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Abstract

This paper studies the optimal selling mechanisms for incremental prod-

ucts, with a particular emphasis on scenarios where consumers’ private in-

formation profoundly influences their preferences across time periods. To

mitigate their intertemporal information rent, the manufacturer encourages

upgrades through refunds rather than payments, introducing inefficiencies

but maximizing profits. We investigate how the manufacturer shapes con-

sumer preferences by combining basic and novel upgrades in subsequent

product iterations. The optimal strategy follows a bang-bang solution, pri-

oritizing novel upgrades for consumers with lower valuations of the previous

product iteration and basic upgrades for those with higher values. Addition-

ally, we reveal that per-consumer information disclosure allows the manu-

facturer to tailor disclosures about novel functions strategically, enhancing

incentives for truthful reporting and extracting more surplus from specific

consumer segments.
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1 Introduction

In today’s fiercely competitive business environment, firms are constantly seeking

ways to enhance profitability and maintain market relevance. One promising av-

enue in this pursuit involves the strategic development and sales optimization of

incremental products, which often take the form of new variants or novel features

integrated into well-established offerings. A prime example of this concept is seen

in the tech industry, where smartphone manufacturers iteratively introduce new

models with enhanced features. The ability to self-iterate and adapt to consumer

demands is a defining characteristic of these incremental products. Thus, this

paper centers on addressing two research questions: What are the most effective

selling mechanisms for firms’ incremental products, enabling them to maximize

profits? Moreover, with the ability to introduce new functions, how can they

shape consumers’ preferences to extract more surplus?

Consider a monopolistic manufacturer who introduces an incremental product,

denoted as “P”, to consumers across two periods. Initially, consumers privately

evaluate the first generation, “P1”. In the subsequent period, the manufacturer

launches the second generation, “P2”, and consumers re-evaluate it and decide

whether to keep the old device or to upgrade to the newest version. The valuations

for P2 may be correlated with their earlier assessments in period 1. Importantly,

consumers can only use either P1 or P2, even if they own both.

Consumers’ information rent from privately knowing the valuation of P1 (the

part of consumer surplus that the manufacturer can not exact) extends beyond

the initial period and persists into period 2. This enduring information rent is the

key difference between incremental products and conventional products of which

information rent typically does not carry over across time periods. It comes from

two sources: i) the first source is obvious, consumers have the option to keep P1

and not to upgrade to P2, which means they still own the information rent gained

initially; ii) in contrast, even if they upgrade, they can anticipate their valuation

of P2 through P1 because P1 and P2 are not completely irrelevant products. In

other words, the information rent embedded in the old device can partially transit

to the new one.

Although consumers can anticipate the valuation of P2 through their knowl-

edge of P1, they do not possess precise information about it. This gives the manu-

facturer chances to mitigate their information rent. In period 2, the optimal selling

mechanism functions as the manufacturer incentivizes consumers to upgrade from

P1 to P2 by offering refunds rather than requiring payment. This approach is
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distinctive, it encourages consumers to choose P2 over P1, even when owning P1

might offer a higher utility, which consequently brings additional inefficiencies.

In period 1, the payment for consumers to acquire P1 consists of three com-

ponents: the price for P1; the expected additional surplus (or a deficit if the

consumer chooses to upgrade even when P1 offers a higher utility), combined with

the potential refund from replacement in period 2; and, through this replacement,

the reduction in information rent which was compelled to be shared with the con-

sumer. Notably, the second and third components together become the price of

a “swap”. With this swap, consumers have the option to exchange P1 for P2,

receiving a refund if their valuation of P2 surpasses a certain threshold.

At first glance, this mechanism may appear similar to a trade-in policy, which

typically functions as if one is buying P2 at a reduced price when owning P1.

However, in the optimal selling mechanism, the buying action for P2 is effectively

concluded in period 1. In other words, the trade-in option is monetized in period

1.1 This difference is crucial, as it enables the manufacturer to generate more

profit, primarily because consumers cannot capitalize on the information rent de-

rived from privately knowing the valuation of P2.

We then study how manufacturers can actively shape consumers’ preferences

through different types of upgrades. Some upgrades are basic, like improving the

phone’s chips to boost processing power or increasing battery capacity. These

upgrades foster a stronger intertemporal dependency of consumers’ valuations.

More novel upgrades, such as introducing AI modules or facial recognition, do not

link as closely to the older device. We explore a scenario where the manufacturer

decides to incorporate a customized mix of these upgrades. In period 2, based on

the consumer’s valuation of P1, it commits to implementing the basic upgrades

for some parts of the devices, and for the rest, the novel upgrades.

When this happens, the novel upgrades decrease the intertemporal dependency

of consumers’ valuation of the old and new devices. This means that with the opti-

mal selling mechanism, the manufacturer can reduce consumers’ information rent

by privately knowing the valuation of the old devices, and extract more surplus.

1Apple’s iPhone upgrade program in the US, UK, and mainland China shares similarities
with this optimal selling mechanism, but with less price discrimination. Under this program
(US), consumers enter a 24-month installment loan for an eligible iPhone. Once they have paid
the equivalent of at least twelve (12) installment payments, they are eligible to upgrade to a
new eligible iPhone before the installment loan’s expiration date. If they decide to upgrade,
they enroll in a new iPhone Upgrade Program. This includes applying for and entering into a
new 24-month installment loan. Consequently, customers who upgrade after the release of a new
iPhone are not required to pay the remaining 12-month installment loan, which is equivalent to
a refund.
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However, there’s a downside brought by this approach; it might make the trade

less efficient, which can hurt the overall revenue. We find that the consumer, nev-

ertheless, bears all the efficiency loss that results from these novel upgrades. After

eliminating these two opposing effects, the manufacturer faces a choice: maintain

the virtual value from P1 in P2 or replace it with the expected value from novel

functions. For those consumers with lower valuations of P1, prioritizing novel

upgrades is optimal, while for those with higher values, basic upgrades prevail.

Consequently, the manufacturer’s optimal strategy follows a bang-bang solution.2

We further extend the study to the case where consumers may lack precise

valuations for novel products before ownership. This allows the manufacturer

to shape their perceptions through information disclosure about novel functions.

With per-consumer disclosure, the manufacturer tailors disclosures to strengthen

incentives for truthful reporting. Specifically, the value of information about novel

functions becomes more significant for consumers with a higher valuation of P1

since their decision of whether to upgrade relies on whether P2 can bring more

value. With a strategic decrease in the disclosure informativeness for those who

report a low valuation of P1, like a trial before buying only offered to consumers

reporting high valuations, the manufacturer can mitigate consumers’ incentives of

downward reporting, ultimately contributing to surplus extraction. This reveals

the intricate interplay between information disclosure strategies and consumers’

reporting behaviors in dynamic mechanism design.

The rest of the article is organized as follows: Section 2 presents the model.

Section 3 introduces the optimal mechanism. Section 4 discusses how the manu-

facturer controls product design and information disclosure to generate maximum

profit. Section 5 concludes the study and provides scope for further discussion.

All proofs are in Appendix 6.2.

1.1 Related Literature

This study first contributes to the literature of dynamic mechanism design (Pa-

van et al. [2014], Bergemann and Välimäki [2019]). While the existing literature

has explored various facets of optimal dynamic mechanisms (Baron and Besanko

[1984], Riordan and Sappington [1987], Courty and Li [2000], Battaglini [2005],

Eső and Szentes [2007], Board [2007], Krähmer and Strausz [2011], Boleslavsky

2Examples of this kind of design protocol can be found in the game industry. The gamer
can either buy one game along with its remastered version and DLC. Or he can additionally
subscribe a service like the Playstation plus premium, where he has access to new games every
month.
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and Said [2013]), our focus extends to situations where agents’ private informa-

tion influences their intertemporal preferences. In these contexts, the interplay

between private information and preferences across periods adds an additional

layer of complexity to the design of optimal selling mechanisms. Additionally, an

ironing technique is introduced when dealing with the violation of monotonicity

constraints.

This study contributes to several topics of industrial organization, including

monopolistic pricing. Lu and Zhao [2023] study a related question, of how to sell

two objects sequentially in different periods and consumers’ utility is additive.

They find that bundling is the best selling mechanism if the intertemporal values

are negatively correlated. Our study focuses on a different case where the consumer

has a unit demand and the best selling mechanism involves swaps or options. Doval

and Skreta [2019] consider selling a durable good in multiple periods; they find

that the best selling mechanism is fixing prices in each period. What we find is

that the consumer has the option to upgrade or stay with the old products.

This study incorporates product design in the optimal dynamic selling mech-

anism. Schaefer [1999], Dahremöller and Fels [2015] and Veiga and Weyl [2016]

focus on the product designed with multiple complementary components. Johnson

and Myatt [2006] and Bar-Isaac et al. [2012] construct the product design with

disperse value or demand rotation. In contrast to the previous studies, we follow

a natural orthogonalization way of product design in which the value of the new

device is composed of two parts. One is fully correlated with the old device, and

the other is fully independent.

This study also incorporates information design (in the way of Bayesian per-

suasion, Kamenica and Gentzkow [2011]) in the optimal dynamic selling mech-

anism. Bergemann and Pesendorfer [2007] find that the information structures

should be represented by monotone partition in monopolistic pricing. Bergemann

et al. [2015] further study the situation where the pricing protocol is contingent

on the information structure. Li and Shi [2017] find that per-consumer disclosure

is weakly better than full disclosure in sequential screening problems. Bergemann

et al. [2022] analyze a second-degree price discrimination problem with capacity

constraint of quality where the firm also chooses the information that buyers have

about their own value. We integrates the contributions to dynamic mechanism

design, monopolistic pricing and strategic information disclosure, where the man-

ufacturer tailors the information and influencing agents’ incentive of truthfully

reporting. Our study offers a richer understanding of how monopolists can shape

consumer behavior across product cycles.
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2 The Model

Consider a monopolistic manufacturer who sells an incremental product (P) to

consumers over two periods. In period 1, the manufacturer introduces the first-

generation product, referred to as “P1”. Consumers observe their private valu-

ations for P1, v1 > 0, which follows some distribution F and the hazard rate

f/(1 − F ) is non-decreasing. In period 2, the manufacturer enhances the prod-

uct and launches the second generation, labeled as “P2”. Consumers observe their

private valuations for P2, v2 > 0, which can be correlated with the valuation in pe-

riod 1, v2|v1 ∼ G. The consumers’ utility will be discussed later in the consumers’

problem (section 2.1). We assume that both the manufacturer and consumers are

fully patient, which means the discount factor is 1.

We assume that the manufacturer can commit to a selling mechanism that

covers both periods. The parallel analysis of limited commitment is in Appendix

6.1. By the dynamic revelation principle (Sugaya and Wolitzky [2021]), the man-

ufacturer can use a direct selling mechanism, where consumers report truthfully

their private information in each period. In period 1, contingent on the con-

sumer’s report ṽ1, the allocation probability of P1 is x1(ṽ1) ∈ [0, 1], accompanied

by a corresponding monetary transfer of t1(ṽ1). In period 2, when the consumer

owns P1, given his report ṽ2 in period 2 and ṽ1 in period 1, the allocation prob-

ability of P2 is y12(ṽ1, ṽ2) ∈ [0, 1]. Importantly, consumers get utility from only

one product. Thus, there is no meaning to allocate both P1 and P2 in period

2. The two events are mutually exclusive. The probability of still owning P1

is x1
2(ṽ1, ṽ2) ∈ [0, 1 − y12(ṽ1, ṽ2)], and the monetary transfer is t12(ṽ1, ṽ2). When

consumers do not own P1, these variables are denoted as y02(ṽ1, ṽ2), x
0
2(ṽ1, ṽ2) and

t02(ṽ1, ṽ2) correspondingly.

