Sharma (2009) state that patients undergo-
ing chemotherapy require platelet transfusion once in at least every three days, and,
when the bone marrow is adversely affected, every day. In such cases, more units are
preferred to less to be administered through several transfusions in a time interval,
although allocation can be done only once.

A.3 Replacement Donor Programs and Blood Bank Policies
Replacement donor programs are observed in all continents and are especially

common in Africa, Latin America, and Central Asia (Allain and Sibinga, 2016). Pop-
ulous countries such as Pakistan, Brazil, and Mexico collect their blood components
almost entirely through replacement donor programs. On the other hand, countries
such as India and China rely on these programs to meet the demand not met by VN-
RDs.

Within the medical community, there is an ongoing debate about the stance of the
WHO regarding VNRDs being the safest blood supply. There has been considerable
evidence suggesting that the blood collected through replacement donors is as safe
as VNRDs. It is also argued that the motivations of the two types of donations are
similarly altruistic, and the distinction between them from an ethical perspective is
not clear cut. Allain and Sibinga (2016) provide an excellent survey of these views,
empirical evidence, and references. In addition, there are significant economic and
cultural reasons for the predominance of decentralized and often hospital-based re-
placement systems in many developing countries. Such a system is much less costly
(Bates, Manyasi, and Lara, 2007), favors intra-group solidarity, and is culturally more

45Unused blood is usually discarded if it is out of blood bank storage for more than four hours or not
kept in cold storage for more than thirty minutes.

46According to Bates et al. (2008), in Sub-Saharan Africa, where the blood supply heavily depends on
replacement donor systems, about 26% of hemorrhage maternal deaths were due to lack of blood.

A.5

Electronic copy available at: https://ssrn.com/abstract=3858158



consistent with the presence of strong family or community bonds (Haddad, Bou Assi,
and Garraud, 2018; Kyeyune-Byabazaire and Hume, 2019).

In a replacement donor program, a patient’s donors can donate before or after the
patient receives blood depending on the regional practice. Since direct donation from a
donor to the patient (even if they are compatible) is not practiced in modern medicine
due to health concerns (i.e., the donor blood needs to be tested and processed first),
the blood bank is used as an intermediary.

Blood banks work with hospitals and blood centers. Hospitals relay the needs of
patients to the blood banks, while the blood banks and blood centers collect donations
from VNRDs and replacement donors. Hospitals are often required to maintain a
small inventory of their own (for example, see Delhi State Health Mission, 2016).

Although replacement donor programs are very common and officially acknowl-
edged in many countries, maybe surprisingly, it is difficult to find their exact insti-
tutional details. The most common practice in current replacement donor programs
worldwide is that the blood bank announces, either officially or unofficially, a preset
exchange rate between the units of blood received and supplied, often irrespective of
the blood type sought or donated. Blood banks provide blood to patients exclusively
based on these rates using schemes similar to first-come first-serve. Among these, the
one-for-one exchange rate, i.e., one unit replacement per unit received, is most com-
mon around the world.

We also give some examples of other policies practiced. Although China banned
the replacement donor programs in 2018, they are still used in several cities during
shortages, especially for platelets (She, 2020). Different policies have been in place. In
most cities, including Beijing, the exchange rate is one-for-one. As reported by She
(2020), in Xi’an, during periods of shortages, a patient has the priority of receiving
three units of blood for every unit she has donated before, and she has the priority
of receiving one unit for every unit her replacement donors donate now. According
to Chen (2012), in Guangzhou, there is not necessarily a fixed relation between the
amount received and supplied. Moreover, in some regions there are restrictions on the
blood types of replacement donations. As an extreme case, the blood type of a replace-
ment donor must be identical to that of the patient in Jiangsu. While such a restric-
tion is relatively rare for whole blood donations, it is not uncommon for replacement
platelet donations throughout the country.

India has the second largest official replacement donor program in the world after
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Pakistan. In Delhi, regardless of the amount of blood she needs, the patient is required
to bring forward one replacement donor, unless the intervention needed is an emer-
gency surgery (Delhi State Health Mission, 2016). In Turkey, a variation of the Delhi
policy is used and a patient is required to bring forward three donors for any number
of blood receipt.47

In Cameroon and Congo, the exchange rate has been two replacement units per
unit received, as almost 25% of the donations are not suitable for transfusion due to
infections (Tagny, 2012). The same exchange rate is also used in Puerto Vallarta, Mex-
ico, for cost reasons (Thompson, 2020).

In Tucuman, Argentina, a patient’s replacement donors donate after the transfu-
sion. The exchange rate is fixed at one-for-one; however, it is not as strictly enforced.48

A.4 Comparisons to Solid Organ Exchanges
The feasibility of blood transfusion primarily depends on blood type compatibility.

Therefore, replacement donor programs operate on the premise of the exchange of
willing donors for compatible blood received by the paired patient. This is similar
in principle to organ exchanges with the first-order difference that there is not yet
an optimized central clearinghouse for replacement donors (for example, see Tagny,
2012). There are a number of other important institutional differences.

Unlike solid organ exchanges, replacement donor programs do not require the si-
multaneity of donation and transfusion, which gives the flexibility to schedule dona-
tions and transfusions separately. The donated blood must be tested and processed for
safety reasons, which makes it unsuitable for immediate transfusion. It may take up
to 24 hours to test and process donated blood. Thus, most exchanges are intermedi-
ated through the blood bank, i.e., patients receive from the inventory, and their donors
donate to the inventory.

Moreover, other logistical constraints of blood donation are negligible compared to
those in solid organ transplantations. The blood donation process takes at most a few
hours and its effects wear off relatively quickly. On the other hand, organ transplan-
tations carry risks and require careful planning before and after the operations. Once
extracted, blood components can be stored for a certain period of time, which can facil-
itate the designer’s choice of optimal timing of donation and transfusion. Many blood
banks and hospitals often operate in coordination, making it possible to obtain the

47See Footnote 18.
48See Footnote 3.
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necessary blood units from neighboring facilities. These lead to the observation that
in blood allocation with replacement donors, the possibility of a donor reneging is
not as much of a concern as in organ exchanges. The absence of logistical constraints
together with the ability to store blood components make it possible to incorporate
cycles and chains of arbitrary length into an allocation in our problem, unlike organ
exchanges.

B Proofs

B.1 Proof of Proposition 2
Consider the vector w with wi = 1 for all i ∈ I. As mentioned in Footnote 25,

we can find a weighted utilitarian mechanism f with respect to weights w′, where
each w′

i is sufficiently close to 1, such that for any feasible schedule menu profile
F , problem (D, θ) and allocations α, α′ ∈ A(F , D), U(w′, θ, α) > U(w′, θ, α′) if
U(w, θ, α) > U(w, θ, α′). Therefore, the outcome of f always maximizes the sum of
patient and bank utilities.

Let F be any L-convex feasible schedule menu profile. We show that L-convexity
implies the following assumption on F , which will be useful in the proofs of other
results as well.

Assumption 1. For every i ∈ I, Di and (r, s), (r′, s′) ∈ Fi(Di), we have

1. If r′ > r and s′ > s, then

(r + 1, s + 1) ∈ Fi(Di) and (r′ − 1, s′ − 1) ∈ Fi(Di).

2. If r′ > r and s′ ≤ s, then

(r + 1, s) ∈ Fi(Di) and (r′ − 1, s′) ∈ Fi(Di).

3. If s′ > s and r′ ≤ r, then

(r, s + 1) ∈ Fi(Di) and (r′, s′ − 1) ∈ Fi(Di).

Lemma A.1 The feasible schedule menu profile F satisfies Assumption 1.

Proof of Lemma A.1. Consider any i ∈ I and Di. Let Fi(Di) = S. For any x, y ∈ Z2
+,

where x = (r, s) and y = (r′, s′), denote dis(x, y) = r′ − r + s′ − s, and y > x if r′ > r
and s′ > s. Suppose that x = (r, s) ∈ S, y = (r′, s′) ∈ S, and y > x. We want to first
show that (r + 1, s + 1) ∈ S. It is true if dis(x, y) = 2. If dis(x, y) > 2, then consider
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z =
⌈

x+y
2

⌉
> x. By L-convexity, z ∈ S. It follows from dis(x, y) > 2 that

⌈
r+r′

2

⌉
< r′

or
⌈

s+s′
2

⌉
< s′. Hence, 2 ≤ dis(x, z) < dis(x, y). If dis(x, z) > 2, we can repeat the

argument and find z′ ∈ S such that z′ > x and 2 ≤ dis(x, z′) < dis(x, z). Continuing
in this fashion, in the end we must have (r + 1, s + 1) ∈ S. By symmetric arguments,
it can be shown that (r′ − 1, s′ − 1) ∈ S. So Condition 1 in Assumption 1 is satisfied.

Next, we show Condition 2. Suppose that x = (r, s) ∈ S, y = (r′, s′) ∈ S, r′ > r and
s′ ≤ s. First, we argue that there exists s′′ ≤ s such that (r + 1, s′′) ∈ S. If r′ = r + 1,
then it is true. If r′ > r + 1, then consider

⌈
x+y

2

⌉
= (r1, s1). We have r′ > r1 > r

and s1 ≤ s. By L-convexity, (r1, s1) ∈ S. If r1 > r + 1, we can repeat the argument
and find (r2, s2) ∈ S such that r1 > r2 > r and s2 ≤ s. Therefore, eventually we
have (r + 1, s′′) ∈ S for some s′′ ≤ s. Denote z = (r + 1, s′′). If s′′ < s, consider⌈ x+z

2

⌉
= (r + 1, s3). Then s′′ < s3 ≤ s. By L-convexity, (r + 1, s3) ∈ S. If s3 < s, we

can repeat the argument and find some s4 such that (r + 1, s4) ∈ S and s3 < s4 ≤ s.
Therefore, we must have (r + 1, s) ∈ S. By symmetric arguments, it can be shown that
(r′ − 1, s′) ∈ S. Finally, Condition 3 in Assumption 1 can be shown using arguments
similar to those in the proof of Condition 2.

Assume ρ is strictly concave. To prove the proposition by contradiction, suppose
that there exist a problem (D, θ) and patients i, j ∈ I such that βi = β j, ni = nj,∣∣{d ∈ Di : βd = X}

∣∣ = ∣∣{d ∈ Dj : βd = X}
∣∣ for each X ∈ B, Fi(Di) = Fj(Dj),

θi = θj, and

fr

(
F , D, θ

)
(j)− fr

(
F , D, θ

)
(i) > 1.

For simplicity, let f
(
F , D, θ

)
= α, α(i) = (r, s) and α(j) = (r′, s′).

We first consider the case that s′ > s. By Condition 1 in Assumption 1, (r + 1, s +
1) ∈ Fi(Di) and (r′ − 1, s′ − 1) ∈ Fj(Dj) = Fi(Di). Moreover, s′ > s indicates that
there exist d ∈ Di and d′ ∈ Dj such that βd = βd′ , α(d) = 0 and α(d′) = 1. Therefore,
we can construct another allocation α′ ∈ A(F , D) based on α such that α′(i) = (r +
1, s + 1), α′(j) = (r′ − 1, s′ − 1), α′(k) = α(k) for all k ∈ I \ {i, j} and α′(b) = α(b), by
transferring one unit of compatible blood from j to i, and letting d replace the donation
of d′. Then, by the strict concavity of ρ,

ρ(r + 1)− ρ(r) > ρ(r′)− ρ(r′ − 1),

which implies

ui
[
α′(i), θi

]
− ui

[
α(i), θi

]
> uj

[
α(j), θj

]
− uj

[
α′(j), θj

]
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since θi = θj. Therefore, the sum of utilities is larger under α′ than under α, contradict-
ing to the construction of f .

On the other hand, suppose s′ ≤ s. By Condition 2 in Assumption 1, (r + 1, s) ∈
Fi(Di) and (r′ − 1, s′) ∈ Fj(Dj). Then we can simply construct another allocation
α′′ ∈ A(F , D) based on α by transferring one unit of compatible blood from j to i.
As before, the strict concavity of ρ implies the sum of utilities is larger under α′′ than
under α, and a contradiction is reached.

B.2 Proof of Theorem 2
As the proof is involved, we first give a sketch of it.

Sketch of the Proof. Fix a weighted utilitarian mechanism f , a feasible schedule
menu profile that satisfies the properties in the theorem, and a type profile. We first
define an auxiliary matching market that is isomorphic to the original problem, which
we refer to as an extended problem. In this market, the blood bank is represented as a
pseudo-patient and its inventory is represented by pseudo-donors paired with it. For
each blood type, we also introduce a dummy patient paired with dummy donors so
that, without loss of generality, we can focus on the simple case where any (real or
dummy) patient cannot receive blood from her own compatible donors.

