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Abstract

How fast do labor markets adjust to technology shocks? This paper introduces a novel network-based

framework to model skill frictions between occupations. Using expert data on skills, I construct a network

of occupations and find it is sparse, divided in clusters of similar occupations with ’bridge occupations’

linking distinct clusters. Leveraging French administrative data, I show that workers transitioning through

these ’bridges’ move to occupations with higher wages and lower unemployment. Next, I build a tractable

model of job search with networked labor markets, and demonstrate that bridge occupations significantly

affect reallocation speed, with slow reallocation creating large adjustment costs. I then augment the model

with quantitative extensions, leveraging hat-algebra methods to solve counterfactuals without having to

estimate large numbers of parameters. Calibrated to French data, the model predicts that robot adoption

induces slow reallocation, around 40 quarters, and that this sluggish reallocation reduces welfare gains by

approximately 40%— an order of magnitude higher than previous estimates. However, policies targeting

bridge occupations can speed-up reallocation, and much more so than policies targeting tight occupations

directly. These findings highlight the crucial role of the occupation network in shaping reallocation dynamics

and provide new insights for the design of labor market policies.
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1 Introduction

Trade and technology create winners and losers in the labor market. Some occupations

experience significant job losses (e.g., supermarket cashiers), while others benefit from

job creation (e.g., robot maintenance). Labor reallocation – the process of moving work-

ers from declining to growing occupations – can mitigate the negative impact on affected

workers. However, evidence suggests that displaced workers reallocate slowly, leading

to prolonged periods of unemployment (Autor et al., 2013, 2014; Dix-Carneiro, 2014;

Dix-Carneiro and Kovak, 2019; Adão et al., 2024).

A key barrier to reallocation is the limited transferability of skills across occupa-

tions (Gathmann and Schönberg, 2010; Traiberman, 2019; Lise and Postel-Vinay, 2020).

Workers in declining jobs often lack the skills needed to transition into growing sec-

tors, e.g. from cashier to robot maintenance. However, analyzing these skill frictions is

difficult because skill transferability varies widely between occupation pairs, forming a

high-dimensional matrix. With 200 occupations, the skill frictions matrix contains 40,000

elements, making it difficult to analyze the structure of these frictions and their impact

on reallocation speed.

In this paper, I introduce a novel network-based approach to model skill frictions

between occupations. Specifically, I construct an occupation network, where nodes are

occupations and edges represent potential transitions based on skill transferability. For

instance, engineers and computer scientists are linked, while cashiers and engineers

are not. This network framework provides new tools to analyze the structure of skill

frictions, allowing me to "open the black box" of skill frictions.

Leveraging this framework, I examine how the topology of the occupation network

influences worker mobility dynamics in response to technology shocks. My main con-

tribution is to uncover the crucial role of central occupations in shaping the reallocation

process. Intuitively, these central occupations act as hubs, bridging different clusters of

occupations, thereby facilitating transitions. I support this argument using a combina-

tion of empirical, theoretical and structural methods. I will now outline each part of the

paper in more details.
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In the first part of the paper, I provide empirical evidence on the structure of the

occupation network. To construct this network, I leverage information from a French ad-

ministrative database on skills, called ROME, which lists possible occupation transitions

according to HR experts. I highlight three key features of the occupation network. First,

it is sparse, with occupations having relatively few connections. Second, it exhibits a

"community structure", with clusters of tightly-connected occupations with similar skills

and tasks.1 Intuitively, occupations within the same 1-digit group share many skills and

thus have many links. Third, it features ’bridge occupations’ that are located between

clusters and connect them. These bridge occupations, such as logistics technician, sales

assistant, or consultant, typically involve diverse skill sets, allowing workers to move

across groups of occupations.

Then, I examine how the architecture of the occupation network affects worker mo-

bility patterns. Using French employer-employee data,I find that workers are 95% less

likely to switch occupations when the transition is not deemed feasible by experts, con-

trolling for time-varying origin and destination occupations fixed-effects. I also explore

the impact of transiting through bridge occupations on long-term outcomes. Workers

who pass through bridge occupations reallocate to better-paying, lower unemployment

risk occupations, have a higher probability of switching 1-digit occupation groups, and

travel farther in the network. To address potential self-selection, I control for age, origin

occupation, and mobility type. Taken together, these results highlight the important role

of bridge occupations in facilitating reallocation to better employment opportunities.

In the second part of the paper, I develop a model of job search with networked labor

markets to build intuition about the key theoretical mechanisms at play. The model com-

bines both search frictions and skill frictions, captured in reduced form by the network

structure of occupations. I begin with a tractable version of the model, which allows for

a full analytical solution but makes three key simplifying assumptions – relaxed there-

after. First, the occupation network is modelled as a a simple line graph: two periphery

occupations are connected to a central bridge occupation in-between. Second, workers

1The concept of community structure originates from network theory, and describes network in which
elements are organized into "communities", i.e. clusters of tightly-knit nodes (e.g. see Newman (2006).
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search for jobs randomly, both in their own and adjacent occupations within the network,

and only when unemployed.2 Third, wages and firm-worker separation probabilities are

exogenous, keeping the firm side of the model deliberately simple. This setup enables a

clear analysis of worker reallocation dynamics following permanent productivity asym-

metric shocks, such as those arising from trade or technological changes.