2.1 Consumers’ problem

We discuss the consumers’ problem in a backward way.

Period 2

The consumer utility, given his true valuation and report, is represented as

ui
2(v1, ṽ1, v2, ṽ2),

ui
2(v1, ṽ1, v2, ṽ2) = δv1 · xi

2(ṽ1, ṽ2) + v2 · yi2(ṽ1, ṽ2)− ti2(ṽ1, ṽ2), i ∈ {0, 1}

where δ represents the depreciation of P1 in period 2, and i is the indicator of

whether P1 is allocated in period 1. Importantly, we can only guarantee truthful
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reporting on the equilibrium path. No IC restriction is put on those who do not

report truthfully in period 1.

The Incentive Compatibility Condition, referred to as ICi
2, states that given

the consumer reporting truthfully in period 1, it is incentive compatible to

also report truthfully in period 2.

Lemma 1. ICi
2 is equivalent to

1. yi2(v1, v2) is increasing in v2 for any v1.

2. For every combination of v1 and v2,

ti2(v1, v2) = ti2(v1) + δv1 · xi
2(v1, v2) + v2 · yi2(v1, v2)−

∫ v2

0

yi2(v1, t)dt

Then, we discuss consumers’ strategic reporting off the equilibrium path. De-

note ûi
2(v1, ṽ1, v2) the optimized utility in period 2 under any report in period

1,

ûi
2(v1, ṽ1, v2) := ui

2(v1, ṽ1, v2, v̂
i
2), v̂i2 ∈ argmax

ṽ2
ui
2(v1, ṽ1, v2, ṽ2)

The First-Order Condition with respect to v̂i2,

0 =
∂ui

2

∂ṽ2

∣∣∣∣
ṽ2=v̂i2

= δv1
∂xi

2(ṽ1, ṽ2)

∂ṽ2
+ v2

∂yi2(ṽ1, ṽ2)

∂ṽ2
− ∂ti2(ṽ1, ṽ2)

∂ṽ2

∣∣∣∣
ṽ2=v̂i2

Combining the expression of ti2, the FOC is equivalent to

δ(v1 − ṽ1)
∂xi

2(ṽ1, ṽ2)

∂ṽ2
+ (v2 − v̂i2)

∂yi2(ṽ1, ṽ2)

∂ṽ2
= 0

When the feasibility condition is binding, yi2 + xi
2 = 1, we have

v̂i2 = v2 + δ(ṽ1 − v1)

The Individual Rationality Condition, designated as IR0
2, states that given

the consumer reporting truthfully in both periods, u0
2(v1, v1, v2, v2) ≥

0, ∀v1, v2. Given lemma 1,

u0
2(v1, v1, v2, v2) = −t02(v1) +

∫ v2

0

y02(v1, t)dt ≥ −t02(v1) = u0
2(v1, v1, 0, 0) ≥ 0

Therefore IR0
2 is equivalent to t02(v1) ≤ 0, ∀v1.
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Since the outside option for the consumer owning P1 is δv1 in period 2, we

define IR1
2 as: given the consumer reporting truthfully in both periods,

u1
2(v1, v1, v2, v2) ≥ δv1, ∀v1, v2 which is equivalent to

u1
2(v1, v1, 0, 0) = −t12(v1) ≥ δv1, ∀v1

Importantly, no IR restriction is put on those who do not report truthfully in

period 1.

Period 1

Consumers’ utility in period 1, given their true valuations and their reports, is

u1(v1, ṽ1) = v1·x1(ṽ1)−t1(ṽ1)+(1−x1(ṽ1))Ev2|v1 [û
0
2(v1, ṽ1, v2)]+x1(ṽ1)Ev2|v1 [û

1
2(v1, ṽ1, v2)]

The Incentive Compatibility Condition, IC1, is defined as,

IC1 : v1 ∈ argmax
ṽ1

u1(v1, ṽ1), ∀v1

Lemma 2. IC1 is equivalent to

1. ∀v′1, v′′1 , ∫ v′′1

v′1

(
∂u1(v1 = t, ṽ1 = t)

∂v1
− ∂u1(v1 = t, ṽ1 = v′1)

∂v1

)
dt ≥ 0

2. For every v1,

t1(v1) = t1 + v1 · x1(v1) + (1− x1(v1))Ev2 [û
0
2(v1, v1, v2)]

+ x1(v1)Ev2 [û
1
2(v1, v1, v2)]−

∫ v1

0

∂u1(v1 = t, ṽ1 = t)

∂v1
dt

The Individual Rationality Condition in period 1, IR1, is u1(v1, v1) ≥ 0, ∀v1,
which is equivalent to

u1(0, 0) = −t1 ≥ 0
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2.2 Manufacturer’s problem

When considering a consumer’s valuation in period 1, v1, the revenue the manu-

facturer generates from this consumer is as follows:

R(v1) = t1(v1) + (1− x1(v1))Ev2|v1 [t
0
2(v1, v2)] + x1(v1)Ev2|v1 [t

1
2(v1, v2)]

= t1 + v1x1(v1)−
∫ v1

0

∂u1(v1 = t, ṽ1 = t)

∂v1
dt

+ (1− x1(v1))Ev2|v1 [δv1 · x0
2(v1, v2) + v2 · y02(v1, v2)]

+ x1(v1)Ev2|v1 [δv1 · x1
2(v1, v2) + v2 · y12(v1, v2)]

The manufacturer’s objective is to maximize its revenue

Π(x1, y
0
2, y

1
2, x

0
2, x

1
2) =

∫ +∞

0

R(v1)dF (v1)

with constraints

1. yi2(v1, v2), i ∈ {0, 1} is increasing in v2 for any v1.

2. ∀v′1, v′′1 , ∫ v′′1

v′1

(
∂u1(v1 = t, ṽ1 = t)

∂v1
− ∂u1(v1 = t, ṽ1 = v′1)

∂v1

)
dt ≥ 0

Apparently, t1 should be 0. Note that both t02(v1) and t12(v1) are offset in

the expression of R(v1). Except for specific mention, we can fix t02(v1) = 0 and

t12(v1) = −δv1, ∀v1, without loss of generality.

3 Optimal Mechanism

In this section, we solve the optimal selling mechanism. We first solve the extreme

case where consumers’ valuations are intertemporally uncorrelated. We find that

the optimal mechanism brings inefficiency. Then, we present the general case.

3.1 Uncorrelated Valuation

We begin by considering the case where v1 and v2 are independent, i.e., G(v2|v1) =
G(v2).

Proposition 1. The allocation rule of the optimal mechanism is:
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1.

x1(v1) =

{
0 v1 ≤ v∗1

1 otherwise

where v∗1 is the Myersonian cutoff. ϕ is the Myersonian virtual value.

ϕ(v∗1) = v∗1 −
1− F (v∗1)

f(v∗1)
= 0;

2.

y12(v1, v2) =

{
0 v2 ≤ δϕ(v1)

1 otherwise
, and x1

2(v1, v2) = 1− y12(v1, v2);

3.

y02(v1, v2) = 1 and x0
2(v1, v2) = 0.

Under this optimal selling mechanism, consumers might receive P2 in period 2,

even if owning P1 would provide higher utility. This suggests that this mechanism

introduces inefficiency, beyond the consumers with v1 < v∗1 not obtaining P1.

This inefficiency arises because consumers benefit from privately knowing v1 in

both periods. When v1 is high, it is less likely that consumers will receive P2 in

period 2, which results in a higher information rent also in period 2. To mitigate

this, the optimal mechanism increases the chances that consumers receive P2, even

when it’s not efficient to do so (v2 < δv1). Consumers accept this because they

receive a refund for making this choice, which is reflected in the transfer in period

2 is

t12(v1, v2) =

{
0 v2 ≤ δϕ(v1)

−δ 1−F (v1)
f(v1)

otherwise

With

∂u1

∂v1

∣∣∣∣
ṽ1=v1

= (1− x1(v1))δEv2 [x
0
2(v1, v2)] + x1(v1)

(
1 + δEv2 [x

1
2(v1, v2)]

)
= x1(v1)

(
1 + δEv2 [1− y12(v1, v2)]

)
,

if v1 ≤ v∗1, the transfer in period 2 is 0, t02(v1, v2) = 0, and

t1(v1) = Ev2 [û
0
2(v1, v1, v2)] =

∫ +∞

0

v2dG(v2)

which is the expected surplus from P2.
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If v1 > v∗1,

t1(v1) = v1 +Ev2 [û
1
2(v1, v1, v2)]−

∫ v1

v∗1

(
1 + δEv2 [1− y12(t, v2)]

)
dt

= (1 + δ)v∗1 +Ev2

[
(v2 − δv1)y

1
2(v1, t)− t12(v1, t)

]
+

∫ v1

v∗1

δEv2 [y
1
2(t, v2)]dt

= (1 + δ)v∗1 +

∫ +∞

δϕ(v1)

(v2 − δϕ(v1))dG(v2) +

∫ v1

v∗1

δ[1−G(δϕ(t))]dt

where the first item is the price for P1, the second item is the expected additional

surplus (or deficit if v2 < δv1) plus refund from P2, and the remaining item

measures the reduced information rent shared with the consumer. The last two

items together constitute the value of a swap. With this swap, the consumer can

choose to exchange P1 for P2 and get a refund, if his valuation is high enough.

This mechanism looks similar but radically different from a trade-in policy. In

a trade-in policy, customers typically buy P2 at a reduced price if they already

own P1, while in the optimal selling mechanism, the purchase of P2 in period

2 is effectively completed in period 1. This approach appears to generate more

profit than a traditional trade-in policy because consumers can’t benefit from the

information rent of privately knowing their v2.

It is worth mentioning that

t1(v
∗
1) = (1 + δ)v∗1 +

∫ +∞

0

v2dG(v2)

and

t12(v
∗
1, v2) = −δ

1− F (v∗1)

f(v∗1)
= −δv∗1, ∀v2

So, the surplus of those consumers with v∗1 is totally exacted.

Value of the Swap

ϕ′(v1) > 1, and

t′1(v1) = − δϕ′(v1)[1−G(δϕ(v1))] + δ[1−G(δϕ(v1))]

= δ[ϕ′(v1)− 1][G(δϕ(v1))− 1] < 0

The value of the swap decreases as v1 increases, since the consumer is unlikely to

find P2 giving more additional value and thus does not execute this swap. Even

if it is executed, the refund is low. Therefore, in period 1, consumers have no

incentives to misreport upwards.
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3.2 Correlated Valuation

Now assume that v2 follows a distribution conditional on v1, G(v2|v1), and G(v2|v1)
first-order stochastic dominates G(v2|v′1) if v1 > v′1.