In an extended problem, a matching specifies which donors are matched with each
patient. A patient is not only matched with the donors who donate to her, but also
those of her own donors who do not donate to anyone. Hence, this is a pure exchange
economy. The analogue of a mechanism for extended problems is a rule, which assigns
a matching to each extended problem. We then define a rule F that is isomorphic to
the weighted utilitarian mechanism f , which chooses a matching by maximizing the
weighted sum of the utilities of the real patients and the bank. In Lemma A.3, we
show that f and F are welfare equivalent (for the real patients and the bank). Hence,
to prove the theorem, it is sufficient to show that the rule F is donor monotonic. The
rest of the proof consists of two lemmata.

The first one, Lemma A.4, is the most crucial result in the proof. This lemma essen-
tially gives a general necessary condition for profitable manipulation under any rule.
Consider two extended problems: the original one, denoted as D̂, and the one induced
by some real patient i concealing exactly one of her donors, denoted as D̂′. Let M be
a matching for D̂ and M′ be a matching for D̂′ such that i receives more blood under
M′. Then, Lemma A.4 says that there exists a particular graph theoretical structure, a
cycle or a chain, relating these two matchings.
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A cycle C from the matching M to the matching M′ is a list of patients and donors
in which each patient j points to a donor that is matched with j under M′ but not
under M, and each donor d points to the patient that is matched with d under M. We
can “add” the cycle C to the matching M to make it closer to M′: starting from M, we
remove each donor d in the cycle from the match of the patient that is pointed by d,
and add it to the match of the patient that points to d. Due to L-convexity, feasibility
of positive price, and non-diminishing favorability in donors, the definition of a cycle
is carefully tailored to ensure that these exchanges lead to a well-defined matching for
D̂, denoted as M + C. We can also “remove” the cycle from M′: starting from M′,
we remove each donor d in the cycle from the match of the patient that points to d,
and add it to the match of the patient that is pointed by d. This results in a matching
for D̂′, denoted as M′ − C. On the other hand, a chain is similar to a cycle. The only
differences are that the head patient in the chain does not point to any donor, and
the tail patient in the chain is not pointed by any donor. Chain addition and removal
operations are similarly defined and also lead to new matchings for the two extended
problems.

Finally, Lemma A.5 states that the rule F is donor monotonic. We proceed by con-
tradiction. Let D̂ be an extended problem, and D̂′ be the extended problem induced by
a real patient i concealing a donor. Suppose that patient i receives more blood under
the matching F(D̂′) than under the matching F(D̂). By Lemma A.4, there is a cycle or
a chain C from F(D̂) to F(D̂′). Then, F(D̂) + C is a matching for D̂ and F(D̂′)− C is
a matching for D̂′. We want to show that F(D̂) and F(D̂) + C are welfare equivalent.
Assume that this is not true. Then they do not give the same weighted sum of utilities,
which, by the construction of F, implies the weighted sum of utilities must be higher
under F(D̂) than under F(D̂) + C.

In the cycle or chain operations, a real patient who receives one more (or less) unit
of blood under F(D̂) + C than under F(D̂) must (1) receive one more (or less) unit
of blood under F(D̂′) than under F(D̂′) − C, and (2) receive strictly more (or less)
blood under F(D̂′) than under F(D̂). Hence, by the concavity of the blood valuation
function, it can be shown that the weighted sum of utilities under F(D̂′) − C is also
higher than that under F(D̂′), which is a contradiction. Therefore, F(D̂) and F(D̂) + C
are welfare equivalent. Then, as patient i still receives more blood under F(D̂′) than
under F(D̂)+C, we can apply Lemma A.4 again to show that there is a cycle or a chain
C′ from F(D̂) + C to F(D̂′). By similar arguments as before, F(D̂) + C and (F(D̂) +
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C) + C′ are welfare equivalent. This process can be continued infinitely, which leads
to a contradiction since each cycle or chain addition generates a new matching that is
closer to F(D̂′).

Proof. Consider a weighted utilitarian mechanism f with respect to w. Fix a type
profile θ, and a feasible schedule menu profile F that satisfies L-convexity, feasibil-
ity of positive price, and non-diminishing favorability in donors. For simplicity, we
will drop θ and F from the relevant arguments (such as those of problems, feasible
allocation sets, the mechanism, etc.) throughout the proof. Then each problem under
consideration is simply represented by a donor profile D, and we want to show that
for any D, i ∈ I and D′

i ⊆ Di,

fr

(
D
)
(i) ≥ fr

(
D′

i , D−i

)
(i).

By Lemma A.1 in the proof of Proposition 2, L-convexity implies Assumption 1 on the
feasible schedule menus. We first show that L-convexity, feasibility of positive price,
and non-diminishing favorability in donors together imply the following additional
assumption on F , which will be useful in the proof.

Assumption 2. For every i ∈ I, Di, D′
i with D′

i ⊆ Di, (r, s) ∈ Fi(Di) and (r′, s′) ∈
Fi(D′

i), we have

1. If r′ > r, s′ > 0, and s <
∣∣Di
∣∣, then

(r + 1, s + 1) ∈ Fi(Di) and (r′ − 1, s′ − 1) ∈ Fi(D′
i).

2. If r′ > r and s′ ≤ s, then

(r + 1, s) ∈ Fi(Di) and (r′ − 1, s′) ∈ Fi(D′
i).

Lemma A.2 The feasible schedule menu profile F satisfies Assumption 2.

Proof of Lemma A.2. Consider any i ∈ I, Di, D′
i with D′

i ⊆ Di, (r, s) ∈ Fi(Di), and
(r′, s′) ∈ Fi(D′

i). Suppose that r′ > r, s′ > 0 and s <
∣∣Di
∣∣. Since r′ > 0, we have

Fi(D′
i) ̸= {(0, 0)} and r′ ≥ g

i
. Then by non-diminishing favorability in donors, there

exists s1 such that (r′, s1) ∈ Fi(Di). Since r′ > r and s <
∣∣Di
∣∣, by feasibility of positive

price, there exists s2 > s such that (r′, s2) ∈ Fi(Di). Then, given that (r′, s2) > (r, s),
it follows from Condition 1 in Assumption 1 that (r + 1, s + 1) ∈ Fi(Di). This also
implies that Fi(Di) ̸= {(0, 0)}, and hence r ≥ g

i
. Recall that Fi(D′

i) ̸= {(0, 0)}. So
there exists s3 such that (g

i
, s3) ∈ Fi(D′

i). Since r′ > r ≥ g
i

and s′ > 0, by feasibility of
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positive price, there exists s4 < s′ such that (g
i
, s4) ∈ Fi(D′

i). Then, given that (r′, s′) >
(g

i
, s4), it follows from Condition 1 in Assumption 1 that (r′ − 1, s′ − 1) ∈ Fi(D′

i).
On the other hand, to show Condition 2 in Assumption 2, suppose that r′ > r

and s′ ≤ s. Then r′ ≥ g
i
. By non-diminishing favorability in donors, there exists

s1 ≤ s′ ≤ s such that (r′, s1) ∈ Fi(Di). It follows from Condition 2 in Assumption 1
that (r + 1, s) ∈ Fi(Di). Then, we argue that (r, s′) ∈ Fi(Di). This is true if s′ = s.
Suppose that s′ < s. Then consider (r′, s1) ∈ Fi(Di) and (r, s) ∈ Fi(Di), where r′ > r
and s1 ≤ s′ < s. By repeated applications of Condition 3 in Assumption 1, we have
(r, s′) ∈ Fi(Di). Finally, since Fi(Di) ̸= {(0, 0)}, r ≥ g

i
. Given that r′ > r ≥ g

i
,

(r′, s′) ∈ Fi(D′
i) and (g

i
, s2) ∈ Fi(D′

i) for some s2, it is straightforward to see that,
by L-convexity, there exists s3 such that (r, s3) ∈ Fi(D′

i). Since (r, s′) ∈ Fi(Di) and
s′ ≤

∣∣D′
i

∣∣, by non-diminishing favorability in donors, there exists s4 ≥ s′ such that
(r, s4) ∈ Fi(D′

i). As (r′, s′) ∈ Fi(D′
i), r′ > r and s′ ≤ s4, it follows from Condition 2 in

Assumption 1 that (r′ − 1, s′) ∈ Fi(D′
i).

We introduce new machinery to prove the donor monotonicity of f . In particular,
we will construct extended problems in which the blood bank inventory is represented
as a donor set, each blood type has a replica and there are some new dummy agents.
Such a construction serves two purposes: it helps us represent allocations as matchings,
which specify the donors that each patient receives blood from; it allows us to focus
on the simple case where no patient receives blood from her own compatible donors.

First, we treat the blood bank b as a pseudo patient and introduce a donor set for it. It
has a set of (volunteer non-remunerated) donors Db, where for each blood type X ∈ B
the blood bank has vX donors. That is, for each X ∈ B,

∣∣{d ∈ Db : βd = X}
∣∣ = vX.

Then, for each blood type X ∈ B, we construct a dummy blood type X̂. Let B̂ =

B ∪ {X̂ : X ∈ B}. Define a compatibility relation Ĉ as follows: for each X ∈ B,

Ĉ(X) = C(X) ∪
{

Ŷ : Y ∈ C(X)
}

and Ĉ(X̂) = {X}.

For each X ∈ B, we construct a dummy patient iX̂ and her (fixed) set of dummy
donors DiX̂

such that

βiX̂
= βd = X̂ for every d ∈ DiX̂

, and

niX̂
=
∣∣DiX̂

∣∣ = ∑
i∈I

ni.

Moreover, let g
iX̂

= 0, and her feasible schedule set be

FiX̂
(DiX̂

) =
{
(r, s) ∈ Z2

+ : s = r ≤ niX̂

}
.
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For any problem D (under B and C), we use D̂ to represent the corresponding ex-
tended problem (under B̂ and Ĉ), after we treat the blood bank as a pseudo patient
and its inventory as a donor set, and add the dummy patients and the dummy donors
to the problem D.

Given an extended problem D̂, let Î = I ∪ {b} ∪ {iX̂}X∈B and D̂ =
⋃

i∈ Î Di. From
now on in this proof, we refer to each i ∈ Î as a patient (in reality it can be a real patient,
a dummy patient, or the blood bank) and each d ∈ D̂ as a donor (it can be a real donor,
a dummy donor, or a unit of blood in the bank’s inventory). A(n) (auxiliary) matching
is a function M : Î → 2D̂, where the match of every patient i ∈ Î, M(i), is denoted as
Mi by a slight abuse of notation, such that

1. Mi ∩ Mj = ∅ for every i, j ∈ Î with i ̸= j, and
⋃

i∈ Î Mi = D̂,

2. for every i ∈ Î \ {b} and d ∈ Mi \ Di, βd ∈ Ĉ(βi), and

3. for every i ∈ Î \ {b}, (
∣∣Mi \ Di

∣∣, ∣∣Di \ Mi
∣∣) ∈ Fi(Di).

Let M(D̂) be the set of all the matchings for D̂. Every (feasible) allocation α ∈
A(D) in the problem D is associated with a matching M ∈ M(D̂) in its extended
problem D̂ and vice versa, as shown in the proof of Lemma A.3 below.49 In particular,
the match of a patient i ∈ Î \ {b} consists of two parts:

• The first part Mi \ Di is the set of donors that she receives blood from. These
donors necessarily belong to other patients, and the blood types of these donors
are compatible with patient i (Condition 2 in the definition of a matching).

• The second part Mi ∩ Di is the set of her own donors who end up not donating.
They are matched back with patient i.50

Therefore, patient i never receives blood from her own donors in a matching. Al-
though this may not be the case in an allocation, we introduced the dummy patients
and their dummy donors to account for this possibility. If in an allocation a patient
i ∈ I receives blood from one of her own donors, this is represented in a matching in
the following manner:51

• this donor d ∈ Di is matched with the dummy patient induced by her blood type,
i
β̂d

,

49As mentioned earlier, since F is fixed, we drop it from the arguments of the set of allocations (and
the set of matchings as well). That is, we write A(D) instead of A(F , D), with a slight abuse of notation.

50Similarly, the blood bank b receives donations from the donors Mb \ Db, while keeping the donors
Mb ∩ Db.

51See the proof of Lemma A.3 for the details of this construction.
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• patient i is matched with one of the dummy donors of this dummy patient, i.e.,
with some d′ ∈ Di

β̂d
, in return.