I derive a closed-form analytical solution for aggregate reallocation time, clarifying

how different factors shape the aggregate speed of reallocation. First, aggregate real-

location is slow, with transition times on the order of s−1, where the separation rate s

is typically 2.5% per quarter, predicting reallocation times of around 40 quarters. Intu-

itively, this is because workers must wait to become unemployed before switching occu-

pations. Second, the centrality of shocks matters: reallocation is slower following shocks

to periphery occupations because they have fewer reallocation opportunities. Third, the

centrality of occupations matters too: the job finding rate in bridge occupations has a

very significant impact on aggregate reallocation speed, because it can create bottlenecks

for workers reallocating between periphery occupations. Later, I show that the results

from this simple setting generalize to more complex environments.

In addition, I provide a closed-form analytical characterization of adjustment costs

following asymmetric productivity shocks, showing that slow reallocation can signifi-

cantly reduce long-term welfare gains. Specifically, I show that adjustment costs are

substantial when reallocation is slow, with welfare gains reduced by up to 100% in some

cases. Intuitively, as reallocation time increases, the present value of future welfare gains

diminishes. This is particularly pronounced for shocks affecting periphery occupations,

where misallocation is particularly severe along the transition.

In the third part of the paper, I build a quantitative version of the model to test

whether the predictions of the tractable model hold in a more realistic environment.

While the toy model provides analytical insights, it relies on a simplified network struc-

ture and mechanical agent behavior. Here, both assumptions are relaxed. First, I allow

for arbitrary network structures, capturing the complexity of real-world occupation net-

2In the quantitative model, I relax these assumptions and allow for both endogenous search effort and
on-the-job search.
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works. Second, I incorporate more realistic worker behavior, including endogenous

search effort, on-the-job search, and Nash bargaining on wages. Workers strategically

allocate their search efforts to occupations with higher expected returns, both when em-

ployed and unemployed.

Despite its complexity, the quantitative model can be estimated and solved leveraging

dynamic hat-algebra techniques from the trade literature. The idea is straightforward:

following small shocks, the new equilibrium can be expressed as the product of the

pre-shock equilibrium and a first-order approximation of the percentage point change

(the so-called "hat changes"). Solving for these hat changes requires only a few key

elasticities, reducing the parameter space significantly. A crucial elasticity is the search

elasticity, which captures how workers adjust their search efforts in response to changes

in expected returns. By exploiting the gravity structure of worker flows, I show that this

elasticity can be directly estimated from the data. Importantly, this approach extends

beyond the specific context of this paper and can be applied to solve counterfactuals in

a broader set of models that combine discrete choice and search frictions.

Finally, I use the estimated model to simulate how labor markets adjust following the

introduction of robots. To calibrate the robot shock, I match estimates of the response

of relative wages and aggregate TFP gains from Webb (2019), Acemoglu and Restrepo

(2022). I find that the most affected occupations – expanding and declining as the re-

sult of shock – are located at opposite ends of the occupation network, mirroring the

periphery shock from the tractable network search model.

There are three main takeaways from this quantitative analysis. First, robot adoption

induces slow worker reallocation, of around 40 quarters. This aligns closely with the

stylized model’s prediction, suggesting that the effects of a larger network and more

strategic agents offset each other. Second, this moderate aggregate reallocation time

masks important heterogeneity across occupations: a minority of occupations require

more than 80 quarters to adjust. Third, and most importantly, the slow dynamics of real-

location generate significant adjustment costs, reducing welfare gains by approximately

40%. This is an order of magnitude higher than previous estimates, such as the 3.5% re-
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duction found by Caliendo et al. (2019) for the US China shock. The key difference lies in

the inclusion of search frictions in my model, which increases the cost of unemployment

for both workers and the broader economy.

Lastly, I explore the potential of targeted policy interventions to accelerate realloca-

tion. I simulate the effects of government employment subsidies aimed at declining occu-

pations (e.g., cashiers), expanding occupations (e.g., robot maintenance technicians), and

bridge occupations (e.g., logistics technicians). The results show that targeting bridge oc-

cupations consistently leads to the largest reduction in reallocation times, cutting them

by three times more than subsidies for expanding occupations. While subsidies for oc-

cupations facing labor shortages increase workers’ incentives to switch by raising wages

and vacancy postings, they fail to address skill frictions. In contrast, targeting bridge

occupations helps workers reskill, facilitating transitions to expanding jobs. Overall, this

suggests that exploiting the network structure of skill frictions can help policymakers

design more effective labor market policies.

Relation to the literature. My paper connects to three strands of literature. First, it

examines labor market adjustments after trade or technology shocks. Motivated by evi-

dence of slow worker reallocation, a series of papers build structural models of dynamic

occupational choice with switching costs to estimate welfare effects. (e.g., Artuç et al.

(2010); Dix-Carneiro (2014); Caliendo et al. (2019); Traiberman (2019); Humlum (2019)).