The expression for ∂u1

∂v1
, given ṽ1 = v1, is different from the previous case. It

takes the following form:

∂u1

∂v1

∣∣∣∣
ṽ1=v1

= x1(v1)
(
1 + δEv2|v1 [x

1
2(v1, v2)]

)
+ (1− x1(v1))δEv2|v1 [x

0
2(v1, v2)]

+ x1(v1)Ev2|v1 [y
1
2(v1, v2)I2(v1, v2)] + (1− x1(v1))Ev2|v1 [y

0
2(v1, v2)I2(v1, v2)]

where I2(v1, v2) is the impulse response function,

I2(v1, v2) = −
∂G(v2|v1)

∂v1

g(v2|v1)

The value of I2 indicates how much information v1 provides about v2. A higher

value of I2 signifies a stronger correlation.

Proposition 2. Under the following assumption,

1. v2 − 1−F (v1)
f(v1)

I2(v1, v2) is increasing in v2,

2. 1−F (v1)
f(v1)

I2(v1, v2) is decreasing in v1, and

3. Either I2(v1, v2) ≤ δ, ∀v1, v2 and I2(v1, v2) is increasing in both v1 and v2,

or I2(v1, v2) ≥ δ, ∀v1, v2 and I2(v1, v2) is decreasing in both v1 and v2,

the allocation rule of the optimal mechanism is as follows:

1.

x1(v1) =

{
0 v1 ≤ v∗1

1 otherwise

2.

y12(v1, v2) =

{
0 v2 ≤ v̄12(v1)

1 otherwise
,

where v̄12(v1) is implicitly defined by the equation

v̄12(v1)−
1− F (v1)

f(v1)
I2(v1, v̄

1
2(v1)) = δϕ(v1),

and

x1
2(v1, v2) = 1− y12(v1, v2);
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3.

y02(v1, v2) =

{
0 v2 ≤ v̄02(v1)

1 otherwise
,

where v̄02(v1) is implicitly defined by the equation

v̄02(v1)−
1− F (v1)

f(v1)
I2(v1, v̄

0
2(v1)) = 0,

and

x0
2(v1, v2) = 0.

If v1 < v∗1, in period 2, according to the allocation rule y02, the consumer will

receive P2 if their reported valuation is high enough. The transfer is

t02(v1, v2) =

{
0 v2 ≤ v̄02(v1)

v̄02(v1) otherwise

In period 1, the consumer does not get P1 and his monetary transfer is

t1(v1) = Ev2|v1 [û
0
2(v1, v1, v2)]−

∫ v1

0

Ev2|t[δx
0
2(t, v2) + y02(t, v2)I2(t, v2)]dt

=

∫ +∞

v̄02(v1)

(v2 − v̄02(v1))dG(v2|v1)−
∫ v1

0

Ev2|t[y
0
2(t, v2)I2(t, v2)]dt

These two terms represent the value of a call option, which is the option to get

P2 in period 2 and v̄02(v1) is the strike price. The first part is the additional value

from P2 in period 2 and the second item is the reduction of consumer’s information

rent. The higher I2 is, the lower the reduced amount is and the more consumer

surplus the manufacturer has to share with the consumer.

Value of the Call Option

The derivative of the value of the call option is

∂t1(v1)

∂v1
= −

∫ +∞

v̄02(v1)

∂v̄02(v1)

∂v1
dG(v2|v1) > 0

The inequity comes from the strike price decreasing in v1 derived from the implicit

function theorem. The value of the call option increases in v1 because the consumer

with a relatively higher valuation for P1 is more likely to have a higher valuation

for P2. Thus, the manufacturer sets a lower strike price to encourage trade in

period 2 and extract more consumer surplus through this option.
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If v1 > v∗1, the consumer receives P1 in period 1. With higher I2, more infor-

mation is embedded in v2 regarding v1. As a result, the manufacturer’s strategy

to reduce information rent through upgrading becomes less effective. One can

observe this from the fact that the consumer owning P1 gets P2 less often. He

gets P2 only if

v2 > v̄12(v1) = δv1 − [δ − I2(v1, v̄
1
2(v1))]

1− F (v1)

f(v1)

where the right-hand side is increasing in I2. The monetary transfer is

t12(v1, v2) =

{
0 v2 ≤ v̄12(v1)

[I2(v1, v̄
1
2(v1))− δ] 1−F (v1)

f(v1)
otherwise

Different from the uncorrelated case, if I2(v1, v2) ≥ δ, ∀v1, v2, to get P2, consumers

now need to pay rather than get a refund in period 2, [I2(v1, v̄
1
2(v1))−δ]1−F (v1)

f(v1)
> 0.

The monetary transfer in period 1 is

t1(v1) = v1 +Ev2|v1 [û
1
2(v1, v1, v2)]−

∫ v∗1

0

Ev2|t[δx
0
2(t, v2) + y02(t, v2)I2(t, v2)]dt

−
∫ v1

v∗1

Ev2|t[1 + δx1
2(t, v2) + y12(t, v2)I2(t, v2)]dt

= (1 + δ)v∗1 +

∫ +∞

v̄12(v1)

(v2 − v̄12(v1))dG(v2|v1)−
∫ v∗1

0

Ev2|t[y
0
2(t, v2)I2(t, v2)]dt

+

∫ v1

v∗1

Ev2|t[(δ − I2(t, v2))y
1
2(t, v2)]dt

Similar to the uncorrelated case, the monetary transfer in period 1 consists of the

price for P1 and a swap.

Value of the Swap

The derivative of the value of the swap is(
δ − ∂v̄12

∂v1

)
(1−G(v̄12|v1))

Note that if I2(v1, v2) ≤ δ, ∀v1, v2 and I2(v1, v2) is increasing in v1, along with

ϕ′(v1) > 1,

∂v̄12
∂v1

=
I2 + (δ − I2)ϕ

′(v1) +
1−F (v1)
f(v1)

∂I2
∂v1

1− ∂I2
∂v2

1−F (v1)
f(v1)

> δ

Similarly, as in the uncorrelated case, the value of the option decreases in v1.
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However, the opposite result can be found if I2(v1, v2) > δ, ∀v1, v2 and I2(v1, v2)

is decreasing in both v1 and v2. This is because with more information about v2

embedded in v1, the consumer with high v1 knows that v2 is more likely to be high

also, in which case the option becomes valuable.

3.3 Relaxing the Monotone Hazard Rate

We have assumed that the hazard rate f/(1−F ) is non-decreasing and in propo-

sition 2, the impulse response function is monotone. In this section, we relax these

assumptions and use the ironing technique (Myerson [1981]) to find the optimal

mechanism. We first discuss the case where consumers’ valuations are intertem-

porally uncorrelated. Then, we extend it to the general case. Moreover, without

the monotone hazard rate, the manufacturer’s revenue decreases compared to the

relaxed problem. In section 4.3, we demonstrate how this discrepancy recovers

with strategic information disclosure.

3.3.1 Uncorrelated Valuation

We need the necessary condition 1 in lemma 2 to guarantee the consumers’ in-

centive compatibility condition in period 1. This condition holds if and only if
∂u1(v1,ṽ1)

∂v1
= x1(ṽ1) (1 + δEv2 [x

1
2(ṽ1, v̂2)]) = x1(ṽ1)

(
1 + δG

(
δv1 − δ 1−F (ṽ1)

f(ṽ1)

))
is in-

creasing in ṽ1 for any v1.
3 Without the non-decreasing hazard rate, however, it

is not always non-decreasing in ṽ1. We discuss the optimal mechanism under this

case, specifically for xi
2 and yi2, by ironing the hazard rate.

Proposition 3. The allocation rule of the optimal mechanism is:

1.

x1(v1) =

{
0 v1 ≤ v∗1

1 otherwise

2.

y12(v1, v2) =

{
0 v2 ≤ v̄2(v1) := δv1 + κ(v1)

1 otherwise
,

and

x1
2(v1, v2) = 1− y12(v1, v2);

3.

y02(v1, v2) = 1 and x0
2(v1, v2) = 0.

3“If” part is obvious. “Only if” part comes from the separation of v1 and ṽ1 in the expression.
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Here, κ(v1) should satisfy the following properties,

1. κ(v1) is non-decreasing;

2. there exists a partition of [0,+∞) into intervals such that κ(v1) is either

equal to −δ 1−F (v1)
f(v1)

or a constant;

3. if κ(v1) is a constant on interval (v1, v̄1), for any v1 ∈ (v1, v̄1),∫ v1

v1

(
κ(v1) + δ

1− F (v1)

f(v1)

)
g(κ(v1) + δv1)dF (v1) ≤ 0.

with equality for v1 = v̄1.

We next discuss how to find such a κ(·), in other words, the ironing procedure

of a non-monotonic hazard rate. Panel 1a gives an example of a non-monotonic

hazard rate. We first partition it into monotonic intervals, as shown in panel 1b.

Then, we flatten (“iron”) the decreasing part as shown in panel 1c. The value of

the constant is determined by the equality in the third property of κ(·). Then, in
panel 1d, we flatten the drop from the left. Again, the value of the constant is

determined by the equality. In panel 1e, we flatten the right drop. We iteratively

flattens all the other drops, as in panel 1f to 1g, and finally gets the κ(·). It is

easy to verify that the κ(·) generated satisfies all the property in proposition 3.

3.3.2 Correlated Valuation

We relax the monotone hazard rate assumption and the assumption in proposition

2 and find the optimal mechanism by extending the ironing technique to the

general case.

Proposition 4. If I2(v1, v2) ≤ δ, ∀v1, v2, the allocation rule of the optimal mech-

anism is:

1.

x1(v1) =

{
0 v1 ≤ v∗1

1 otherwise

2.

y12(v1, v2) =

{
0 v2 ≤ v̄12(v1) := δv1 + κ1(v1)

1 otherwise
,

and

x1
2(v1, v2) = 1− y12(v1, v2).
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(a)

(b) (c) (d)

(e) (f) (g)

Figure 1: The ironing procedure of a non-monotonic hazard rate.
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Here, κ1(v1) should satisfy the following properties,

(a) κ1(v1) is non-decreasing;

(b) there exists a partition of [0,+∞) into intervals such that κ1(v1) is

either equal to [I2(v1, κ
1(v1) + δv1)− δ]1−F (v1)

f(v1)
or a constant;

(c) if κ1(v1) is a constant on interval (v1, v̄1), for any v1 ∈ (v1, v̄1),∫ v1

v1

(
κ1(v1) + [δ − I2(v1, κ

1(v1) + δv1)]
1− F (v1)

f(v1)

)
g(κ1(v1)+δv1|v1)dF (v1) ≤ 0.

with equality for v1 = v̄1.

3.

y02(v1, v2) =

{
0 v2 ≤ v̄02(v1) := κ0(v1)

1 otherwise
,

and

x0
2(v1, v2) = 0.

Here, κ0(v1) should satisfy following properties,

(a) κ0(v1) is non-increasing;

(b) there exists a partition of [0,+∞) into intervals such that κ0(v1) is

either equal to I2(v1, κ
0(v1))

1−F (v1)
f(v1)

or a constant;

(c) if κ0(v1) is a constant on interval (v1, v̄1), for any v1 ∈ (v1, v̄1),∫ v1

v1

(
κ0(v1)− I2(v1, κ

0(v1))
1− F (v1)

f(v1)

)
g(κ0(v1)|v1)dF (v1) ≥ 0.

with equality for v1 = v̄1.