As a result, the set of donors of any patient i ∈ Î \ {b} who actually donate in a match-
ing M is Di \ Mi. Therefore, (

∣∣Mi \ Di
∣∣, ∣∣Di \ Mi

∣∣) has to be in the feasible schedule set
Fi(Di) (Condition 3 in the definition of a matching).

The analogue of a mechanism in the extended problems is a rule, which is a func-
tion F that maps each extended problem D̂ to a matching F(D̂) ∈ M(D̂). A rule F is
donor monotonic if for any D, D′ and i ∈ I such that D′

i ⊆ Di and D′
j = Dj for every

j ∈ I \ {i}, we have ∣∣Fi(D̂) \ Di
∣∣ ≥ ∣∣Fi(D̂′) \ D′

i
∣∣.52

We define a rule that is the counterpart of the weighted utilitarian mechanism f
with respect to w. For each extended problem D̂ and matching M ∈ M(D̂), define

Û(M) =∑
i∈I

(
wi · ui

[∣∣Mi \ Di
∣∣, ∣∣Di \ Mi

∣∣])
+ ub

[(∣∣{d ∈ Mb : βd ∈ {X, X̂}
}∣∣)

X∈B
, ∑

i∈I

∣∣Mi \ Di
∣∣]

which is the weighted sum of the utilities of I ∪ {b} under M and w, after the type X̂
blood received by b is counted as type X blood, for each X ∈ B. Then let F be a rule
that maximizes such weighted sum of utilities, i.e., for every extended problem D̂,

F(D̂) ∈ arg max
M∈M(D̂)

Û(M).

Given a problem D, let ϕ(α) denote the schedule profile induced by an allocation
α ∈ A(D), and ϕ(M) denote the schedule profile (for I ∪ {b}) induced by a matching
M ∈ M(D̂), i.e.,

ϕ(M) =
((∣∣Mi \ Di

∣∣, ∣∣Di \ Mi
∣∣)

i∈I ,
(∣∣{d ∈ Mb : βd ∈ {X, X̂}

}∣∣)
X∈B

)
.

Then, the following result implies that to finish the proof of Theorem 2, it is sufficient
to show that the rule F is donor monotonic.

Lemma A.3 For every problem D, ϕ
(

f (D)
)
= ϕ

(
F(D̂)

)
.

Proof of Lemma A.3. Consider any problem D. By the construction of f and F, to
prove ϕ

(
f (D)

)
= ϕ

(
F(D̂)

)
, we only need to show that (1) for every α ∈ A(D), there is

M ∈ M(D̂) such that ϕ(α) = ϕ(M), and (2) for every M ∈ M(D̂), there is α ∈ A(D)

52Note that we do not consider manipulations by the dummy patients as their donor sets are fixed.
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such that ϕ(M) = ϕ(α). We show this in the following two parts.
Part 1. Let α ∈ A(D). Consider the extended problem D̂, and any blood type

X ∈ B. Since
∣∣DiX̂

∣∣ = ∑j∈I nj, there exists a collection of disjoint donor sets{
MX̂

j
}

j∈I : X∈C(β j)
such that for every j ∈ I with X ∈ C(β j), MX̂

j ⊆ DiX̂
and

∣∣MX̂
j

∣∣ =
αX(j).

Moreover, since

∑
j∈I : X∈C(β j)

αX(j) + αX(b) = vX + ∑
d∈⋃j∈I Dj : βd=X

α(d),

the donors

{d ∈ Db : βd = X} ∪ {d ∈
⋃
j∈I

Dj : βd = X, α(d) = 1}

can be put into two disjoint sets MX
iX̂

and MX
b such that

∣∣MX
iX̂

∣∣ = ∑j∈I : X∈C(β j)

∣∣MX̂
j

∣∣,
and

∣∣MX
b

∣∣ = αX(b).
Then we construct a matching M for D̂ as follows:

• for each j ∈ I, Mj =
(⋃

X∈C(β j)
MX̂

j
)
∪
{

d ∈ Dj : α(d) = 0
}

,

• for each X ∈ B, MiX̂
= MX

iX̂
∪
(

DiX̂
\
(⋃

j∈I : X∈C(β j)
MX̂

j
))

, and

• Mb =
⋃

X∈B MX
b .

Therefore, each patient j ∈ I is matched with αX(j) dummy donors of type X̂ for every
X ∈ C(β j) (recall that for the extended problem, X̂ ∈ Ĉ(β j)), and j’s own donor d is
matched with j if and only if α(d) = 0. Moreover, for each dummy patient iX̂, the
number of X donors from I ∪ {b} matched with her is equal to the number of her X̂
donors that are not matched with her (recall that Ĉ(X̂) = {X}). Finally, b is matched
with αX(b) donors of each type X ∈ B. Hence, M is a well-defined matching for D̂
and ϕ(α) = ϕ(M).

Part 2. On the other hand, let M ∈ M(D̂). Construct α as follows:

• for each j ∈ I and X ∈ C(β j), let αX(j) =
∣∣{d ∈ Mj \ Dj : βd ∈ {X, X̂}

}∣∣,
• for each j ∈ I and d ∈ Dj, let α(d) = 0 if d ∈ Mj, and α(d) = 1 if d /∈ Mj, and

• for each X ∈ B, let αX(b) =
∣∣{d ∈ Mb : βd ∈ {X, X̂}

}∣∣.
If α is an allocation for D, then it is straightforward to see that ϕ(M) = ϕ(α). To
show that α is a well-defined allocation, we only need to verify the market clearing
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conditions: for any blood type X ∈ B,

∑
j∈I : X∈C(β j)

αX(j) + αX(b)

= ∑
j∈I : X∈C(β j)

∣∣{d ∈ Mj \ Dj : βd = X}
∣∣+ ∣∣{d ∈ Mb : βd = X}

∣∣+ ∑
j∈I : X∈C(β j)

∣∣Mj ∩ DiX̂

∣∣
+
∣∣Mb ∩ DiX̂

∣∣
= ∑

j∈I : X∈C(β j)

∣∣{d ∈ Mj \ Dj : βd = X}
∣∣+ ∣∣{d ∈ Mb : βd = X}

∣∣+ ∣∣{d ∈ MiX̂
: βd = X}

∣∣
= ∑

j∈I

∣∣{d ∈ Dj \ Mj : βd = X}
∣∣+ ∣∣{d ∈ Db : βd = X}

∣∣
= ∑

d∈⋃j∈I Dj : βd=X
α(d) + vX

where the second equality follows from the construction of FiX̂
(DiX̂

), as well as the
fact that Ĉ(X̂) = {X}.

The proof of the donor monotonicity of the rule F relies on comparing two match-
ings for two extended problems and constructing two new ones based on the differ-
ences between the matches of the patients, respectively. We introduce the following
graph theoretical concepts that are central to the proof.

Let D̂ and D̂′ be two extended problems such that D′
i ⊆ Di for every i ∈ I. For

ease of exposition we also write D′
iX̂

= DiX̂
for every X ∈ B and D′

b = Db. Given a

matching M for D̂ and a matching M′ for D̂′, a cycle from M to M′ is a directed graph
of patients and donors in which each patient/donor points to the next donor/patient,
and is denoted as a list C = (i1, d1, . . . , it̄, dt̄), t̄ ≥ 2, such that for each t ∈ {1, . . . , t̄} (let
it̄+1 = i1 and d0 = dt̄):

1. it ∈ Î, dt ∈ M′
it \ Mit and dt ∈ Mit+1 .

2. If it ̸= b, dt−1 ∈ Dit , and dt /∈ Dit , then

(
∣∣Mit \Dit

∣∣+ 1,
∣∣Dit \ Mit

∣∣+ 1) ∈ Fit(Dit) and (
∣∣M′

it \D′
it

∣∣− 1,
∣∣D′

it \ M′
it

∣∣− 1) ∈ Fit(D′
it).

3. If it ̸= b, dt−1 /∈ Dit , and dt ∈ Dit , then

(
∣∣Mit \Dit

∣∣− 1,
∣∣Dit \ Mit

∣∣− 1) ∈ Fit(Dit) and (
∣∣M′

it \D′
it

∣∣+ 1,
∣∣D′

it \ M′
it

∣∣+ 1) ∈ Fit(D′
it).

4. If it = it′ = i for some t′ ̸= t, then i ̸= b, and either (i) dt, dt−1 ∈ Di and
dt′ , dt′−1 /∈ Di, or (ii) dt, dt−1 /∈ Di and dt′ , dt′−1 ∈ Di.

In a cycle C from M to M′, each patient points to a donor that she is matched with
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Figure A.11: Suppose that I = {1, 2, 3}, with β1 = A, β2 = B and β3 = O, D̂ = D̂′, and the
donor sets are given by D1 = {B1}, D2 = {A2, O2}, D3 = {B3} and Db = ∅, where a type-X
donor of a patient i is denoted as Xi. For simplicity, we omit the dummy patients and dummy
blood types. For every i ∈ I, ni = 1, g

i
= 0 and the exchange rate is one-for-one. Assume

ABO-identical transfusion. Consider the following two matchings M and M′: M1 = {B1},
M2 = {A2, B3}, M3 = {O2} and Mb = ∅; M′

1 = {A2}, M′
2 = {O2, B1}, M′

3 = {B3} and
M′

b = ∅. The above graph gives a cycle C from M to M′, and we have M + C = M′ and
M′ − C = M.

under M′ but not under M, while each donor points to the patient that she is matched
with under M. Note that each donor in the cycle must be in both extended problems,
D̂ and D̂′. Starting from the base matching M, we can assign each patient in the cycle
the donor she points to (who is one of her M′ matches) instead of the donor she is
pointed by (who is one of her M matches). That is, for each t ∈ {1, . . . , t̄}, add dt

to Mit and remove dt−1 from Mit . Condition 1 above guarantees that this leads to a
well-defined function, which we denote as M + C and satisfies Conditions 1 and 2 in
the definition of a matching (for D̂). The patients involved in the cycle may not be
distinct. But Condition 4 above says that if a patient i ∈ Î appears twice in the cycle,
then i ̸= b, and her schedule is not affected by the exchanges, i.e., the amount of blood
received and the amount of blood supplied remain the same. Note that this condition
also implies that any patient cannot appear more than twice in the cycle. Finally, if a
patient i ∈ Î \ {b} is assigned a different schedule under M + C than under M, then
she appears only once in the cycle, and she either receives one more unit and supplies
one more unit, or receives one less unit and supplies one less unit. Then Conditions
2 and 3 above imply Condition 3 in the definition of a matching. Therefore M + C is
a matching for D̂. Similarly, we can instead start from M′ and assign each patient in
the cycle the donor she is pointed by (who is one of her M matches) instead of the
donor she points to (who is one of her M′ matches). That is, for each t ∈ {1, . . . , t̄},
add dt−1 to M′

it and remove dt from M′
it . These exchanges also lead to a well-defined

matching for D̂′, denoted as M′ −C. In Figure A.11, we give an example of a cycle and
the construction of new matchings using this cycle.

It is wise to note that the cycle operations do not necessarily make all patients
involved better off or worse off. Instead, they generate new matchings that are closer
to each other in terms of the matches of the patients.
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Another concept similar to a cycle is a chain. A chain from M to M′ is a list C =

(i1, d1, . . . , it̄−1, dt̄−1, it̄), t̄ ≥ 2, such that

1. For every t ∈ {1, . . . , t̄}, it ∈ Î. Moreover, i1 ̸= it̄, and it = b implies t ∈ {1, t̄}.

2. For every t ∈ {1, . . . , t̄ − 1}, dt ∈ M′
it \ Mit and dt ∈ Mit+1 .

3. For every t ∈ {2, . . . , t̄ − 1}, if dt−1 ∈ Dit and dt /∈ Dit , then

(
∣∣Mit \Dit

∣∣+ 1,
∣∣Dit \ Mit

∣∣+ 1) ∈ Fit(Dit) and (
∣∣M′

it \D′
it

∣∣− 1,
∣∣D′

it \ M′
it

∣∣− 1) ∈ Fit(D′
it).

4. For every t ∈ {2, . . . , t̄ − 1}, if dt−1 /∈ Dit , and dt ∈ Dit , then

(
∣∣Mit \Dit

∣∣− 1,
∣∣Dit \ Mit

∣∣− 1) ∈ Fit(Dit) and (
∣∣M′

it \D′
it

∣∣+ 1,
∣∣D′

it \ M′
it

∣∣+ 1) ∈ Fit(D′
it).