To find such a κ1(·), instead of ironing the non-monotonic hazard rate as in

the uncorrelated valuation case, one needs to iron κ̂1(v1),

κ̂1(v1) = argmax
k

∫ +∞

k

(
v2 + (δ − I2(v1, v2 + δv1))

1− F (v1)

f(v1)

)
g(v2 + δv1|v1)dv2

And to find such a κ0(·), instead of ironing the non-monotonic hazard rate as in

the uncorrelated valuation case, one needs to iron κ̂0(v1),

κ̂0(v1) = argmax
k

∫ +∞

k

(
v2 − I2(v1, v2)

1− F (v1)

f(v1)

)
g(v2|v1)dv2
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3.4 More than 2 periods

The optimal selling mechanism can be extended to longer periods. In general, the

virtual value of Pn in period t is

Φ(n, t) = δt−n

(
vn −

1− F (v1)

f(v1)

n∏
i=2

Ii(vi−1, vi)

)
, n ≤ t

where

Ii(vi−1, vi) = −
∂G(vi|vi−1)

∂vi−1

g(vi|vi−1)

The consumer owning Pj upgrades to Pn in period n if and only if the virtual value

of Pn is higher than that of Pj, Φ(n, n) > Φ(j, n), and the monetary transfers are

determined by the IC and IR conditions.

According to the expression of virtual values, one can find that consumers’

information rent from privately knowing v1 passes through Ii, the information

about the new product embedded in the old one. Once one Ii = 0, consumers’

information rent disappears in the sequential periods. The following section shows

how the manufacturer benefits from this point.

4 Product Design and Disclosure

In the previous section, we assumed that the distribution of G(v2|v1) is exogenous.
However, the manufacturer has the capability to influence this distribution through

various types of upgrades. Some of these improvements are basic, like upgrading

chips, increasing battery capacity, or enhancing camera pixels, which intensify

the intertemporal dependence of consumers’ valuations. Conversely, other novel

upgrades, such as Face ID, Apple Pay, or 3D Touch, result in consumer valuations

that are less correlated with the older device.

4.1 Upgrade

In this section, we endogenize the distribution G(v2|v1) by assuming that, with

the consumer’s report ṽ1 in period 1, the manufacturer commits to making basic

upgrades in some proportion α(ṽ1) ∈ [α, 1]4 of the devices and replacing the rest

with novel upgrades in period 2. This situation can be thought of as the consumer’s

fixed time spent with the device. To introduce a new function or technology to P2,

4α < δ
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the manufacturer must retire the old one. As a result, the relationship between

v1 and v2 becomes,

v2 = α(ṽ1)v1 + [1− α(ṽ1)]ω

Here, ω ≥ 0 is a random variable independent of v1 and follows a cumulative

distribution function H (with corresponding probability density function h). In

this case, we can determine that,

I2(v1, v2; ṽ1) = −
∂G(v2|v1)

∂v1

g(v2|v1)
= −

∂H(
v2−α(ṽ1)v1

1−α(ṽ1)
)

∂v1

1
1−α(ṽ1)

h(v2−α(ṽ1)v1
1−α(ṽ1)

)
= α(ṽ1)

We consider the innovation cost as a sunk cost, not affecting the manufacturer’s

optimization problem. The manufacturer’s objective function is defined as:

Π′(x1, y
0
2, y

1
2, x

0
2, x

1
2, α) =

∫ +∞

0

R(v1)dF (v1)

According to the findings in Section 3, iterating the product with novel up-

grades brings two opposite effects. First, a higher proportion of novel upgrades

(lower α) reduces the intertemporal correlation between consumers’ valuation.

Thus, the manufacturer can reduce consumers’ information rent from privately

knowing v1 under the optimal mechanism and extract more surplus. Second, it

leads to an efficiency loss that, in turn, affects revenue negatively. These two

effects offset each other.

One can observe that the marginal efficiency loss caused by novel upgrades is∫ +∞

0

∂v̄2(v1)

∂α(v1)
Ev2|v1 [y

1
2(v1, v2)]dF (v1) =

∫ +∞

0

(1− F (v1))Ev2|v1 [y
1
2(v1, v2)]dv1

which coincides with the marginal reduced information rent,∫ +∞

0

∫ v1

0

Ev2|t

[
∂I2(t, v2; t)

∂α(t)
y12(t, v2)

]
dtdF (v1) =

∫ +∞

0

(1−F (v1))Ev2|v1 [y
1
2(v1, v2)]dv1

The equality comes from integrating by parts.

After eliminating these two effects, the manufacturer faces a trade-off between

either keeping the virtual value ϕ(v1) or replacing it with expected value brought

by novel functions E[ω]. When v1 is low, the virtual value is low, so introducing as

many novel upgrades as possible is optimal. Otherwise, the manufacturer should

just make basic upgrades. Therefore, the following proposition demonstrates that

the manufacturer’s optimal strategy α follows a bang-bang solution.
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Proposition 5. There is a unique cutoff va1 > v∗1 which satisfies∫ +∞

δ−α
1−α

ϕ(va1 )

(1−H(t))dt =
1− δ

1− α
ϕ(va1).

The manufacturer chooses a level of basic upgrades α(ṽ1) = α if ṽ1 < va1 . Other-

wise, it chooses α(ṽ1) = 1.

4.2 Depreciation

In addition to novel upgrades, the manufacturer has the ability to adjust the de-

preciation level of old devices, either positively or negatively. This can be achieved

through actions such as providing maintenance services or using non-replaceable

components (e.g., non-replaceable batteries). The extent of depreciation is con-

trolled by the parameter δ in the model.

A low depreciation level, corresponding to a large δ, has two significant effects.

First, it increases the selling price of P1 because P1 retains a high value in period

2. Conversely, it reduces the likelihood of consumers upgrading from P1 to P2,

resulting in a decrease in the sales of P2. The following proposition demonstrates

that the first effect dominates. This is due to the fact that the first factor impacts

all consumers purchasing P1, while the second effect only affects those consumers

with sufficiently high valuations for P2.

Proposition 6. Even without a commitment on the value of δ in period 1, The

manufacturer chooses a depreciation level δ = 1 with commitment in period 1,

regardless of the distributions F (v1) or H(ω).

Apparently, P1 with low depreciation discourages the consumers to upgrade

for P2. Therefore, even without commitment in period 1, the manufacturer will

keep the value of P1 to avoid paying a refund.

4.3 Information Disclosure

It is reasonable to expect that consumers do not have a precise valuation of P2 with

novel functions before owning it. This gives the manufacturer areas to manipulate

consumers’ perception of ω by using different ways to disclose information. Specifi-

cally, it chooses a rule of information disclosure (signal), s(ω|ṽ1) : [0,+∞) → ∆M ,

where s(ω|ṽ1) is a signal observed by the consumer reporting ṽ1 in period 1 with

valuation of novel functions ω and M is the signal space. Since the consumer’s
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utility is linear in v2, and thus linear in ω, E[ω|s] is a sufficient statistic for de-

termining their preference. Therefore, we only need to focus on the realization of

E[ω|s], of which the distribution is denoted as Ĥ ∈ ∆([0,+∞)). Ĥ can be induced

by a rule of information disclosure if and only if it is a mean-preserving contract

of H, ∫ ω

0

Ĥ(t|ṽ1)dt ≤
∫ ω

0

H(t)dt, ∀ω ∈ [0,+∞)

and ∫ +∞

0

[1− Ĥ(t|ṽ1)]dt ≤
∫ +∞

0

[1−H(t)]dt

Then, we study the optimal per-consumer information disclosure. The follow-

ing example shows how the manufacturer strengthens consumers’ incentives to

report truthfully by making customized disclosure of novel functions.

Example 1. Suppose that v1 ∈ {a, b} with Probability 1/2 each, 0 < a < b <

2a ≤ 1. v2 = ω follows a uniform distribution H on [0, 1] which is independent

of v1. Denote ta (tb) the monetary transfer in period 1 if the consumer reports

ṽ1 = a (ṽ1 = b) in period 1. Denote ra (rb) the monetary transfer in period 2 if the

consumer reports ṽ1 = a (ṽ1 = b) in period 1. Assume δ = 1. Then, the consumer

will upgrade if v2 − rṽ1 ≥ v1, and

u1(v1, ṽ1) = −tṽ1 + v1[1 +H(max{0, v1 + rṽ1})] +
∫ 1

max{0,v1+rṽ1}
(v2 − rṽ1)dH(v2)

The IC1 requires that u1(v1, v1) ≥ u1(v1, ṽ1), ∀v1, ṽ1. The IR1 requires that

u1(v1, v1) ≥ 0, ∀v1. The revenue of the manufacture is

1

2

∑
v1∈{a,b}

tv1 + rv1 [1−H(max{0, v1 + rv1})]

It is easy to verify that the IC1 for v1 = b and the IR1 for v1 = a are binding.

The solution is

ra = a− b, rb = 0

The complete solution is in Appendix 6.2.

Now, consider a mean-preserving contract of H(v2|ṽ1 = a) that it pools the

interval [2a− b, 1],

Ĥ(v2|ṽ1 = a) =


v2 v2 ∈ [0, 2a− b)

2a− b v2 ∈ [2a− b, 1+2a−b
2

)

1 v2 ∈ [1+2a−b
2

, 1]
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It only decreases the value of u1(b, a).

The IC1 is not binding, which enables the manufacturer to extract more surplus

from consumers with v1 = b through increasing tb. Intuitively, the information

about v2 is more “valuable” to consumers with v1 = b since they only upgrade after

knowing that v2 is high enough. Thus, reducing the informativeness of Ĥ(v2|ṽ1 =
a) strengthens their incentive to report truthfully.

We focus on the binary-partition signal structure in which for any report ṽ1 in

period 1, it only reveals whether v2 is above or below the threshold. The following

proposition shows that when the monotone hazard rate assumption is violated,

per-consumer information disclosure enables the manufacturer to generate more

profit even if v1 and v2 are independent, G(v2|v1) = H(v2), which is different from

the finding in Li and Shi [2017]. We simplify the discussion to v1 ∈ [v∗1, v̄] to

guarantee full supply in period 1.

Proposition 7. Assume that for any v1,

E[v2|v2 < δϕ(v1)] + δ
1− F (v1)

f(v1)
< δv∗1;

and

E[v2|v2 > δϕ(v1)] + δ
1− F (v1)

f(v1)
> δv̄.

The binary-partition disclosure, for any report ṽ1 in period 1, only reveals

whether v2 is above or below the threshold δϕ(ṽ1), enables the manufacturer to

have a higher revenue than full disclosure when the hazard rate is not monotone.

5 Conclusion

This paper emphasizes the unique nature of incremental products, where the en-

during information rent arising from consumers’ private knowledge of product

valuations extends beyond the initial period. The manufacturer’s challenge lies in

reducing this rent by incentivizing consumers to upgrade to newer versions. This

is achieved through a selling mechanism that provides refunds instead of requiring

payments for upgrades. This distinction serves to extract additional surplus while

introducing a level of inefficiency, thus defining incremental products.

This paper unveils the strategic implications of endogenizing the consumers’

preference by incorporating consumer-reported valuations in dynamic mechanism

design. By committing to a mix of basic upgrades and novel upgrades in period
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2, the manufacturer influences consumer valuations, balancing the interplay be-

tween reduced information rent and efficiency loss. Despite the offsetting effects,

the manufacturer’s optimal strategy follows a bang-bang solution, maximizing

profitability by selectively introducing either basic or novel upgrades based on

consumers’ reported valuations.

The manipulation of consumer perceptions through strategic information dis-

closure plays a crucial role in dynamic mechanism design. Our analysis demon-

strates that per-consumer information disclosure, especially in scenarios where

hazard rates are non-monotonic, can significantly enhance the manufacturer’s

revenue even when there is no intertemporal dependency, challenging previous

findings. This highlights the dynamics of information asymmetry and strategic

disclosure in driving consumer behavior and market outcomes.
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6 Appendix

6.1 Manufacturer with Limited Commitment

In this section, unlike the main body, we assume that the manufacturer lacks

commitment power over two periods and can only commit to the selling scheme

within each period. The consumers’ problem remains the same as illustrated in

section 2.1, but the manufacturer’s problem differs. We discuss it in a backward

way.

Period 2

Given the consumer’s reports in both periods and the allocation of P1 in period

1, the manufacturer’s revenue in period 2 is as follows:

R2(v1, v2) = (1− x1(v1))t
0
2(v1, v2) + x1(v1)t

1
2(v1, v2)

The manufacturer’s objective is to maximize its revenue

Π2(y
0
2, y

1
2, x

0
2, x

1
2) =

∫ +∞

0

R2(v1, v2)dG(v2|v1)

with constraints

• yi2(v1, v2), i ∈ {0, 1} is increasing in v2 for any v1.

We denote Π∗
2(v1) as the maximized revenue in period 2.

Period 1

Given the consumer’s report in period 1, the manufacturer’s revenue in period

1 along with the expected revenue in period 2 is as follows:

R1(v1) = t1(v1) + Π∗
2(v1)

The manufacturer’s objective is to maximize its revenue

Π1(x1) =

∫ +∞

0

R1(v1)dF (v1)

with constraints

• ∀v′1, v′′1 , ∫ v′′1

v′1

(
∂u1(v1 = t, ṽ1 = t)

∂v1
− ∂u1(v1 = t, ṽ1 = v′1)

∂v1

)
dt ≥ 0
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Then, we present the optimal allocation rule.

Proposition 8. Under the following assumption,

1. G(·|v1) is regular for any v1,

2. Either I2(v1, v2) ≤ δ, ∀v1, v2 and I2(v1, v2) is increasing in both v1 and v2,

or I2(v1, v2) ≥ δ, ∀v1, v2 and I2(v1, v2) is decreasing in both v1 and v2,

the allocation rule of the optimal mechanism is as follows:

1.

x1(v1) =

{
0 v1 ≤ v∗1

1 otherwise

2.

yi2(v1, v2) =

{
0 v2 ≤ v̂2(v1)

1 otherwise
,

where v̂2(v1) is implicitly defined by the equation

v̂2 −
1−G(v̂2|v1)
g(v̂2|v1)

− δv1 = 0,

and

xi
2(v1, v2) = 1− yi2(v1, v2).

Due to the manufacturer’s limited commitment, the allocation rule resembles

selling two products across two periods. In period 1, the consumer receives P1 if

the virtual value is positive. In period 2, the consumer receives P2 if its virtual

value exceeds the outside option, which is the depreciated value of P1. Specifically,

v̂2 − δv1 =
1−G(v̂2|v1)
g(v̂2|v1) > 0 by the definition.

If v1 < v∗1, in period 2, the transfer is

t02(v1, v2) =

{
δv1 v2 ≤ v̂2(v1)

v̂2(v1) otherwise

In period 1, the consumer does not get P1 and his monetary transfer is

t1(v1) = Ev2|v1 [û
0
2(v1, v1, v2)]−

∫ v1

0

Ev2|t[δx
0
2(t, v2) + y02(t, v2)I2(t, v2)]dt

=

∫ +∞

v̂2(v1)

(v2 − v̂2(v1))dG(v2|v1)−
∫ v1

0

Ev2|t[δx
0
2(t, v2) + y02(t, v2)I2(t, v2)]dt
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The value of t1 is equivalent to the price of a call option in which the manufacturer

guarantees the consumer to get P1 in period 2 along with an option to get P2 with

a higher price.

If v1 > v∗1, in period 2, the transfer is

t12(v1, v2) =

{
0 v2 ≤ v̂2(v1)

v̂2(v1)− δv1 otherwise

If the consumer owns P1 in period 2, he can upgrade to P2 with a discount price,

which is similar to a trade-in policy.

In period 1, the consumer does not get P1 and his monetary transfer is

t1(v1) = v1 +Ev2|v1 [û
1
2(v1, v1, v2)]−

∫ v∗1

0

Ev2|t[δx
0
2(t, v2) + y02(t, v2)I2(t, v2)]dt

−
∫ v1

v∗1

Ev2|t[1 + δx1
2(t, v2) + y12(t, v2)I2(t, v2)]dt

= (1 + δ)v∗1 +

∫ +∞

v̂2(v1)

(v2 − v̂2(v1))dG(v2|v1)

−
∫ v∗1

0

Ev2|t[δx
0
2(t, v2) + y02(t, v2)I2(t, v2)]dt

+

∫ v1

v∗1

Ev2|t[(δ − I2(t, v2))y
1
2(t, v2)]dt

6.2 Proofs

Proof of lemma 1:

“⇒”: For any v′2 and v′′2 ,

ui
2(v1, ṽ1 = v1, v

′
2, v

′
2) ≥ ui

2(v1, ṽ1 = v1, v
′
2, v

′′
2)

⇔ δv1x
i
2(v1, v

′
2) + v′2y

i
2(v1, v

′
2)− ti2(v1, v

′
2) ≥ δv1x

i
2(v1, v

′′
2) + v′2y

i
2(v1, v

′′
2)− ti2(v1, v

′′
2)

and

ui
2(v1, ṽ1 = v1, v

′′
2 , v2‘

′) ≥ ui
2(v1, ṽ1 = v1, v

′′
2 , v

′
2)

⇔ δv1x
i
2(v1, v

′′
2) + v′′2y

i
2(v1, v

′′
2)− ti2(v1, v

′′
2) ≥ δv1x

i
2(v1, v

′
2) + v′′2y

i
2(v1, v

′
2)− ti2(v1, v

′
2)
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With the above two inequities,

v′2[y
i
2(v1, v

′
2)− yi2(v1, v

′′
2)]

≥ δv1x
i
2(v1, v

′′
2)− ti2(v1, v

′′
2)− δv1x

i
2(v1, v

′
2) + ti2(v1, v

′
2)

≥ v′′2 [y
i
2(v1, v

′
2)− yi2(v1, v

′′
2)]

⇔ (v′2 − v′′2)[y
i
2(v1, v

′
2)− yi2(v1, v

′′
2)] ≥ 0

Given the arbitrary values of v′2 and v′′2 , y
i
2(v1, v2) is increasing in v2 for any v1.

By applying the envelop theorem,

dûi
2(v1, ṽ1 = v1, v2)

dv2
=

∂ûi
2(v1, ṽ1 = v1, v2)

∂v2
= yi2(v1, v2)

Thus,

δv1x
i
2(v1, v2)+v2y

i
2(v1, v2)−ti2(v1, v2) = ûi

2(v1, v1, v2) = ûi
2(v1, v1, 0)+

∫ v2

0

yi2(v1, t)dt

Therefore,

ti2(v1, v2) = ti2(v1) + δv1 · xi
2(v1, v2) + v2 · yi2(v1, v2)−

∫ v2

0

yi2(v1, t)dt

where ti2(v1) = −ûi
2(v1, v1, 0).

“⇐”: For v′2 and v′′2 ,

ui
2(v1, ṽ1 = v1, v

′
2, v

′
2)− ui

2(v1, ṽ1 = v1, v
′
2, v

′′
2)

=

∫ v′2

v′′2

yi2(v1, t)dt+ (v′2 − v′′2)y
i
2(v1, v

′′
2) ≥ (v′2 − v′′2)y

i
2(v1, v

′′
2)− (v′2 − v′′2)y

i
2(v1, v

′′
2)

= 0

The inequity comes from yi2(v1, v2) increasing in v2. ■

Proof of lemma 2:
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The expression of t1 comes from the envelop theorem. Then, with t1,

IC1 ⇔ u1(v
′′
1 , v

′′
1) ≥ u1(v

′′
1 , v

′
1),∀v′1, v′′1

⇔
∫ v′′1

v′1

∂u1(v1 = t, ṽ1 = t)

∂v1
dt ≥ (v′′1 − v′1)x1(v

′
1)

+ (1− x1(v
′
1))(Ev2|v′′1 [û

0
2(v

′′
1 , v

′
1, v2)]−Ev2|v′1 [û

0
2(v

′
1, v

′
1, v2)])

+ x1(v
′
1)(Ev2|v′′1 [û

1
2(v

′′
1 , v

′
1, v2)]−Ev2|v′1 [û

1
2(v

′
1, v

′
1, v2)])

Note that

∂u1(v1, ṽ1)

∂v1
= x1(ṽ1)+(1−x1(ṽ1))

∂Ev2|v1 [û
0
2(v1, ṽ1, v2)]

∂v1
+x1(ṽ1)

∂Ev2|v1 [û
1
2(v1, ṽ1, v2)]

∂v1

Therefore, the right-hand side of inequality is
∫ v′′1
v′1

∂u1(v1=t,ṽ1=v′1)

∂v1
dt. ■

Proof of proposition 1:

By applying the envelop theorem,

du1

dv1

∣∣∣∣
ṽ1=v1

=
∂u1

∂v1

∣∣∣∣
ṽ1=v1

= (1− x1(ṽ1))
∂Ev2 [û

0
2(v1, ṽ1, v2)]

∂v1
+ x1(ṽ1)

(
1 +

∂Ev2 [û
1
2(v1, ṽ1, v2)]

∂v1

) ∣∣∣∣
ṽ1=v1

= (1− x1(v1))δEv2 [x
0
2(v1, v2)] + x1(v1)

(
1 + δEv2 [x

1
2(v1, v2)]

)
The Lagrangian function of the manufacturer’s optimization problem is

L =Π(x1, y
0
2, y

1
2, x

0
2, x

1
2)−

∫ +∞

0

∫ +∞

0

x1(v1)λ(v1, v2)(y
1
2(v1, v2) + x1

2(v1, v2)− 1)dG(v2)dF (v1)

−
∫ +∞

0

∫ +∞

0

(1− x1(v1))γ(v1, v2)(y
0
2(v1, v2) + x0

2(v1, v2)− 1)dG(v2)dF (v1)

First, we solve y12(v1, v2) and x1
2(v1, v2).

∂L
∂y12(v1, v2)

= [v2 − λ(v1, v2)]x1(v1)f(v1)g(v2)

∂L
∂x1

2(v1, v2)
= [δv1f(v1)− δ(1− F (v1))− λ(v1, v2)f(v1)]x1(v1)g(v2)
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With the constraint y12(v1, v2) + x1
2(v1, v2) ≤ 1, the solution is

y12(v1, v2) =

{
0 v2 ≤ δϕ(v1) := δ

(
v1 − 1−F (v1)

f(v1)

)
1 otherwise

and

x1
2(v1, v2) = 1− y12(v1, v2)

One can repeat these steps to solve y02(v1, v2) and x0
2(v1, v2), and will find that

they have the same expression as y12(v1, v2) and x1
2(v1, v2).