5. If it̄ ̸= b, then

(
∣∣Mit̄ \Dit̄

∣∣, ∣∣Dit̄ \ Mit̄

∣∣+ 1) ∈ Fit̄(Dit̄) and (
∣∣M′

it̄
\D′

it̄

∣∣, ∣∣D′
it̄
\ M′

it̄

∣∣− 1) ∈ Fit̄(D′
it̄
)

when dt̄−1 ∈ Dit̄ , and

(
∣∣Mit̄ \Dit̄

∣∣− 1,
∣∣Dit̄ \ Mit̄

∣∣) ∈ Fit̄(Dit̄) and (
∣∣M′

it̄
\D′

it̄

∣∣+ 1,
∣∣D′

it̄
\ M′

it̄

∣∣) ∈ Fit̄(D′
it̄
)

when dt̄−1 /∈ Dit̄ .

6. If i1 ̸= b, then

(
∣∣Mi1 \Di1

∣∣, ∣∣Di1 \ Mi1

∣∣− 1) ∈ Fi1(Di1) and (
∣∣M′

i1 \D′
i1

∣∣, ∣∣D′
i1 \ M′

i1

∣∣+ 1) ∈ Fi1(D′
i1)

when d1 ∈ Di1 , and

(
∣∣Mi1 \Di1

∣∣+ 1,
∣∣Di1 \ Mi1

∣∣) ∈ Fi1(Di1) and (
∣∣M′

i1 \D′
i1

∣∣− 1,
∣∣D′

i1 \ M′
i1

∣∣) ∈ Fi1(D′
i1)

when d1 /∈ Di1 .

7. If it = it′ = i for some t, t′ such that 1 < t < t′ < t̄, then either (i) dt, dt−1 ∈ Di

and dt′ , dt′−1 /∈ Di, or (ii) dt, dt−1 /∈ Di and dt′ , dt′−1 ∈ Di.

If it̄ = it = i for some t such that 1 < t < t̄, then either (i) dt, dt−1 ∈ Di and
dt̄−1 /∈ Di, or (ii) dt, dt−1 /∈ Di and dt̄−1 ∈ Di.

If i1 = it = i for some t such that 1 < t < t̄, then either (i) dt, dt−1 ∈ Di and
d1 /∈ Di, or (ii) dt, dt−1 /∈ Di and d1 ∈ Di.

A chain differs from a cycle as the last element of a chain is a patient and she does
not point to any donor. We refer to this patient, it̄, as the head of the chain. As a result
there is no donor pointing back to i1 whom we refer to as the tail of the chain. The
head and the tail of the chain cannot be the same, and b can only appear as either the
head or the tail (Condition 1).
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Figure A.12: Suppose that I = {1, 2, 3} with β1 = β2 = A and β3 = B. The donor sets in two
extended problems D̂ and D̂′ are given by D1 = {B1}, D′

1 = ∅, D2 = D′
2 = ∅, D3 = D′

3 = {A3}
and Db = {Ab, A′

b, Bb}, where Xi (or X′
i) denotes a type-X donor of i. For simplicity, we omit

the dummy patients and dummy blood types. For every i ∈ I, ni = 2, g
i
= 0 and the feasible

schedules are such that the amount supplied does not exceed the amount received. Assume
ABO-identical transfusion. Consider a matching M for D̂, where M1 = {A′

b}, M2 = {Ab},
M3 = {A3, B1, Bb} and Mb = ∅, and a matching M′ for D̂′, where M′

1 = {Ab, A′
b}, M′

2 = {A3},
M′

3 = {Bb} and M′
b = ∅. There does not exist a cycle from M to M′, but the above graph

gives a chain C from M to M′. Then M + C is a matching for D̂, where (M + C)1 = {Ab, A′
b},

(M + C)2 = {A3}, (M + C)3 = {B1, Bb} and (M + C)b = ∅. Moreover, M′ − C is a matching
for D̂′, where (M′−C)1 = {A′

b}, (M′−C)2 = {Ab}, (M′−C)3 = {A3, Bb} and (M′−C)b = ∅.

Similar to the case of a cycle, given a chain C from M to M′, we can construct a new
matching, denoted as M + C, for D̂ as follows: starting from M, for each t such that
1 ≤ t ≤ t̄ − 1, remove dt from Mit+1 and add it to Mit . Condition 7 above implies that
any patient cannot appear more than twice in a chain. Moreover, if a patient i ∈ Î \ {b}
is assigned a different schedule under M + C than under M, and she appears twice in
the chain, then she must appear exactly once as the head or the tail, and only this
appearance as the head or the tail affects her schedule. Then Conditions 3, 4, 5, and 6
ensure that the schedule of each patient i ∈ Î \ {b} under M + C is indeed feasible. In
particular, Conditions 3 and 4 are similar to those of a cycle, while Conditions 5 and 6
deal with special considerations for the head and tail patients. On the other hand, we
can also construct a new matching, denoted as M′ −C, for D̂′ as follows: starting from
M′, for each 1 ≤ t ≤ t̄ − 1, remove dt from M′

it and add it to M′
it+1

. See Figure A.12 for
an example of a chain and how new matchings are constructed using this chain.

Unlike in a cycle addition or removal, in the chain operations the number of donors
that a patient is matched with only stays the same if she is neither the head nor the tail.
Thus, the chain operations change the overall balance of the base matching, while cycle
operations do not. The cycle operations would be all we needed if we were dealing
with the one-for-one exogenous exchange rate. However, the chain operations play an
important role in the general case with endogenously determined exchange rates.

The following observation is straightforward to show from the construction.

Observation 6 Let C be a cycle or a chain from M ∈ M(D̂) to M′ ∈ M(D̂′). For every
i ∈ Î \ {b}, we have∣∣(M + C)i \ Di

∣∣− ∣∣Mi \ Di
∣∣ = ∣∣M′

i \ D′
i
∣∣− ∣∣(M′ − C)i \ D′

i
∣∣ ∈ {−1, 0, 1},
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and ∣∣Di \ (M + C)i
∣∣− ∣∣Di \ Mi

∣∣ = ∣∣D′
i \ M′

i
∣∣− ∣∣D′

i \ (M′ − C)i
∣∣ ∈ {−1, 0, 1}.

For every X ∈ B̂,∣∣{d ∈ (M + C)b : βd = X}
∣∣− ∣∣{d ∈ Mb : βd = X}

∣∣
=
∣∣{d ∈ M′

b : βd = X}
∣∣− ∣∣{d ∈ (M′ − C)b : βd = X}

∣∣ ∈ {−1, 0, 1}.

In the remaining of the proof of Theorem 2, we show two lemmata. The first one,
Lemma A.4, is the most crucial result in the proof of the theorem. It gives a general
necessary condition for any rule that is not donor monotonic. Using this result, we
show that F is donor monotonic (Lemma A.5), which concludes the proof.

Lemma A.4 Consider any D, D′ and i ∈ I such that D′
i ⊆ Di,

∣∣Di \ D′
i

∣∣ = 1, and D′
j = Dj

for every j ∈ I \ {i}. If M ∈ M(D̂), M′ ∈ M(D̂′), and
∣∣M′

i \ D′
i

∣∣ > ∣∣Mi \ Di
∣∣, then there

exists a cycle or a chain C from M to M′. Moreover, for all j ∈ Î \ {b},∣∣(M + C)j \ Dj
∣∣ > ∣∣Mj \ Dj

∣∣ implies
∣∣M′

j \ D′
j
∣∣ > ∣∣Mj \ Dj

∣∣, and∣∣(M + C)j \ Dj
∣∣ < ∣∣Mj \ Dj

∣∣ implies
∣∣M′

j \ D′
j
∣∣ < ∣∣Mj \ Dj

∣∣.
Proof of Lemma A.4. Consider two problems D, D′ such that for some patient i1 ∈ I,
D′

i1
⊆ Di1 ,

∣∣Di1 \D′
i1

∣∣ = 1, and D′
i = Di for every i ∈ I \ {i1}. Suppose that M ∈ M(D̂),

M′ ∈ M(D̂′), and
∣∣M′

i1
\ D′

i1

∣∣ > ∣∣Mi1 \ Di1

∣∣. We first show the existence of a cycle or a
chain from M to M′.

Since
∣∣M′

i1
\ D′

i1

∣∣ > ∣∣Mi1 \ Di1

∣∣, there exists a donor d1 /∈ Di1 such that d1 ∈ M′
i1
\

Mi1 . We will iteratively construct a finite directed graph of patients and donors using
the matchings M and M′, which is denoted as (i1, d1, i2, d2, . . .). It starts with patient
i1, ends with either a patient or a donor, and each node in the list points to the next
node.

We refer to this as the pointing procedure from M to M′:

Step 1: Let i1 point to d1, and d1 point to i2 ∈ Î such that d1 ∈ Mi2 . If i2 = b then
we stop at i2 at Step 1, otherwise we continue with Step 2.

Step t ≥ 2: At the end of Step t − 1, patient it ∈ Î \ {i1, b} is pointed by dt−1 where
dt−1 ∈ Mit \ M′

it .

1. If dt−1 ∈ Dit : We have two cases:

(a) If there exists d ∈ Dit such that d ∈ M′
it \ Mit : Then at Step t, let it point
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to dt = d, and dt point to it+1 such that dt ∈ Mit+1 .53

(b) If there does not exist d ∈ Dit such that d ∈ M′
it \ Mit : Then

∣∣D′
it \ M′

it

∣∣ >∣∣Dit \ Mit
∣∣. We have two subcases:

i. If
∣∣M′

it \ D′
it

∣∣ > ∣∣Mit \ Dit
∣∣: Then there exists dt /∈ Dit such that

dt ∈ M′
it \ Mit . At Step t, let it point to dt, and dt point to it+1 such

that dt ∈ Mit+1 .

ii. If
∣∣M′

it \ D′
it

∣∣ ≤ ∣∣Mit \ Dit
∣∣: Then it does not point and stop at it at

Step t − 1.

2. If dt−1 /∈ Dit : We have two cases:

(a) If there exists d /∈ Dit such that d ∈ M′
it \ Mit : Then at Step t, let it point

to dt = d, and dt point to it+1 such that dt ∈ Mit+1 .

(b) If there does not exist d /∈ Dit such that d ∈ M′
it \ Mit : Then

∣∣M′
it \ D′

it

∣∣ <∣∣Mit \ Dit
∣∣. We have two subcases:

i. If
∣∣D′

it \ M′
it

∣∣ < ∣∣Dit \ Mit
∣∣: Then there exists dt ∈ Dit such that

dt ∈ M′
it \ Mit . At Step t, let it point to dt, and dt point to it+1 such

that dt ∈ Mit+1 .

ii. If
∣∣D′

it \ M′
it

∣∣ ≥ ∣∣Dit \ Mit
∣∣: Then it does not point and stop at it at

Step t − 1.

If dt is constructed, it = it /∈ {i1, b} for some t < t, and neither

• dt, dt−1 ∈ Dit and dt, dt−1 /∈ Dit , nor

• dt, dt−1 /∈ Dit and dt, dt−1 ∈ Dit

holds, then stop at donor dt at Step t and remove it+1 from the graph construction.

If dt is constructed, the procedure does not stop at dt, and it+1 ∈ {i1, b}, then stop
at it+1 at Step t.

Otherwise, continue with Step t + 1.

Note that, according to the above construction, it ̸= it+1 for any t. Moreover, the
procedure stops under four circumstances:

• when some i /∈ {i1, b} has appeared before, and the following is not true: she is
pointed by and points to her own donors in one instance, and is pointed by and
points to donors who are not her own in the other instance,

53Generally for each t ≥ 1, such it+1 always exists, since dt ∈ D̂′ ⊆ D̂.
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• when i1 is pointed,

• when b is pointed,

• when some i /∈ {i1, b} does not point.

The first circumstance implies that any patient can be pointed at most three times in
the procedure. Hence, the procedure always stops in a finite number of steps.

We consider the following four cases based on these circumstances. Case 1 and
Case 2 cover the first two circumstances in order and show the existence of a cycle
in each case. Case 3 covers the third and the fourth circumstances together when i1
does not supply more blood under M′ than under M, and shows the existence of a
chain. Finally, Case 4 is the most involved case. It covers the third and the fourth
circumstances together when i1 supplies more blood under M′ than under M, and
shows the existence of a cycle or a chain.

Case 1. The procedure stops at dt̄ at Step t̄.
Then for some t < t̄, it = it̄ /∈ {i1, b} and neither of the following is true:

1. dt, dt−1 ∈ Dit and dt̄, dt̄−1 /∈ Dit .

2. dt, dt−1 /∈ Dit and dt̄, dt̄−1 ∈ Dit .