Then, we solve x1(v1).

∂L
∂x1(v1)

= v1f(v1) + (1− F (v1))δEv2 [x
0
2(v1, v2)]− (1− F (v1))

(
1 + δEv2 [x

1
2(v1, v2)]

)
− f(v1)Ev2 [δv1x

0
2(v1, v2) + v2y

0
2(v1, v2)]

+ f(v1)Ev2 [δv1x
1
2(v1, v2) + v2y

1
2(v1, v2)]

= ϕ(v1)f(v1)

The last equality comes from all things canceled given the same expression of y02

and y12 (x0
2 and x1

2). Consider regular distribution F , and

ϕ(v∗1) = 0

Then,

x1(v1) =

{
0 v1 ≤ v∗1

1 otherwise

Under this result, y02 = 1 for any v1 ≤ v∗1. In other words, the consumer not

owning P1 in period 1 always gets P2 in period 2.

The constraint 1 holds. Then, to check constraint 2, it is sufficient to verify

that

∂u1(v1, ṽ1)

∂v1
= x1(ṽ1)

(
1 + δEv2 [x

1
2(ṽ1, v̂

1
2)]
)
+ (1− x1(ṽ1))δEv2 [x

0
2(ṽ1, v̂

0
2)]

= x1(ṽ1) + δEv2 [x
0
2(ṽ1, v̂

0
2)]

is increasing in ṽ1 for any v1, or the single crossing property holds. The second

equation comes from the same expression of x1
2 and x0

2.

Since x0
2(ṽ1, ṽ2) = 1− y02(ṽ1, ṽ2), according to the FOC with respect to v̂02, we
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have v̂02 = v2 − δ(v1 − ṽ1).

∂u1(v1, ṽ1)

∂v1
= x1(ṽ1)+ δG(δϕ(ṽ1)+ δ(v1− ṽ1)) = x1(ṽ1)+ δG

(
δv1 − δ

1− F (ṽ1)

f(ṽ1)

)
which is increasing in ṽ1. ■

Proof of proposition 2:

R(v1) = t1 + v1x1(v1)

−
∫ v1

0

x1(t)
(
1 + δEv2|t

[
x1
2(t, v2)

])
dt−

∫ v1

0

(1− x1(t))δEv2|t
[
x0
2(t, v2)

]
dt

+ (1− x1(v1))Ev2|v1
[
δv1 · x0

2(v1, v2) + v2 · y02(v1, v2)
]

+ x1(v1)Ev2|v1
[
δv1 · x1

2(v1, v2) + v2 · y12(v1, v2)
]

−
∫ v1

0

(1− x1(t))Ev2|t
[
y02(t, v2)I2(t, v2)

]
dt

−
∫ v1

0

x1(t)Ev2|t
[
y12(t, v2)I2(t, v2)

]
dt

Again, we apply the Lagrangian approach and get

∂L
∂y12(v1, v2)

=

[
v2 −

1− F (v1)

f(v1)
I2(v1, v2)− λ(v1, v2)

]
x1(v1)f(v1)g(v2|v1)

∂L
∂x1

2(v1, v2)
=

[
δv1 − δ

1− F (v1)

f(v1)
− λ(v1, v2)

]
x1(v1)f(v1)g(v2|v1)[

v2 − 1−F (v1)
f(v1)

I2(v1, v2)
]
is increasing in v2 and ϕ(v1) < 0 if and only if v1 < v∗1.

Thus, if v1 < v∗1,

y12(v1, v2) =

{
0 v2 ≤ v̄02(v1)

1 otherwise

where v̄02 −
1−F (v1)
f(v1)

I2(v1, v̄
0
2) = 0, and x1

2(v1, v2) = 0.

If v1 ≥ v∗1,

y12(v1, v2) =

{
0 v2 ≤ v̄12(v1)

1 otherwise

where v̄12 −
1−F (v1)
f(v1)

I2(v1, v̄
1
2) = δϕ(v1), and x1

2(v1, v2) = 1− y12(v1, v2).

One can repeat these steps to solve y02(v1, v2) and x0
2(v1, v2), and will find that

they have the same expression as y12(v1, v2) and x1
2(v1, v2).
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Then, we solve x1(v1).

∂L
∂x1(v1)

= v1f(v1)− (1− F (v1))
(
1 + δEv2|v1 [x

1
2(v1, v2)]

)
+ (1− F (v1))δEv2|v1 [x

0
2(v1, v2)]

− f(v1)Ev2 [δv1x
0
2(v1, v2) + v2y

0
2(v1, v2)] + f(v1)Ev2 [δv1x

1
2(v1, v2) + v2y

1
2(v1, v2)]

− (1− F (v1))Ev2|v1
[
y02(v1, v2)I2(v1, v2)

]
+ (1− F (v1))Ev2|v1

[
y12(v1, v2)I2(v1, v2)

]
= f(v1)ϕ(v1)

The last equality comes from all things canceled given the same expression of

y02 and y12 (x0
2 and x1

2). Thus,

x1(v1) =

{
0 v1 ≤ v∗1

1 otherwise

Then, to check constraint 2, we need to verify that

∂u1(v1, ṽ1)

∂v1
= x1(ṽ1)

(
1 + δEv2|v1 [x

1
2(ṽ1, v̂

1
2)]
)
+ (1− x1(ṽ1))δEv2|v1 [x

0
2(ṽ1, v̂

0
2)]

+ x1(ṽ1)Ev2|v1 [y
1
2(ṽ1, v̂

1
2)I2(v1, v2)] + (1− x1(ṽ1))Ev2|v1 [y

0
2(ṽ1, v̂

0
2)I2(v1, v2)]

= x1(ṽ1)
(
1 + δ +Ev2|v1 [y

1
2(ṽ1, v̂

1
2)(I2(v1, v2)− δ)]

)
+ (1− x1(ṽ1))Ev2|v1 [y

0
2(ṽ1, v̂

0
2)I2(v1, v2)]

is increasing in ṽ1 for any v1, or the single crossing property. Since x1
2(ṽ1, ṽ2) =

1 − y12(ṽ1, ṽ2) if ṽ1 ≥ v∗1, according to the FOC with respect to v̂12, we have v̂12 =

v2 − δ(v1 − ṽ1). Since x
0
2(ṽ1, ṽ2) = 0 if ṽ1 < v∗1, according to the FOC with respect

to v̂02, we have v̂02 = v2.

If I2(v1, v2) ≤ δ, ∀v1, v2 and I2(v1, v2) is increasing in both v1 and v2, the

condition y12(ṽ1, v̂
1
2) = 1 is equivalent to

v̂12 > δϕ(ṽ1) + I2(ṽ1, v̂
1
2)
1− F (ṽ1)

f(ṽ1)
⇔ v2 > δv1 + (I2(ṽ1, v̂

1
2)− δ)

1− F (ṽ1)

f(ṽ1)

The right-hand side of the inequality is increasing in ṽ1. Under this case,

Ev2|v1 [y
1
2(ṽ1, v̂

1
2)(I2(v1, v2)− δ)] is increasing to ṽ1.

If I2(v1, v2) ≥ δ, ∀v1, v2 and I2(v1, v2) is decreasing in both v1 and v2, the

right-hand side of the inequality is decreasing in ṽ1. Under this case,

Ev2|v1 [y
1
2(ṽ1, v̂

1
2)(I2(v1, v2)− δ)] is increasing to ṽ1.
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If ṽ1 < v∗1, 1− x1(ṽ1) = 1 and

Ev2|v1 [y
0
2(ṽ1, v̂

0
2)I2(v1, v2)] =

∫ +∞

v̄2(ṽ1)

I2(v1, v2)dG(v2|v1)

To have Ev2|v1 [y
0
2(ṽ1, v̂

0
2)I2(v1, v2)] increasing in ṽ1, v̄2(ṽ1) should decrease in ṽ1.

With v̄02(ṽ1)−
1−F (ṽ1)
f(ṽ1)

I2(ṽ1, v̄
0
2(ṽ1)) = 0,

∂v̄02
∂ṽ1

= −
∂
(
− 1−F (v1)

f(v1)
I2(v1,v2)

)
∂v1

∂
(
v2− 1−F (v1)

f(v1)
I2(v1,v2)

)
∂v2

< 0

The inequity comes from the first and the second assumption in the proposition.

Therefore, constraint 2 is satisfied. ■

Proof of proposition 3:

Π(x1, y
0
2, x

0
2, y

1
2, x

1
2) =

∫ +∞

0

R(v1)dF (v1)

=

∫ +∞

0

ϕ(v1)x1(v1)dF (v1)

+

∫ +∞

0

x1(v1)Ev2|v1
[
δϕ(v1)x

1
2(v1, v2) + v2y

1
2(v1, v2)

]
dF (v1)

+

∫ +∞

0

(1− x1(v1))Ev2|v1
[
δϕ(v1)x

0
2(v1, v2) + v2y

0
2(v1, v2)

]
dF (v1)

=

∫ +∞

0

ϕ(v1)x1(v1)dF (v1) +

∫ +∞

0

Ev2|v1 [δϕ(v1)x2(v1, v2) + v2y2(v1, v2)] dF (v1)

The last equation comes from the same expression of the expectation, so we do not

distinguish between x0
2 and x1

2 (y
0
2 and y12). Then, the solution x1 = 1 if ϕ(v1) ≥ 0

or v1 ≥ v∗1. Otherwise, x∗
1 = 0. Moreover, if ϕ(v1) < 0 or v1 < v∗1, x

0
2(v1, v2) should

be 0 and y02(v1, v2) should be 1 obviously, and thus the monotonicity constraint

holds. We can just focus on the case v1 ≥ v∗1.

If v1 ≥ v∗1, ϕ(v1) is non-negative. Thus, the feasibility condition must be

binding, y12 + x1
2 = 1. Then, Π is linear in y12. According to the extreme point

theorem (Bauer’s Maximum Principle), for any v1 ≥ v∗1, each of the solution

y12(v1, ·) must be extreme points in the space of increasing functions [0,+∞) →
[0, 1], which are step functions. The cutoff of y12(v1, ·) is denoted as v̄2(v1) :=

δv1 + κ(v1).

35



To guarantee the incentive compatibility condition, one needs to haveEv2 [x
1
2(ṽ1, v̂2)] =

Ev2 [1 − y12(ṽ1, v̂2)] = G (δv1 + κ(ṽ1)) being increasing in ṽ1, which means κ(v1)

should be increasing in v1, or κ̇(v1) ≥ 0.

Then, we check the κ(v1) characterized is the solution of the manufacturer’s

optimization problem. We focus on the Hamiltonian (only with regard to y2) of

the problem,

H(κ̇, κ, ν, v1) = f(v1)

∫ +∞

v̄2(v1)

(v2 − δϕ(v1))dG(v2) + ν(v1)κ̇(v1)

= f(v1)

∫ +∞

κ(v1)

(
v2 + δ

1− F (v1)

f(v1)

)
g(v2 + δv1)dv2 + ν(v1)κ̇(v1)

where κ̇(v1) is the control variable and κ(v1) is the state variable. The necessary

conditions of the optimization are

1. κ̇(v1) maximizes H(κ̇, κ, ν, v1);

2. κ(v1) and ν(v1) solve the following system,

ν̇(v1) = −∂H
∂κ

= f(v1)

(
κ(v1) + δ

1− F (v1)

f(v1)

)
g(κ(v1) + δv1).

We next prove that κ(v1) characterized in the proposition satisfies the necessary

conditions.

For an interval of v1 such that κ̇(v1) > 0, or the monotone condition is not

binding, ν(v1) should be 0 and ν̇(v1) = 0 which leads to κ(v1) = −δ 1−F (v1)
f(v1)

.

Moreover, apparently, κ̇(v1) maximizes H under this case.

For an interval (v1, v̄1) such that κ̇(v1) = 0, or κ(v1) is a constant, we should

have

0 = ν(v̄1)−ν(v1) =

∫ v̄1

v1

ν̇(v1)dv1 =

∫ v̄1

v1

(
κ(v1) + δ

1− F (v1)

f(v1)

)
g(κ(v1)+δv1)dF (v1)

Moreover, we claim that ν(v1) ≤ 0, v1 ∈ (v1, v̄1) because otherwise, κ̇(v1) = 0 does

not maximize H. It is equivalent to for any v1 ∈ (v1, v̄1),∫ v1

v1

(
κ(v1) + δ

1− F (v1)

f(v1)

)
g(κ(v1) + δv1)dF (v1) ≤ 0.

Next, we use the Arrow sufficient theorem to show that κ(v1) also satisfies the

sufficient condition by checking that Ĥ(κ, ν, v1) = max
κ̇

H(κ̇, κ, ν, v1) is concave in
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κ. This can be verified by that ∂Ĥ
∂κ

= 0 almost everywhere. Thus, Ĥ is concave in

κ. ■

Proof of proposition 4:

The proof is similar to that of proposition 3. We point out the subtle difference.

First, the revenue function is

R(v1) = v1x1(v1)−
∫ v1

0

(1− x1(t))Ev2|t
[
δx0

2(t, v2) + I2(t, v2)y
0
2(t, v2)

]
dt

−
∫ v1

0

x1(t)
(
1 +Ev2|t

[
δx1

2(t, v2) + I2(t, v2)y
1
2(t, v2)

])
dt

+ (1− x1(v1))Ev2|v1
[
δv1 · x0

2(v1, v2) + v2 · y02(v1, v2)
]

+ x1(v1)Ev2|v1
[
δv1 · x1

2(v1, v2) + v2 · y12(v1, v2)
]

and the objective function is

Π(x1, y
0
2, x

0
2, y

1
2, x

1
2) =

∫ +∞

0

R(v1)dF (v1)

=

∫ +∞

0

ϕ(v1)x1(v1)dF (v1)

+

∫ +∞

0

x1(v1)Ev2|v1

[
δϕ(v1)x

1
2(v1, v2) +

(
v2 − I2(v1, v2)

1− F (v1)

f(v1)

)
y12(v1, v2)

]
dF (v1)

+

∫ +∞

0

(1− x1(v1))Ev2|v1

[
δϕ(v1)x

0
2(v1, v2) +

(
v2 − I2(v1, v2)

1− F (v1)

f(v1)

)
y02(v1, v2)

]
dF (v1)

If v1 ≥ v∗1, the feasibility condition must be binding, y12 + x1
2 = 1. According

to the extreme point theorem, for any v1 ≥ v∗1, each of the solution y12(v1, ·) must

be extreme points. The cutoff of y12(v1, ·) is denoted as v̄12(v1) := δv1 + κ1(v1). To

guarantee the incentive compatibility condition, one needs to have

Ev2|v1 [(I2(v1, v2)− δ)y12(ṽ1, v̂
1
2)] =

∫ +∞

κ1(ṽ1)+δv1

(I2(v1, v2)− δ)g (v2|v1) dv2

being increasing in ṽ1. Take the derivative over ṽ1. One gets κ1(v1) should be

increasing in v1, or κ̇
1(v1) ≥ 0.

The Hamiltonian (only with regard to y12) of the problem,

H(κ̇1, κ1, ν, v1) = f(v1)

∫ +∞

v̄12(v1)

(
v2 − δϕ(v1)− I2(v1, v2)

1− F (v1)

f(v1)

)
dG(v2|v1) + ν(v1)κ̇

1(v1)

= f(v1)

∫ +∞

κ1(v1)

(
v2 + (δ − I2(v1, v2 + δv1))

1− F (v1)

f(v1)

)
g(v2 + δv1|v1)dv2 + ν(v1)κ̇

1(v1)
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If v1 < v∗1, ϕ(v1) < 0, so x0
2(v1, v2) should be 0. According to the extreme

point theorem, for any v1 < v∗1, each of the solution y02(v1, ·) must be extreme

points. The cutoff of y02(v1, ·) is denoted as v̄02(v1) := δv1 + κ0(v1). To guarantee

the incentive compatibility condition, one needs to have

Ev2|v1 [I2(v1, v2)y
0
2(ṽ1, v̂

0
2)] =

∫ +∞

κ0(ṽ1)

I2(v1, v2)g (v2|v1) dv2

being increasing in ṽ1. Take the derivative over ṽ1. One gets κ0(v1) should be

decreasing in v1, or κ̇
0(v1) ≤ 0.

The Hamiltonian (only with regard to y02) of the problem,

H(κ̇0, κ0, ν, v1) = f(v1)

∫ +∞

v̄02(v1)

(
v2 − I2(v1, v2)

1− F (v1)

f(v1)

)
dG(v2|v1)− γ(v1)κ̇

0(v1)

= f(v1)

∫ +∞

κ0(v1)

(
v2 − I2(v1, v2)

1− F (v1)

f(v1)

)
g(v2|v1)dv2 − γ(v1)κ̇

0(v1) ■

Proof of proposition 5:

Π′(x1, y
0
2, x

0
2, y

1
2, x

1
2, α) =

∫ +∞

0

R(v1)dF (v1)

=

∫ +∞

v∗1

ϕ(v1)dF (v1)

+

∫ +∞

v∗1

Ev2|v1

[
δϕ(v1)x

1
2(v1, v2) +

(
v2 − α(v1)

1− F (v1)

f(v1)

)
y12(v1, v2)

]
dF (v1)

+

∫ v∗1

0

Ev2|v1

[(
v2 − α(v1)

1− F (v1)

f(v1)

)
y02(v1, v2)

]
dF (v1)

:=

∫ +∞

v∗1

ϕ(v1)dF (v1) +

∫ +∞

0

T (v1, α(v1))dF (v1)
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If v1 ≤ v∗1,

T (v1, α(v1)) = Ev2|v1

[(
v2 − α(v1)

1− F (v1)

f(v1)

)
y02(v1, v2)

]
=

∫ +∞

α(v1)
1−F (v1)
f(v1)

(
v2 − α(v1)

1− F (v1)

f(v1)

)
dG(v2|v1)

=

∫ +∞

α(v1)
1−F (v1)
f(v1)

(
v2 − α(v1)

1− F (v1)

f(v1)

)
dH

(
v2 − α(v1)v1
1− α(v1)

)
= (1− α(v1))

∫ +∞

− α(v1)
1−α(v1)

ϕ(v1)

(
t+

α(v1)

1− α(v1)
ϕ(v1)

)
dH(t)

= (1− α(v1))

∫ +∞

− α(v1)
1−α(v1)

ϕ(v1)

(1−H(t))dt

Since ϕ(v1) < 0, − α(v1)
1−α(v1)

ϕ(v1) increases in α. Thus, T decreases in α. The optimal

α∗(v1) = α.

If v1 > v∗1,

T (v1, α(v1)) = Ev2|v1

[
δϕ(v1)x

1
2(v1, v2) +

(
v2 − α(v1)

1− F (v1)

f(v1)

)
y12(v1, v2)

]
= δϕ(v1) +Ev2|v1

[(
v2 − δϕ(v1)− α(v1)

1− F (v1)

f(v1)

)
y12(v1, v2)

]
= δϕ(v1) +

∫ +∞

v̄12(v1)

(
v2 − v̄12(v1)

)
dG(v2|v1)

where v̄12(v1) = δϕ(v1) + α(v1)
1−F (v1)
f(v1)

.

If α(v1) > δ,

v2 − v̄12(v1) = (α(v1)− δ)ϕ(v1) + (1− α(v1))ω > 0

Thus,

T (v1, α(v1)) = δϕ(v1) +

∫ +∞

v̄12(v1)

(
v2 − v̄12(v1)

)
dG(v2|v1)

= δϕ(v1) +

∫ +∞

α(v1)v1

(
v2 − v̄12(v1)

)
dG(v2|v1)

= δϕ(v1) + α(v1)v1 − v̄12(v1) +

∫ +∞

α(v1)v1

(1−G(v2|v1))dv2

= α(v1)ϕ(v1) + (1− α(v1))

∫ +∞

0

(1−H(t))dt
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T is linear in α(v1) when α(v1) > δ.

If α(v1) < δ,

T (v1, α(v1)) = δϕ(v1) +

∫ +∞

v̄12(v1)

(
v2 − v̄12(v1)

)
dG(v2|v1)

= δϕ(v1) +

∫ +∞

v̄12(v1)

(1−G(v2|v1))dv2

= δϕ(v1) + (1− α(v1))

∫ +∞

γ(v1,α(v1))

(1−H(t))dt

where γ(v1, α(v1)) =
δ−α(v1)
1−α(v1)

ϕ(v1).

∂T

∂α
= −

∫ +∞

γ(v1,α)

(1−H(t))dt− (1− α)[1−H(γ(v1, α))]
δ − 1

(1− α)2
ϕ(v1)

= γ(v1, α)(1−H(γ(v1, α))−
∫ +∞

γ(v1,α)

th(t)dt+ [1−H(γ(v1, α))]
1− δ

1− α
ϕ(v1)

= −
∫ +∞

γ(v1,α)

th(t)dt+ [1−H(γ(v1, α))]ϕ(v1)

∂2T

∂α2
= γ(v1, α)h(γ(v1, α))

∂γ

∂α
− h(γ(v1, α))ϕ(v1)

∂γ

∂α

=
1

1− α

(
δ − 1

1− α
ϕ(v1)

)2

h(γ(v1, α)) > 0

Thus, T is convex in α(v1) when α(v1) < δ and v1 > v∗1.

Then, we can focus on α(v1) being three values: α, δ and 1. Correspondingly,

T (v1, α) = δϕ(v1) + (1− α)

∫ +∞

γ(v1,α)

(1−H(t))dt,

T (v1, δ) = δϕ(v1) + (1− δ)

∫ +∞

0

(1−H(t))dt,

and

T (v1, 1) = ϕ(v1).

Deduce δϕ(v1) from all of them and divide them by 1− δ,

T̃ (v1, α) =
1− α

1− δ

∫ +∞

γ(v1,α)

(1−H(t))dt,

T̃ (v1, δ) = E[ω],
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and

T̃ (v1, 1) = ϕ(v1).

T̃ (v1, α) decreases in v1 and T̃ (v1, 1) increases in v1. Suppose T̃ (v1, δ) and

T̃ (v1, 1) cross at v
b
1, E[ω] = ϕ(vb1).