We show that (it, dt, . . . , it̄−1, dt̄−1) is a cycle from M to M′.
First, for any t such that t < t ≤ t̄ − 1, it /∈ {i1, b}, since otherwise the procedure

stops at it at Step t − 1. It follows that Dit = D′
it for every t such that t ≤ t ≤ t̄ − 1. By

the construction of the pointing procedure from M to M′, Condition 1 in the definition
of a cycle is satisfied. Next, we show Condition 2 and Condition 3.

First, consider any t such that t < t ≤ t̄ − 1. If dt−1 ∈ Dit and dt /∈ Dit , then by the
construction, we have

∣∣M′
it \ D′

it

∣∣ > ∣∣Mit \ Dit
∣∣ and

∣∣D′
it \ M′

it

∣∣ > ∣∣Dit \ Mit
∣∣. Since

(
∣∣Mit \ Dit

∣∣, ∣∣Dit \ Mit
∣∣) ∈ Fit(Dit) and (

∣∣M′
it \ D′

it

∣∣, ∣∣D′
it \ M′

it

∣∣) ∈ Fit(D′
it) = Fit(Dit),

it follows from Assumption 1 that

(
∣∣Mit \Dit

∣∣+ 1,
∣∣Dit \ Mit

∣∣+ 1) ∈ Fit(Dit) and (
∣∣M′

it \D′
it

∣∣− 1,
∣∣D′

it \ M′
it

∣∣− 1) ∈ Fit(D′
it).

Similarly, if dt−1 /∈ Dit and dt ∈ Dit , then by the construction we have
∣∣M′

it \ D′
it

∣∣ <∣∣Mit \ Dit
∣∣ and

∣∣D′
it \ M′

it

∣∣ < ∣∣Dit \ Mit
∣∣. It follows from Assumption 1 that

(
∣∣Mit \Dit

∣∣− 1,
∣∣Dit \ Mit

∣∣− 1) ∈ Fit(Dit) and (
∣∣M′

it \D′
it

∣∣+ 1,
∣∣D′

it \ M′
it

∣∣+ 1) ∈ Fit(D′
it).

Second, consider it. Suppose that dt̄−1 ∈ Dit and dt /∈ Dit . Then either dt−1 ∈ Dit

or dt̄ /∈ Dit , as the procedure stops at the donor dt̄. Since we have either (i) dt̄−1 ∈ Dit
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and dt̄ /∈ Dit , or (ii) dt−1 ∈ Dit and dt /∈ Dit , by the construction,∣∣M′
it \ D′

it

∣∣ > ∣∣Mit \ Dit
∣∣ and

∣∣D′
it \ M′

it

∣∣ > ∣∣Dit \ Mit
∣∣.

Then by Assumption 1,

(
∣∣Mit \Dit

∣∣+ 1,
∣∣Dit \ Mit

∣∣+ 1) ∈ Fit(Dit) and (
∣∣M′

it \D′
it

∣∣− 1,
∣∣D′

it \ M′
it

∣∣− 1) ∈ Fit(D′
it).

That is, Condition 2 in the definition of a cycle is satisfied for it. By similar arguments,
it can be shown that Condition 3 is also satisfied for it.

It remains to show Condition 4. If it = it′ and t < t < t′ ≤ t̄ − 1, then either
(i) dt, dt−1 ∈ Dit and dt′ , dt′−1 /∈ Dit , or (ii) dt, dt−1 /∈ Dit and dt′ , dt′−1 ∈ Dit , since
otherwise the procedure stops at dt′ at Step t′. Finally, suppose that it = it and t + 1 <

t < t̄ − 1. Since the procedure does not stop at dt at Step t, we have either

(i) dt, dt−1 ∈ Dit and dt, dt−1 /∈ Dit , or,

(ii) dt, dt−1 /∈ Dit and dt, dt−1 ∈ Dit .

Consider (i) first. Recall that it = it = it̄. If dt̄−1 /∈ Dit , then by the construction
of the pointing procedure from M to M′, dt /∈ Dit implies that there exists a donor
in M′

it \ Mit that is not her own, and thus, she should again point to such a donor
when she appears for the third time as it̄: dt̄ /∈ Dit . So we have dt̄, dt̄−1 /∈ Dit and
dt, dt−1 ∈ Dit , which contradicts to Case 1’s assumption. Therefore, dt, dt̄−1 ∈ Dit and
dt, dt−1 /∈ Dit . Similarly, if (ii) is true, then dt̄−1 /∈ Dit , since otherwise dt ∈ Dit implies
dt̄ ∈ Dit , leading to a contradiction. Hence, dt, dt̄−1 /∈ Dit and dt, dt−1 ∈ Dit . This
shows that Condition 4 holds, as well.

Case 2. The procedure stops at it̄ at Step t̄ − 1 and it̄ = i1.
To show that (i1, d1, . . . , it̄−1, dt̄−1) is a cycle from M to M′, where d1 /∈ Di1 , we

verify Condition 2 in the definition of a cycle when dt̄−1 ∈ Di1 . Since dt̄−1 ∈ Mi1 and
dt̄−1 ∈ M′

it̄−1
,
∣∣Di1 \ Mi1

∣∣ < ∣∣Di1

∣∣ and
∣∣D′

i1
\ M′

i1

∣∣ > 0. Then given that
∣∣M′

i1
\ D′

i1

∣∣ >∣∣Mi1 \ Di1

∣∣, by Assumption 2, we have

(
∣∣Mi1 \Di1

∣∣+ 1,
∣∣Di1 \ Mi1

∣∣+ 1) ∈ Fi1(Di1) and (
∣∣M′

i1 \D′
i1

∣∣− 1,
∣∣D′

i1 \ M′
i1

∣∣− 1) ∈ Fi1(D′
i1).

The other conditions on the cycle can be shown similarly as in Case 1.

Case 3. The procedure stops at it̄ at Step t̄ − 1, it̄ ̸= i1, and
∣∣D′

i1
\ M′

i1

∣∣ ≤ ∣∣Di1 \ Mi1

∣∣.
Then either it̄ = b or in the procedure the patient it̄ ∈ Î \ {i1, b} does not point.

We show that (i1, d1, . . . , dt̄−1, it̄) is a chain from M to M′. First, it ̸= b for any t ∈
{2, . . . , t̄ − 1} since otherwise the procedure stops at an earlier step. Second, we verify
Condition 5 in the definition of a chain. Suppose that it̄ ̸= b. If dt̄−1 ∈ Dit̄ , then by
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the construction,
∣∣D′

it̄
\ M′

it̄

∣∣ > ∣∣Dit̄ \ Mit̄

∣∣ and
∣∣M′

it̄
\ D′

it̄

∣∣ ≤ ∣∣Mit̄ \ Dit̄

∣∣. Given that
Dit̄ = D′

it̄
, by Assumption 1,

(
∣∣Mit̄ \ Dit̄

∣∣, ∣∣Dit̄ \ Mit̄

∣∣+ 1) ∈ Fit̄(Dit̄) and (
∣∣M′

it̄
\ D′

it̄

∣∣, ∣∣D′
it̄
\ M′

it̄

∣∣− 1) ∈ Fit̄(D′
it̄
).

The case that dt̄−1 /∈ Dit̄ can be shown similarly. Next, Condition 6 follows from the
fact that

∣∣M′
i1
\ D′

i1

∣∣ > ∣∣Mi1 \ Di1

∣∣ and
∣∣D′

i1
\ M′

i1

∣∣ ≤ ∣∣Di1 \ Mi1

∣∣, as well as Assumption
2. Finally, we verify Condition 7 for i1 and it̄. For any t ∈ {2, . . . , t̄ − 1}, i1 ̸= it,
since otherwise the procedure stops at an earlier step. Suppose that it̄ = it for some
t ∈ {2, . . . , t̄ − 1}. Then it̄ = it ̸= b. First consider the case that dt̄−1 ∈ Dit . If dt ∈ Dit ,
then, given that dt ∈ M′

it \ Mit , it̄ = it should point to this donor (or some other donor
of her own) at Step t̄, which contradicts to the fact that the pointing procedure stops
at it̄. So dt /∈ Dit . Then dt−1 /∈ Dit , since otherwise it̄ = it should point to dt (or
some other donor that is not her own) at Step t̄. In the case that dt̄−1 /∈ Dit , it can be
similarly shown that dt, dt−1 ∈ Dit . These are the crucial conditions to check; the other
conditions can be shown similarly as in Case 1.

Case 4. The procedure stops at it̄ at Step t̄ − 1, it̄ ̸= i1, and
∣∣D′

i1
\ M′

i1

∣∣ > ∣∣Di1 \ Mi1

∣∣.
In this case, we may not have (

∣∣Mi1 \ Di1

∣∣+ 1,
∣∣Di1 \ Mi1

∣∣) ∈ Fi1(Di1), and hence
(i1, d1, . . . , dt̄−1, it̄) may not be a chain from M to M′.

Let j1 = i1. Since
∣∣D′

j1
\ M′

j1

∣∣ > ∣∣Dj1 \ Mj1

∣∣, there exists a donor c1 ∈ D′
j1

such that
c1 ∈ Mj1 \ M′

j1
. To find a cycle or a chain, we consider the reverse of the previous

construction and use the pointing procedure from M′ to M. It starts with j1 pointing to
c1. Then M and D in the pointing procedure from M to M′ are replaced with M′ and
D′ respectively, and M′ and D′ in the pointing procedure from M to M′ are replaced
with M and D respectively. This pointing procedure from M′ to M constructs another
directed graph of patients and donors, denoted as (j1, c1, j2, c2, . . .), and each node in
the list points to the next node in the list. Compared to the previous procedure, there
are two slight complications.

First, recall that D′
j1
⊆ Dj1 and

∣∣Dj1 \ D′
j1

∣∣ = 1. We refer to the donor in the set
Dj1 \ D′

j1
as the concealed donor. If the concealed donor is pointed by jt at Step t ≥ 2,54

let this donor, ct, point to jt+1 = j1.
Second, there is an additional circumstance in which the procedure stops. At Step

t ≥ 2, if ct is constructed, jt = it /∈ {j1, b} for some t ∈ {2, . . . , t̄ − 1}, and neither

• ct, ct−1 ∈ Djt and dt, dt−1 /∈ Djt , nor

54This can happen in Step t 1.(b)i and Step t 2.(a). Note that the concealed donor does not appear in
the pointing procedure from M to M′.
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• ct, ct−1 /∈ Djt and dt, dt−1 ∈ Djt

holds, then stop at donor ct at Step t and remove jt+1 from the graph construction.
Then the pointing procedure from M′ to M stops under five circumstances, instead

of four:

• when some j ̸∈ {j1, b} has appeared before in the pointing procedure from M′ to
M, and the following is not true: she is pointed by and points to her own donors
in one instance, and is pointed by and points to donors who are not her own in
the other instance,

• when some j ̸∈ {j1, b} has appeared before in the pointing procedure from M to
M′, and in this previous appearance her role is not it̄. Moreover, the following is
not true: she is pointed by and points to her own donors in one instance, and is
pointed by and points to donors who are not her own in the other instance,

• when b is pointed,

• when some j ̸∈ {j1, b} does not point,

• when j1 is pointed.

Due to the first circumstance, the pointing procedure from M′ to M also stops in a
finite number of steps. Since we are seeking a cycle or a chain from M to M′, after the
procedure stops we reverse the orientation of the constructed edges in (j1, c1, j2, c2, . . .).

We consider the following five subcases based on these circumstances. Subcase 4.1
and Subcase 4.2 cover the first two circumstances and show the existence of a cycle
in each subcase. Subcase 4.3 covers the third and the fourth circumstances together
and shows the existence of a cycle or a chain. Subcase 4.4 covers the fifth circumstance
when j1 is not pointed by the concealed donor, and shows the existence of a cycle.
Finally, Subcase 4.5 covers the fifth circumstance when j1 is pointed by the concealed
donor and shows the existence of a cycle or a chain.

Subcase 4.1. The procedure stops at ct at Step t, for some t < t, jt = jt /∈ {j1, b} and
neither of the following is true:

• ct, ct−1 ∈ Djt and ct, ct−1 /∈ Djt .

• ct, ct−1 /∈ Djt and ct, ct−1 ∈ Djt .

Then, after reversing the edges in the second directed graph, (jt, ct−1, . . . , jt+1, ct) is a
cycle from M to M′.
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Subcase 4.2. The procedure stops at ct at Step t, for some t ∈ {2, . . . , t̄ − 1}, it = jt /∈
{j1, b} and neither of the following is true:

• ct, ct−1 ∈ Djt and dt, dt−1 /∈ Djt .

• ct, ct−1 /∈ Djt and dt, dt−1 ∈ Djt .

We construct a cycle using the first directed graph given by the pointing pro-
cedure from M to M′, (i1, d1, . . . , dt̄−1, it̄), and the second directed graph given
by the pointing procedure from M′ to M, (j1, c1, . . . , jt, ct). Recall that j1 = i1
and the orientation of the edges in the second graph should be reversed. Then
(jt, ct−1, . . . , c1, i1, d1, . . . , it−1, dt−1) is a cycle from M to M′.

Subcase 4.3. The procedure stops at jt at Step t − 1, and jt ̸= j1.
Then either jt = b or the patient jt does not point.
If jt = it̄ = b, then (jt, ct−1, . . . , c1, i1, d1, . . . , it̄−1, dt̄−1) is a cycle from M to M′.
If it is not true that jt = it̄ = b, then (jt, ct−1, . . . , c1, i1, d1, . . . , dt̄−1, it̄) is a chain from

M to M′. To see this, we verify jt ̸= it̄ and Condition 6 in the definition of a chain.
First, assume to the contrary, jt = it̄. Then jt = it̄ ∈ Î \ {j1, b}. If dt̄−1 ∈ Dit̄ , then
ct−1 /∈ Dit̄ , since otherwise in the pointing procedure from M′ to M, jt should point
to dt̄−1 (or some other donor of her own) at Step t. However, by the construction of
the two pointing procedures, dt̄−1 ∈ Dit̄ implies

∣∣D′
it̄
\ M′

it̄

∣∣ > ∣∣Dit̄ \ Mit̄

∣∣ and
∣∣M′

it̄
\

D′
it̄

∣∣ ≤ ∣∣Mit̄ \ Dit̄

∣∣, while ct−1 /∈ Dit̄ implies
∣∣M′

it̄
\ D′

it̄

∣∣ > ∣∣Mit̄ \ Dit̄

∣∣ and
∣∣D′

it̄
\ M′

it̄

∣∣ ≤∣∣Dit̄ \ Mit̄

∣∣, contradiction. A similar contradiction can be reached when dt̄−1 /∈ Dit̄ .
Therefore, jt ̸= it̄. Second, consider Condition 6. If jt ̸= b, and ct−1 ∈ Djt , then by the
construction we have

∣∣D′
jt \ M′

jt

∣∣ < ∣∣Djt \ Mjt
∣∣ and

∣∣M′
jt \ D′

jt

∣∣ ≥ ∣∣Mjt \ Djt
∣∣. It follows

from Assumption 1 that

(
∣∣Mjt \ Djt

∣∣, ∣∣Djt \ Mjt
∣∣− 1) ∈ Fjt(Djt) and (

∣∣M′
jt \ D′

jt

∣∣, ∣∣D′
jt \ M′

jt

∣∣+ 1) ∈ Fjt(D′
jt).

The case that ct−1 /∈ Djt can be shown similarly.

Subcase 4.4. The procedure stops at jt at Step t − 1, jt = j1 and ct−1 /∈ Dj1 \ D′
j1

.
Then (jt, ct−1, . . . , j2, c1) is a cycle from M to M′.

Subcase 4.5. The procedure stops at jt at Step t − 1, jt = j1 and ct−1 ∈ Dj1 \ D′
j1

.
Recall that jt = j1 = i1 is the patient who concealed her donor, ct−1. First, we

have jt′ ∈ Î \ {jt, b} for every t′ ∈ {2, . . . , t − 1}, since otherwise the procedure stops
at an earlier step. As jt points to the concealed donor ct−1 /∈ M′

jt , (jt, ct−1, . . . , j2, c1)

is not a cycle from M to M′. However, we can still carry out the exchanges in the list
(jt, ct−1, . . . , j2, c1), starting from M: add ct−1 to Mjt and remove ct−1 from Mjt−1 , . . . ,
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add c1 to Mj2 and remove c1 from Mjt . This leads to a well-defined matching M′′ for
D̂. Since c1, ct−1 ∈ Djt ,

∣∣M′′
jt \ Djt

∣∣ = ∣∣Mjt \ Djt
∣∣ and

∣∣Djt \ M′′
jt

∣∣ = ∣∣Djt \ Mjt
∣∣. That is,

patient jt receives and supplies the same amounts of blood under M′′ and M.
Given that

∣∣M′′
jt \ Djt

∣∣ < ∣∣M′
jt \ D′

jt

∣∣, we can repeat the previous analysis and iden-
tify a cycle or a chain from M′′ to M′, using the pointing procedure from M′′ to M′,
and possibly the pointing procedure from M′ to M′′.

Note that the pointing procedure from M′′ to M′ starts with jt pointing to some
d /∈ Djt with d ∈ M′

jt \ M′′
jt , and the pointing procedure from M′ to M′′ starts with jt

pointing to some c ∈ D′
jt with c ∈ M′′

jt \ M′
jt . Since ct−1 /∈ M′

i for any i ∈ Î, the con-
cealed donor ct−1 is not pointed in the pointing procedure from M′′ to M′. Moreover,
ct−1 ∈ M′′

jt implies that ct−1 is not pointed in the pointing procedure from M′ to M′′.
Given that ct−1 does not appear in either procedure, this recursive Subcase 4.5 is never
reached again, and hence a cycle or a chain C from M′′ to M′ can be found.

It remains to show that C is also a cycle or a chain from M to M′. We will only
consider the case that C is a chain, since the proof for the case that C is a cycle is
similar and simpler. Let C = (ℓ1, a1, . . . , ℓx̄−1, ax̄−1, ℓx̄), where x̄ ≥ 2, a1, . . . , ax̄−1 are
donors, and ℓ1, . . . , ℓx̄ are patients. We verify the conditions in the definition of a chain
from M to M′.

Since C is a chain from M′′ to M′, Condition 1 and Condition 7 are trivially satisfied
for C to be a chain from M to M′. Consider any x ∈ {1, . . . , x̄ − 1}. We have ax ∈
M′

ℓx
\ M′′

ℓx
and ax ∈ M′′

ℓx+1
\ M′

ℓx+1
. Given that M′′ is obtained from M by carrying

out the exchanges in the list (jt, ct−1, . . . , j2, c1), we have ax /∈ Mℓx , since otherwise
ax ∈ Mℓx and ax /∈ M′′

ℓx
imply that ℓx is pointed by ax in the list (jt, ct−1, . . . , j2, c1) and

hence, by the construction of the list, ax /∈ M′
ℓx

. Similarly, we have ax ∈ Mℓx+1 , since
otherwise ax /∈ Mℓx+1 and ax ∈ M′′

ℓx+1
imply that ℓx+1 points to ax ̸= ct−1 in the list and

hence ax ∈ M′
ℓx+1

. Therefore, Condition 2 is satisfied.
To show Conditions 3-6, we need the following result, which follows from the con-

struction of (the reverse of) the list (jt, ct−1, . . . , j2, c1) in the pointing procedure from
M′ to M. It essentially says that the schedule of every patient i ̸= b under M′′ must be
“between” her schedules under M and M′.

Observation 7 For every i ∈ Î \ {b}, if (
∣∣M′′

i \ Di
∣∣, ∣∣Di \ M′′

i

∣∣) ̸= (
∣∣Mi \ Di

∣∣, ∣∣Di \ Mi
∣∣),

then i ̸= jt, and either

•
∣∣M′

i \ D′
i

∣∣ > ∣∣Mi \ Di
∣∣, ∣∣D′

i \ M′
i

∣∣ > ∣∣Di \ Mi
∣∣, and (

∣∣M′′
i \ Di

∣∣, ∣∣Di \ M′′
i

∣∣) =

(
∣∣Mi \ Di

∣∣+ 1,
∣∣Di \ Mi

∣∣+ 1),
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or

•
∣∣M′

i \ D′
i

∣∣ < ∣∣Mi \ Di
∣∣, ∣∣D′

i \ M′
i

∣∣ < ∣∣Di \ Mi
∣∣, and (

∣∣M′′
i \ Di

∣∣, ∣∣Di \ M′′
i

∣∣) =

(
∣∣Mi \ Di

∣∣− 1,
∣∣Di \ Mi

∣∣− 1).

Consider any x ∈ {2, . . . , x̄ − 1} such that ax−1 ∈ Dℓx and ax /∈ Dℓx . Condition 3
is clearly satisfied if (

∣∣M′′
ℓx
\ Dℓx

∣∣, ∣∣Dℓx \ M′′
ℓx

∣∣) = (
∣∣Mℓx \ Dℓx

∣∣, ∣∣Dℓx \ Mℓx

∣∣). Suppose
that (

∣∣M′′
ℓx
\ Dℓx

∣∣, ∣∣Dℓx \ M′′
ℓx

∣∣) ̸= (
∣∣Mℓx \ Dℓx

∣∣, ∣∣Dℓx \ Mℓx

∣∣). Then ℓx ̸= jt. By the
construction of the chain C from M′′ to M′, we have

∣∣M′
ℓx
\ D′

ℓx

∣∣ > ∣∣M′′
ℓx
\ Dℓx

∣∣ and∣∣D′
ℓx
\ M′

ℓx

∣∣ > ∣∣Dℓx \ M′′
ℓx

∣∣. Then by Observation 7,
∣∣M′

ℓx
\ D′

ℓx

∣∣ > ∣∣Mℓx \ Dℓx

∣∣ and∣∣D′
ℓx
\ M′

ℓx

∣∣ > ∣∣Dℓx \ Mℓx

∣∣. Hence it follows from Assumption 1 that Condition 3 is
satisfied. Condition 4 can be shown in a similar manner.

Next, consider Condition 5. Suppose that ℓx̄ ̸= b and ax̄−1 ∈ Dℓx̄ . For simplicity,
denote

• (
∣∣Mℓx̄ \ Dℓx̄

∣∣, ∣∣Dℓx̄ \ Mℓx̄

∣∣) = (r, s),

• (
∣∣M′′

ℓx̄
\ Dℓx̄

∣∣, ∣∣Dℓx̄ \ M′′
ℓx̄

∣∣) = (r′′, s′′), and

• (
∣∣M′

ℓx̄
\ D′

ℓx̄

∣∣, ∣∣D′
ℓx̄
\ M′

ℓx̄

∣∣) = (r′, s′).

Condition 5 is clearly satisfied if (r, s) = (r′′, s′′). Suppose that (r, s) ̸= (r′′, s′′). Then
ℓx̄ ̸= jt. By the construction of the chain C from M′′ to M′, we have s′ > s′′ and r′ ≤ r′′.
Then by Observation 7, r′ > r, s′ > s and (r′′, s′′) = (r + 1, s + 1). Since r′ > r and
r′ ≤ r′′ = r+ 1, we have r′ = r+ 1. By Assumption 1 and the fact that r′ > r and s′ > s,
(r′ − 1, s′ − 1) = (r, s′ − 1) ∈ Fℓx̄(Dℓx̄). Since s′ − 1 ≥ s′′ > s and (r, s) ∈ Fℓx̄(Dℓx̄),
by Assumption 1 again, we have (r, s + 1) ∈ Fℓx̄(Dℓx̄). Finally, (r′, s′ − 1) ∈ Fℓx̄(D′

ℓx̄
)

since C is a chain from M′′ to M′. The case that ax̄−1 /∈ Dℓx̄ as well as Condition 6 can
be shown similarly.

In the end, given the cycle or chain C from M to M′ that is constructed in possibly
any one of the above cases, we show the last statement in Lemma A.4 for any i ∈
Î \ {b}, in the following two parts.

Part 1. Suppose that C is not constructed in Subcase 4.5. If i ̸= i1 and
∣∣(M + C)i \

Di
∣∣ > ∣∣Mi \Di

∣∣, then either (1) i is pointed by her own donor and points to a donor that
is not her own in C, or (2) C is a chain, i is the tail of the chain and points to a donor that
is not her own. By the construction of the pointing procedures,

∣∣M′
i \ D′

i

∣∣ > ∣∣Mi \ Di
∣∣

and
∣∣D′

i \ M′
i

∣∣ > ∣∣Di \ Mi
∣∣ in the former case, and

∣∣M′
i \D′

i

∣∣ > ∣∣Mi \Di
∣∣ and

∣∣D′
i \ M′

i

∣∣ ≤∣∣Di \ Mi
∣∣ in the latter case. Similarly, if i ̸= i1 and

∣∣(M + C)i \ Di
∣∣ < ∣∣Mi \ Di

∣∣, it can
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be shown that
∣∣M′

i \ D′
i

∣∣ < ∣∣Mi \ Di
∣∣. On the other hand, if i = i1, since i points to

a donor that is not her own in the pointing procedure from M to M′, and to her own
donor in the pointing procedure from M′ to M, it can be easily checked that i points to
a donor that is not her own or she is pointed by her own donor, whenever she appears
in C. Therefore,

∣∣(M + C)i \ Di
∣∣ ≥ ∣∣Mi \ Di

∣∣. Then the statement holds for i since∣∣M′
i \ D′

i

∣∣ > ∣∣Mi \ Di
∣∣.