(1− δ)(T̃ (vb1, α)− T̃ (vb1, δ)) = (1− α)

∫ +∞

δ−α
1−α

E[ω]

(1−H(t))dt− (1− δ)E[ω]

The derivative with regard to δ is

−
(
1−H

(
δ − α

1− α
E[ω]

))
E[ω] +E[ω] > 0

which indicates that (1 − δ)(T̃ (vb1, α) − T̃ (vb1, δ)) is always positive, and further

indicates that T̃ (v1, δ) is always lower than the maximum of T̃ (v1, α) and T̃ (v1, 1)

for any v1. Thus, when v1 < va1 , α
∗(v1) = α. Otherwise, α∗(v1) = 1.

Finally, we need to verify consumers’ incentive compatibility holds.

∂u1(v1, ṽ1)

∂v1
= x1(ṽ1)

(
1 +Ev2|v1 [δx

1
2(ṽ1, v̂

1
2) + y12(ṽ1, v̂

1
2)I2(v1, v2; ṽ1)]

)
+ (1− x1(ṽ1))

(
Ev2|v1 [δx

0
2(ṽ1, v̂

0
2) + y02(ṽ1, v̂

0
2)I2(v1, v2; ṽ1)]

)
If ṽ1 < v∗1,

∂u1(v1, ṽ1)

∂v1
= Ev2|v1 [δx

0
2(ṽ1, v̂

0
2) + y02(ṽ1, v̂

0
2)I2(v1, v2; ṽ1)]

= Ev2|v1 [αy
0
2(ṽ1, v2)]

= α

(
1−G

(
α
1− F (ṽ1)

f(ṽ1)

∣∣∣v1))
Since the hazard rate is monotone, the right-hand side increases in ṽ1.

If ṽ1 ∈ (v∗1, v
a
1),

∂u1(v1, ṽ1)

∂v1
= 1 +Ev2|v1 [δx

1
2(ṽ1, v̂

1
2) + y12(ṽ1, v̂

1
2)I2(v1, v2; ṽ1)]

= 1 + δ +Ev2|v1 [(α− δ)y12(ṽ1, v̂
1
2)]

= 1 + δ + (α− δ)

(
1−G

(
δv1 + (α− δ)

1− F (ṽ1)

f(ṽ1)

∣∣∣v1))
The right-hand side increases in ṽ1.
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If ṽ1 > va1 ,

∂u1(v1, ṽ1)

∂v1
= 1 +Ev2|v1 [δx

1
2(ṽ1, v̂

1
2) + y12(ṽ1, v̂

1
2)I2(v1, v2; ṽ1)]

= 2

The last equation comes from the fact that v2 > δv1 and thus y12 always equals 1.

In summary, for any report ṽ1,
∂u1(v1,ṽ1)

∂v1
increases in ṽ1 for any v1. So, con-

sumers’ incentive compatibility holds. ■

Proof of proposition 6:

With the proof in proposition 5, the value of δ matters only when v1 > v∗1 and

α(v1) < δ, in which case

T (v1, α(v1)) = δϕ(v1) + (1− α(v1))

∫ +∞

γ(v1,α(v1))

(1−H(t))dt

where γ(v1, α(v1)) =
δ−α(v1)
1−α(v1)

ϕ(v1).

∂T

∂δ
= ϕ(v1)− (1−H(γ(v1, α))ϕ(v1) > 0

Thus,
∫ +∞
0

R(v1)dF (v1) is increasing in δ and δ = 1 is optimal.

To verify the manufacture has no incentive to deviate in period 2, one can check

the monetary transfer in period 2 increases in δ. When v1 < v∗1, the monetary

transfer in period 2 is irrelevant to δ. We can focus on the situation v1 > v∗1.

R2(v1) = Ev2|v1 [t
1
2(v1, v2)] = Ev2|v1

[
(α(v1)− 1)

1− F (v1)

f(v1)
1{v2>v̄′2(v1)}

]
= (α(v1)− 1)

1− F (v1)

f(v1)
Pr[v2 > v̄′2(v1)|v1]

= (α(v1)− 1)
1− F (v1)

f(v1)

(
1−H

(
δ′ − α(v1)

1− α(v1)
v1 − ϕ(v1)

))
where v̄′2(v1) = δ′v1 + (α(v1) − 1)1−F (v1)

f(v1)
, δ′ is the depreciation level chosen in

period 2 and v2 = α(v1)v1 + (1 − α(v1))ω. It is easy to see that R2(v1) increases

in δ.

In summary, even without commitment in period 1, the manufacture will not

deviate from choosing δ = 1 in period 2. ■

Solution of Example 1:
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The Incentive Compatibility condition for consumer with v1 = a, ICa
1 , is

u1(a, a) ≥ u1(a, b):

ICa
1 : −ta + tb + a(ra − rb) +

∫ 1

a+ra

(v2 − ra)dv2 −
∫ 1

a+rb

(v2 − rb)dv2 ≥ 0

For consumer with v1 = b,

ICb
1 : −tb + ta + b(rb − ra) +

∫ 1

b+rb

(v2 − rb)dv2 −
∫ 1

b+ra

(v2 − ra)dv2 ≥ 0

The Individual Rationality condition for consumer with v1 = a, IRa
1, is u1(a, a) ≥

0:

IRa
1 : −ta + a(1 + a+ ra) +

∫ 1

a+ra

(v2 − ra)dv2 ≥ 0

For consumer with v1 = b,

IRb
1 : −tb + b(1 + b+ rb) +

∫ 1

b+rb

(v2 − rb)dv2 ≥ 0

The sum of the both sides of ICb
1 and IRa

1 indicates

0 ≤− tb + b(rb − ra) + a(1 + a+ ra) +

∫ 1

b+rb

(v2 − rb)dv2 +

∫ b+ra

a+ra

(v2 − ra)dv2

= − tb + b(rb − ra) + a(1 + a+ ra) +

∫ 1

b+rb

(v2 − rb)dv2 +
1

2
(b2 − a2)

= − tb + b(rb − ra) + a(1 + ra) +

∫ 1

b+rb

(v2 − rb)dv2 +
1

2
(b2 + a2)

≤ − tb + b(rb − ra) + b(1 + ra) +

∫ 1

b+rb

(v2 − rb)dv2 + b2

= − tb + b(1 + b+ rb) +

∫ 1

b+rb

(v2 − rb)dv2

which is IRb
1. Thus, IR

b
1 is redundant and IRa

1 should be binding.

The sum of the left-hand sides of ICa
1 and ICb

1 indicates

(a− b)(ra − rb)

which is irrelevant to tb. To maximize the manufacturer’s revenue, tb should reach

to maximum. Thus, ICb
1 should be binding and ICa

1 is redundant.

With ICb
1 and IRa

1, we can rewrite the expression of ta and tb in ra and rb.
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Then, take the derivative of the manufacturer’s revenue with regard to ra and rb

and get the solution. It is easy to verify that v1 + rṽ1 is in the range [0, 1].

Before strategic disclosure,

u1(b, a) = −ta + b[1 +H(b+ ra)] +

∫ 1

b+ra

(v2 − ra)dH(v2)

= −ta + b(1 + a) +
1

2

[
(1− a+ b)2 − b2

]
After strategic disclosure,

u′
1(b, a) = −ta + b[1 + Ĥ(b+ ra|a)] +

∫ 1

b+ra

(v2 − ra)dĤ(v2|a)

= −ta + b(1 + 2a− b) +
1

2
(1− 2a+ b)(1 + b)

And,

u1(b, a)− u′
1(b, a) =

1

2
(a− b)2 > 0 ■

Proof of proposition 7:

We focus on the allocation rule and monetary transfer discussed in proposition

1.

First, the IC2, IR2 and IR1 still hold under the binary-partition disclosure Ĥ.

Then, we check IC1.

u1(v1, ṽ1) = v1 − t1(ṽ1) +EĤ(v2|ṽ1)[û2(v1, ṽ1, v2)]

where

t1(ṽ1) = v∗1 +

∫ +∞

δϕ(ṽ1)

(v2 − δϕ(ṽ1))dH(v2) +

∫ ṽ1

0

δ[1−H(δϕ(t))]dt

and given the assumptions in the proposition, the consumer should act according

to the signal obediently, upgrading if and only if knowing that v2 is above δϕ(ṽ1).

Thus,

EĤ(v2|ṽ1)[û2(v1, ṽ1, v2)] = δv1H(δϕ(ṽ1)) +

∫ +∞

δϕ(ṽ1)

(
v2 + δ

1− F (ṽ1)

f(ṽ1)

)
dH(v2)

Then, ∂u1(v1,ṽ1)
∂v1

= 1 + δH(δϕ(ṽ1)). Since F is regular, ∂u1(v1,ṽ1)
∂v1

increases in ṽ1 for

any v1. Therefore, IC1 holds.
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If the hazard rate is not monotone, the revenues coming from selling P2 under

these two disclosures are∫ +∞

δϕ(v1)

(v2 − δϕ(v1)) dĤ(v2|v1) =
∫ +∞

δϕ(v1)

(v2 − δϕ(v1)) dH(v2)

>

∫ +∞

δv1+κ(v1)

(v2 − δϕ(v1)) dH(v2), ∀v1

Thus, the binary-partition disclosure generates higher revenue than full disclosure.

■

Proof of proposition 8:

Π2(y
0
2, x

0
2, y

1
2, x

1
2) =

∫ +∞

0

R2(v1, v2)dG(v2|v1)

=(1− x1(v1))

∫ +∞

0

[
δv1 · x0

2(v1, v2) + v2 · y02(v1, v2)−
∫ v2

0

y02(v1, t)dt

]
dG(v2|v1)

+ x1(v1)

∫ +∞

0

[
−δv1 + δv1 · x1

2(v1, v2) + v2 · y12(v1, v2)−
∫ v2

0

y12(v1, t)dt

]
dG(v2|v1)

=(1− x1(v1))

∫ +∞

0

[
δv1 · x0

2(v1, v2) +

(
v2 −

1−G(v2|v1)
g(v2|v1)

)
· y02(v1, v2)

]
dG(v2|v1)

+ x1(v1)

∫ +∞

0

[
−δv1 + δv1 · x1

2(v1, v2) +

(
v2 −

1−G(v2|v1)
g(v2|v1)

)
· y12(v1, v2)

]
dG(v2|v1)

Under xi
2(v1, v2)+yi2(v1, v2) ≤ 1, if v2− 1−G(v2|v1)

g(v2|v1) > δv1, y
i
2(v1, v2) = 1. Otherwise,

xi
2(v1, v2) = 1. Since G is regular, one can find a threshold v̂2(v1) defined by

v̂2 −
1−G(v̂2|v1)
g(v̂2|v1)

− δv1 = 0

Π1(x1) =

∫ +∞

0

R1(v1)dF (v1)

=

∫ +∞

0

(
ϕ(v1)x1(v1) +Ev2|v1

[
δϕ(v1)x2(v1, v2) +

(
v2 − I2(v1, v2)

1− F (v1)

f(v1)

)
y2(v1, v2)

])
dF (v1)

We ignore the superscript of xi
2 and yi2 because the expressions are the same for

i = 0, 1. Then, x1(v1) should be 1 if ϕ(v1) > 0. Otherwise, it should be 0.

The verification of monotonicity condition follows the same procedure in the

proof of proposition 2. ■
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