Part 2. Suppose that C is constructed in Subcase 4.5, first as a cycle or a chain from
M′′ to M′. By arguments similar to those in Part 1,∣∣(M′′ + C)i \ Di

∣∣ > ∣∣M′′
i \ Di

∣∣ implies
∣∣M′

i \ D′
i
∣∣ > ∣∣M′′

i \ Di
∣∣, and∣∣(M′′ + C)i \ Di

∣∣ < ∣∣M′′
i \ Di

∣∣ implies
∣∣M′

i \ D′
i
∣∣ < ∣∣M′′

i \ Di
∣∣.

Then, given that C is also a cycle or a chain from M to M′, it follows from Observation
7 that the last statement in Lemma A.4 holds for i in this case.

Lemma A.5 The rule F is donor monotonic.

Proof of Lemma A.5. To prove that F is donor monotonic, it is sufficient to show that
any i ∈ I cannot receive more blood by concealing exactly one donor. Assume to the
contrary, there exist D, D′ and i ∈ I such that D′

i ⊆ Di,
∣∣Di \ D′

i

∣∣ = 1, D′
j = Dj for every

j ∈ I \ {i}, and
∣∣Fi(D̂′) \ D′

i

∣∣ > ∣∣Fi(D̂) \ Di
∣∣. For simplicity, denote F(D̂) and F(D̂′) as

M and M′ respectively. By Lemma A.4, there exists a cycle or a chain C from M to M′.
We first want to show that ϕ(M) = ϕ(M + C). Suppose that it is not true. Then by

the construction of F, Û(M) > Û(M +C).55 Consider any j ∈ I. By Observation 6 and
the last statement of Lemma A.4, j receives the same amount of blood under M and
M + C if and only if she receives the same amount under M′ and M′ − C. Moreover, if
she receives more (or less) under M + C than under M, then (1) she receives only one
more (or less) unit under M + C than under M, (2) she receives one more (or less) unit
under M′ than under M′ − C, and (3) she receives more (or less) under M′ than under
M. Then, the concavity of ρ implies

ρ
(∣∣(M′ − C)j \ D′

j
∣∣)− ρ

(∣∣M′
j \ D′

j
∣∣) ≥ ρ

(∣∣Mj \ Dj
∣∣)− ρ

(∣∣(M + C)j \ Dj
∣∣).

Since uj is linear in supply, and ub is linear, Observation 6 and the above inequality

55Note that due to the relation between schedules induced by allocations and schedules induced
by matchings that is shown in the proof of Lemma A.3, for any M, M′ ∈ M(D̂), Û(M) ̸= Û(M′) if
ϕ(M) ̸= ϕ(M′).
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together imply

Û(M′ − C)− Û(M′) ≥ Û(M)− Û(M + C) > 0.

Then Û(M′ − C) > Û(M′), contradicting to the fact that M′ = F(D̂′) maximizes the
weighted sum of utilities among M(D̂′). Therefore, ϕ

(
F(D̂)

)
= ϕ

(
F(D̂) + C

)
.

Then by Lemma A.4 again, there exists a cycle or a chain C′ from F(D̂) + C to
F(D̂′). By similar arguments as before, it can be shown that ϕ

((
F(D̂) + C

)
+ C′

)
=

ϕ
(

F(D̂) + C
)
. This process can be continued infinitely, which leads to a contradiction

since each additional cycle or chain addition generates a new matching that is closer
to F(D̂′).

B.3 Proof of Theorem 4
Let f be a weighted utilitarian mechanism with respect to w, and F be a feasible

schedule menu profile that satisfies L-convexity, feasibility of positive price, strong
non-diminishing favorability in donors and individual rationality. Assume to the con-
trary, f is not incentive compatible with respect to donors under F . Then there exist a
problem (D, θ), patient i and donor subset D′

i ⊆ Di such that

ui
[
(r′, s′), θi

]
> ui

[
(r, s), θi

]
where (r, s) = f

(
F , D, θ

)
(i) and (r′, s′) = f

(
F , (D′

i , D−i), θ
)
(i).

By Theorem 2, r′ ≤ r. By strong non-diminishing favorability in donors and the
fact that ui is strictly decreasing in supply, ui

[
(r′, s′), θi

]
> ui

[
(r, s), θi

]
implies r′ < r.

Then, given that ui is strictly decreasing in supply, strictly increasing in receipt, and
always exhibits a MRS greater than 1, it is straightforward to see that s′ < s, and
s − s′ > r − r′. By individual rationality, (r′, s′) ̸= (0, 0). Hence r′ ≥ g

i
. Then by

strong non-diminishing favorability in donors, there exists s′′ ≤ s′ such that (r′, s′′) ∈
Fi(Di). Since (r, s) ∈ Fi(Di), r > r′, s > s′′ and s − s′′ ≥ s − s′ > r − r′, by (repeated
applications of) Condition 1 in Assumption 1,(

r − (r − r′), s − (r − r′)
)
=
(

r′, s − (r − r′)
)
∈ Fi(Di).

However, this contradicts to strong non-diminishing favorability in donors, since
(r′, s′) ∈ Fi(D′

i) and s − (r − r′) > s′.

B.4 Proof of Theorem 5
Let f be a priority mechanism, and F be a feasible schedule menu profile that

satisfies L-convexity, feasibility of positive price, strong non-diminishing favorability
in donors and individual rationality. Consider any problem (D, θ), patient i, donor
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subset D′
i ⊆ Di and type θ′i . Let

α = f
(
F , D, θ

)
, α′ = f

(
F , (D′

i , D−i), θ
)

, and α′′ = f
(
F , (D′

i , D−i), (θ′i , θ−i)
)

.

By Theorem 4, ui
[
α(i), θi

]
≥ ui

[
α′(i), θi

]
. Then, since f always chooses an allocation

by sequentially maximizing individual utilities, ui
[
α′(i), θi

]
≥ ui

[
α′′(i), θi

]
. There-

fore, we have ui
[
α(i), θi

]
≥ ui

[
α′′(i), θi

]
, and f is incentive compatible under F .

B.5 Proof of Theorem 1
Fix an arbitrary environment except D and θ. Let f be an FCFS mechanism. Sup-

pose that each patient i has a minimum guarantee of g
i
≥ 0, and F is a feasible sched-

ule menu profile where for every i ∈ I and Di,

Fi(Di) =
{
(r, s) ∈ Si(Di) : s = r − g

i

}
.

Note that this covers both P1 and P5.
For any problem (D, θ), let G1(D), G2(D) and G3(D) be the three groups of patients

determined by the FCFS procedure as specified in Section 3, and Si(D) ⊆ Fi(Di) be
the updated feasible schedule set for each i ∈ I, i.e.,

1. Si(D) = Fi(Di) if i ∈ G1(D).

2. Si(D) =
{
(r, s) ∈ Fi(Di) : r ≥ fr

(
F , D, θ

)
(i)
}

if i ∈ G2(D).

3. Si(D) =
{

f
(
F , D, θ

)
(i)
}

if i ∈ G3(D).56

Pick any priority mechanism in which the bank has the first priority. To improve
upon f under F , we apply this priority mechanism to each problem (D, θ) under the
updated feasible schedule sets

{
Si(D)

}
i∈I . That is, given a problem (D, θ), in choosing

an allocation to sequentially maximize the bank and patient utilities, we only consider
allocations in the set

A′ =
{

α ∈ A(F , D) : α(i) ∈ Si(D), ∀i ∈ I
}

,

which is non-empty since f
(
F , D, θ

)
∈ A′. Denote the resulting allocation as

h
(

D, θ
)

. By the construction of Si(D), ui

[
h
(

D, θ
)
(i), θi

]
≥ ui

[
f
(
F , D, θ

)
(i), θi

]
if i ∈ G2(D) ∪ G3(D). When i ∈ G1(D), i does not receive any blood from the inven-
tory under the FCFS mechanism and thus g

i
= 0. Then

fr

(
F , D, θ

)
(i) = min

{∣∣{d ∈ Di : βd ∈ C(βi)
}∣∣, ni

}
.

56Note that the above notions are independent of θ due to our consistency assumption on f .
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By the efficiency of h
(

D, θ
)

within A′,

hr

(
D, θ

)
(i) ≥ min

{∣∣{d ∈ Di : βd ∈ C(βi)
}∣∣, ni

}
.

Therefore, each patient in Group 1 is weakly better-off under h
(

D, θ
)

than under

f
(
F , D, θ

)
. Furthermore, the bank also has weakly higher utility under h

(
D, θ

)
,

since f
(
F , D, θ

)
∈ A′ and it has the first priority in the priority mechanism.

To prove that h is incentive compatible under F , we first show incentive com-
patibility with respect to donors, which is equivalent to donor monotonicity due to
the specification of F . Consider any problem (D, θ), patient i ∈ I and donor subset
D′

i ⊊ Di. For simplicity, let

• r f = fr

(
F , D, θ

)
(i),

• r′f = fr

(
F , (D′

i , D−i), θ
)
(i),

• rh = hr

(
D, θ

)
(i), and

• r′h = hr

(
(D′

i , D−i), θ
)
(i).

Then r f ≤ rh and r′f ≤ r′h. By the incentive compatibility of f under F , r′f ≤ r f .
Assume rh < ni, and we show r′h ≤ rh in the following three cases.

Case 1: i ∈ G3(D). If i ∈ G3(D′
i , D−i), then r′h = r′f ≤ r f = rh. If i /∈ G3(D′

i , D−i),
then i ∈ G1(D′

i , D−i) and g
i
= 0. By the consistency assumption on f , when i reports

D′
i , there is still compatible blood available for her in the inventory when she is served,

while she does not receive any blood from the inventory. Then, given that r′f ≤ r f =

rh < ni, D′
i does not include any donor that is incompatible with i. Therefore, r′h =

|D′
i | ≤ r f = rh.
Case 2: i ∈ G2(D). Then |D′

i | < δ. If i ∈ G3(D′
i , D−i), then r′h = r′f ≤ r f ≤ rh. If

i ∈ G1(D′
i , D−i), then it can be shown as in Case 1 that r′h ≤ rh.

Case 3: i ∈ G1(D). If i ∈ G3(D′
i , D−i), then r′h = r′f ≤ r f ≤ rh. Suppose that

i ∈ G1(D′
i , D−i). Since g

i
= 0, and i does not receive any blood from the inventory or

supply any blood to the inventory when she reports either Di or D′
i , by the consistency

assumption on f , Sj(D) = Sj(D′
i , D−i) for all j ∈ I \ {i}. Then, since Sj(D) is L-convex

for all j ∈ I \ {i}, Si(D) = Fi(Di), Si(D′
i , D−i) = Fi(D′

i), and Fi satisfies the prop-
erties of L-convexity, feasibility of positive price, and non-diminishing favorability in
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donors, by the arguments in the proof of Theorem 2, r′h ≤ rh.57

In the end, consider any type θ′i . It has been shown above that

ui

[
h
(

D, θ
)
(i), θi

]
≥ ui

[
h
(
(D′

i , D−i), θ
)
(i), θi

]
.

Since the outcomes of both the mechanism f and the priority mechanism are indepen-
dent of patients’ types under F , we have

h
(
(D′

i , D−i), θ
)
(i) = h

(
(D′

i , D−i), (θ′i , θ−i)
)
(i),

and thus

ui

[
h
(

D, θ
)
(i), θi

]
≥ ui

[
h
(
(D′

i , D−i), (θ′i , θ−i)
)
(i), θi

]
.

Therefore, h is incentive compatible under F .
Finally, it is straightforward to see that in an environment where vX = 0 for all

X ∈ B, there are two patients without compatible donors, and each of them has a
donor that is compatible with the other patient, the outcome of h Pareto dominates
that of f .

C Examples Regarding Violations of Properties
Example A.3 (Violation of feasibility of positive price via flat top) Suppose that the
set of patients is I = {1, 2, 3, 4} and the set of relevant blood types is B = {O, A, B, AB}.
Assume ABO-identical transfusion. Let n2 = 2, and ni = 1 for every other patient i. Each
patient’s blood type and donor set are given as follows.

• β1 = O, and Patient 1 has one type AB donor.

• β2 = A, and Patient 2 has one type O donor, one type B donor, and one type AB donor.

• β3 = A, and Patient 3 has one type B donor.

• β4 = B, and Patient 4 has one type A donor.

In addition, the blood bank only has one unit of type A blood in its inventory. The exchange
rate is one-for-one for every i ∈ I \ {2}. Let δ = 3. Patient 2’s feasible schedule set is given
by Figure A.13 when |D2| = 3, which has a flat top, and her exchange rate is one-for-one
otherwise. Then the feasible schedule menu profile satisfies L-convexity, the requirement of ”no
flat bottom” in feasibility of positive price, strong non-diminishing favorability in donors, and
individual rationality.

Let f be a priority mechanism with the order 1 − 2 − 3 − 4 − b. Then, for any θ, f selects
the following allocation when every patient truthfully reports her donor set:

57More specifically, see Footnote 33.
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rn2

s

rn2
Figure A.13: Feasible schedule set for Patient 2 in Example A.3.

• Each i ∈ I receives one unit of type βi blood.

• Patient 2’s type O donor donates, and the donor of every other patient donates.

• The bank receives one unit of type AB blood.

However, if Patient 2 conceals her O or AB donor, then she receives two units of A blood,
one from the inventory and one from the exchange with Patient 4, and she also supplies two
units.

Note that, when Patient 2 conceals her O donor, even if her feasible schedule set remains
the same as in Figure A.13, i.e., starting from (1, 1) it is still not feasible for her to receive one
more unit by supplying one more unit, she receives two units of A blood, while supplying one
unit of B blood.

Example A.4 (Violation of feasibility of positive price via flat bottom) Suppose that
the set of patients is I = {1, 2} and the set of relevant blood types is B = {O, A, B, AB}.
Assume ABO-identical transfusion. The blood bank has two units of type A blood. Every
patient i ∈ I has type A blood, a maximum need of two, and two type B donors. For Patient
2 the exchange rate is one-for-one. On the other hand, when D1 ̸= ∅, F1(D1) is given by
Figure A.14, where a flat bottom appears in the second graph. In addition, F1(∅) = {(0, 0)}.
Then the feasible schedule menu profile satisfies L-convexity, the requirement of ”no flat top”
in feasibility of positive price, strong non-diminishing favorability in donors, and individual
rationality.

Let ρ(r) = r and θ1 = θ2 = ϑL. Consider a weighted utilitarian mechanism where the
weights for the two patients are sufficiently larger than one, and

w2 · (1 − ϑL) < w1 < w2.

When the patients truthfully report their donors, the bank gives one unit of A blood to Patient
1 to satisfy her minimum guarantee, and then exchanges with Patient 2 instead of Patient
1 since w2 > w1. However, if Patient 1 conceals one donor, then she supplies one unit of
blood to receive her minimum guarantee, and then the bank also gives the other unit of A
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Figure A.14: Feasible schedule sets for Patient 1 in Example A.4.

blood to her without asking for more donations, instead of exchanging with Patient 2, since
w2 · (1− ϑL) < w1. Therefore, by under-reporting her donor set, Patient 1’s assigned schedule
changes from (1, 0) to (2, 1).

Example A.5 (Weakening strong non-diminishing favorability in donors) Consider
the setup in Example A.3. We only modify F2 so that for any D2:

F2(D2) =
{
(r, s) ∈ S2(D2) : s ≤ r

}
.

Then the feasible schedule menu profile satisfies L-convexity, feasibility of positive price, non-
diminishing favorability in donors, and individual rationality. Under the same priority mech-
anism, for any θ, Patient 2 is assigned the schedule (2, 2) if every patient truthfully reports her
donors, and Patient 2 is assigned the schedule (2, 1) if she hides her type O donor.

Example A.6 (Violation of individual rationality) Suppose that there is only one patient
i with ni = g

i
= 1 and she has to supply two units to receive her minimum guarantee. That

is, for any Di, Fi(Di) =
{
(1, 2)

}
if |Di| ≥ 2, and Fi(Di) =

{
(0, 0)

}
otherwise. Then

L-convexity, feasibility of positive price, and strong non-diminishing favorability in donors are
satisfied, while individual rationality is violated. Assume ρ(r) = r and θi ∈ (1

2 , 1). It follows
that ui

[
(0, 0), θi

]
> ui

[
(1, 2), θi

]
. Therefore, under any mechanism, if the patient has at

least two donors, she is better-off by not reporting any donor.
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D Additional Simulation Results
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Figure A.15: Pareto comparisons between pairs of mechanisms when |I| = 25 as a function
of the inventory ratio ι. No patient prefers FCFS to the FCFS dominating mechanism so this
comparison percentage is always 0%.
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Figure A.16: Pareto comparisons between pairs of mechanisms when |I| = 100 as a function
of the inventory ratio ι. No patient prefers FCFS to the FCFS dominating mechanism so this
comparison percentage is always 0%.
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Total Transfusion
(as % of mean of the tot. max. need, E[∑i ni] = 87.5 for |I| = 25 and E[∑i ni] = 350 for |I| = 100)

max ni ι |I| = 25 |I| = 100
− δ Priority FCFS Dom. FCFS Priority FCFS Dom. FCFS

1

0 45.98% 45.98% 19.37% 52.09% 52.09% 19.16%
(8.95%) (8.95%) (4.72%) (4.59%) (4.59%) (2.33%)

0.02 46.68% 45.39% 23.40% 52.76% 50.79% 33.04%
(8.98%) (8.72%) (6.02%) (4.52%) (4.31%) (7.86%)

0.04 47.57% 45.97% 28.09% 53.22% 51.54% 39.16%
(8.95%) (8.50%) (7.87%) (4.46%) (4.30%) (9.01%)

0.1 49.50% 47.95% 36.27% 53.88% 52.82% 46.26%
(8.88%) (8.56%) (10.45%) (4.35%) (4.36%) (8.75%)

0.2 51.13% 50.03% 42.82% 54.31% 53.68% 49.95%
(8.81%) (8.61%) (11.45%) (4.33%) (4.37%) (7.88%)

0.5 52.99% 52.32% 48.94% 54.77% 54.48% 52.81%
(8.60%) (8.65%) (11.05%) (4.27%) (4.31%) (6.30%)

1 53.99% 53.58% 51.83% 55.04% 54.86% 54.02%
(8.60%) (8.62%) (10.27%) (4.23%) (4.27%) (5.41%)

−1

0 58.58% 58.58% 25.97% 64.71% 64.71% 25.70%
(10.52%) (10.52%) (5.89%) (5.02%) (5.02%) (2.78%)

0.02 59.13% 56.87% 29.98% 65.00% 61.05% 40.08%
(10.48%) (10.19%) (7.03%) (4.97%) (4.84%) (8.51%)

0.04 59.85% 56.74% 34.75% 65.17% 61.68% 46.75%
(10.42%) (9.71%) (8.81%) (4.93%) (4.85%) (9.91%)

0.1 61.25% 58.09% 43.55% 65.41% 63.09% 54.82%
(10.19%) (9.48%) (11.61%) (4.91%) (4.98%) (9.90%)

0.2 62.51% 60.10% 50.79% 65.61% 64.21% 59.46%
(10.02%) (9.65%) (12.95%) (4.91%) (5.00%) (9.10%)

0.5 63.99% 62.61% 58.06% 65.91% 65.21% 63.10%
(9.82%) (9.80%) (12.71%) (4.89%) (4.98%) (7.42%)

1 64.86% 64.06% 61.63% 66.13% 65.72% 64.61%
(9.80%) (9.90%) (11.89%) (4.87%) (4.92%) (6.36%)

Table A.2: The averages and the population standard errors in the simulations for the total
transfusion as a percentage of the mean total maximum need as graphed in Figures 9 and 10.
The standard errors of the averages can be found by dividing the population standard errors
by

√
1000 ≈ 31.62, where 1000 is the number of random markets drawn for the simulations.
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Pareto Comparisons Between Pairs of Mechanisms
(as % of individuals strictly preferring the first mechanism to the second)

|I| = 25 |I| = 100
max ni ι Priority ≻ FCFS Dom. Priority ≻ FCFS ≻ FCFS Dom. Priority ≻ FCFS Dom. Priority ≻ FCFS ≻ FCFS Dom.
− δ FCFS Dom. ≻ Priority FCFS Priority ≻ FCFS FCFS Dom. ≻ Priority FCFS Priority ≻ FCFS

1

0 0.00% 0.00% 54.16% 0.00% 54.16% 0.00% 0.00% 61.65% 0.00% 61.65%
0.00% 0.00% (11.62%) 0.00% (11.62%) 0.00% 0.00% (5.87%) 0.00% (5.87%)

0.02 5.42% 2.44% 48.68% 1.13% 44.69% 6.40% 1.70% 38.96% 1.03% 33.24%
(6.03%) (3.72%) (12.42%) (2.48%) (13.67%) (3.18%) (2.02%) (13.28%) (1.60%) (14.15%)

0.04 7.13% 3.44% 41.43% 1.74% 36.10% 5.56% 1.53% 28.24% 1.00% 23.22%
(6.03%) (4.40%) (13.48%) (3.01%) (14.63%) (2.91%) (1.96%) (15.07%) (1.62%) (14.72%)

0.1 6.91% 3.18% 29.18% 1.86% 23.78% 3.64% 1.03% 15.62% 0.69% 12.36%
(5.52%) (4.04%) (15.42%) (2.97%) (15.48%) (2.77%) (1.56%) (14.26%) (1.27%) (12.93%)

0.2 4.92% 2.22% 18.68% 1.36% 14.76% 2.28% 0.70% 8.98% 0.46% 6.98%
(4.87%) (3.62%) (15.62%) (2.76%) (14.67%) (2.44%) (1.29%) (12.23%) (1.03%) (10.84%)

0.5 2.67% 1.02% 9.31% 0.62% 7.13% 1.14% 0.37% 4.10% 0.23% 3.14%
(4.20%) (2.46%) (13.64%) (1.85%) (11.87%) (1.80%) (0.92%) (8.63%) (0.70%) (7.48%)

1 1.57% 0.54% 5.08% 0.30% 3.80% 0.67% 0.20% 2.19% 0.13% 1.62%
(3.37%) (1.88%) (10.82%) (1.35%) (9.38%) (1.41%) (0.73%) (6.17%) (0.59%) (5.21%)

−1

0 0.00% 0.00% 58.29% 0.00% 58.29% 0.00% 0.00% 64.57% 0.00% 64.57%
0.00% 0.00% (10.92%) 0.00% (10.92%) 0.00% 0.00% (5.07%) 0.00% (5.07%)

0.02 6.32% 1.99% 53.03% 0.74% 47.86% 8.62% 0.66% 43.10% 0.29% 34.79%
(6.58%) (3.40%) (11.75%) (1.88%) (13.60%) (3.90%) (1.25%) (13.04%) (0.79%) (14.66%)

0.04 8.82% 2.83% 46.44% 1.15% 39.01% 7.71% 0.66% 32.20% 0.33% 24.78%
(6.80%) (4.08%) (12.97%) (2.45%) (14.91%) (3.49%) (1.20%) (15.43%) (0.82%) (15.28%)

0.1 8.98% 2.78% 33.51% 1.24% 25.78% 5.32% 0.58% 18.82% 0.32% 13.74%
(6.17%) (4.19%) (15.82%) (2.56%) (16.04%) (3.56%) (1.19%) (15.28%) (0.85%) (13.43%)

0.2 6.93% 2.05% 22.72% 0.99% 16.72% 3.37% 0.50% 11.01% 0.27% 7.85%
(5.63%) (3.68%) (16.75%) (2.42%) (15.59%) (3.22%) (1.07%) (13.51%) (0.77%) (11.53%)

0.5 3.84% 0.98% 11.64% 0.49% 8.26% 1.77% 0.32% 5.11% 0.17% 3.50%
(5.15%) (2.67%) (15.03%) (1.62%) (12.83%) (2.56%) (0.77%) (9.88%) (0.53%) (8.03%)

1 2.31% 0.59% 6.50% 0.28% 4.50% 1.07% 0.19% 2.83% 0.10% 1.85%
(4.16%) (1.92%) (12.18%) (1.22%) (10.22%) (1.99%) (0.59%) (7.21%) (0.41%) (5.67%)

Table A.3: The averages and the population standard errors in the simulations for percentages
of individuals who prefer one mechanism to the other in Figures A.15 and A.16. The standard
errors of the averages can be found by dividing the population standard errors by

√
1000 ≈

31.62, where 1000 is the number of random markets drawn for the simulations. The FCFS
dominating mechanism Pareto dominates FCFS for the patients by construction, so no patient
prefers FCFS to the FCFS dominating mechanism. Hence the column showing this comparison
is omitted.
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