Recent papers add search frictions to account for the rise in involuntary unemployment

following these shocks (Pilossoph (2012), Dix-Carneiro et al. (2021); Chodorow-Reich

and Wieland (2020); Carrillo-Tudela and Visschers (2023)).3 I make two contributions.

First, I use network theory to analyze reallocation frictions, highlighting the role of cen-

tral occupations on reallocation speed. Second, I extend the hat-algebra method from

Caliendo et al. (2019) to include search frictions.

3In a closely related paper, Restrepo (2016) models labor market adjustments to technological shocks using
a task-based framework with search frictions, emphasizing the role of "stepping-stone" jobs in unemploy-
ment dynamics. My paper complements this framework by incorporating greater heterogeneity across
occupations and linking the existence of stepping-stone occupations to the structure of the occupation
network.
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Second, my paper connects to the literature on job search in non-segmented labor

markets. A growing body of work emphasizes the substantial overlap in labor market

boundaries, whether in geographical space (Schmutz and Sidibé (2019); Manning and

Petrongolo (2017); Marinescu and Rathelot (2018)) or skill space (Guvenen et al. (2020);

Lise and Postel-Vinay (2020); Lise and Postel-Vinay (2020)). Schubert et al. (2021) and

Jarosch et al. (2024) show this matters for the measure of labor market power. I contribute

by representing the overlap between labor markets as a network, highlighting the role of

central occupations. Unlike this literature, which focuses on mismatch or concentration,

my focus is on the speed of worker reallocation.

Third, this paper contributes to the literature on heterogeneity in macroeconomics.

An important strand of the literature uses spectral methods to study transition dynamics

in economies with heterogeneous agents (e.g., Moll (2014); Gabaix et al. (2016); Alvarez

and Lippi (2022); Baley and Blanco (2021); Beraja and Wolf (2021); Kleinman et al. (2023);

Liu and Tsyvinski (2024)). I show that these tools can be applied in a labor market con-

text, providing a full analytical characterization in a simplified setting. Additionally, the

production network literature highlights that central sectors significantly impact aggre-

gate outcomes (e.g., Gabaix et al. (2016); Acemoglu et al. (2012),Carvalho and Tahbaz-

Salehi (2019); Baqaee and Farhi (2019)). I extend this insight to labor markets, showing

that central occupations disproportionately affect aggregate worker reallocation speed,

paving the way for new research avenues.4

2 Empirical Evidence on the Occupation Network

In this section, I construct the occupation network using the ROME database and analyze

its structure, highlighting three stylized facts.

4A literature in complexity economics also emphasizes the network structure of worker flows (see Neffke
et al. (2017) or del Rio-Chanona et al. (2021)). I push further their analytical characterization, highlighting
the role of bridge occupations for reallocation dynamics.
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2.1 Data

To construct an empirical measure of the skill network, I use the French administrative

database ’ROME’.5 This database provides detailed information on the skills and tasks

of occupations and is the French counterpart to the US O*NET database.

The ROME database was developed in 1989 by experts in human resources from the

French employment agency Pole Emploi, in collaboration with firms and labor unions.

Its original purpose was to improve the matching of job seekers with vacancies based on

skill similarity, during a period of substantial structural transformation in labor markets.

To find new opportunities for displaced workers, experts relied as little as possible on

past worker flows. It has been revised many times since its creation, and here I use the

fourth version, which was released in 2023.

2.2 Construction of the Main Variables

Definition. To begin, I will introduce a few concepts from network theory. A directed

weighted network G consists of nodes N , edges E and weights W : G = {N , E ,W}. This

network can be represented by an adjacency matrix G = (gij)(i,j)∈N 2 , where gij ∈ W is

the weight of the edge i → j ∈ E . A network is undirected if all nodes are connected in

both directions: i → j ∈ E and j → i ∈ E . A network is unweighted if all edges weights

are equal.

Nodes. I construct the nodes of the occupation network using the ROME nomen-

clature of occupations, defined at the 5-digit level of aggregation, totaling around 500

different occupations. Importantly, occupations are grouped by skill similarity rather

than hierarchical rank. For example, the 5-digit category "higher education" includes

both "lecturers" and "full professors."

Edges. I construct the edges of the skill network using a unique information from

ROME: namely, the list of occupation transitions deemed feasible by experts. The edges

5The acronym ROME stands for Répertoire Opérationnel des Métiers et Emplois, which translates to "Opera-
tional Nomenclature of Occupations and Jobs".
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of the occupation network are directed, meaning that reverse occupational transitions

may not be feasible. For example, a medical doctor can become a nurse, but the re-

verse may not be true. This directionality partially captures the hierarchical structure of

occupations.

Weights. To construct the edge weights, I use additional information from the ROME

database. Experts distinguish between two types of feasible occupational transitions:

"close" transitions can be made immediately, and "distant" transitions require additional

training. I assign different numerical weights to each type of transition: αclose, αdistant,

and αself-loops.

The weights measure the degree of skill transferability across occupations, normal-

ized between zero and one. A weight of one indicates perfect accessibility (identical

skills), while zero indicates inaccessibility (no skill similarity). Thus, they can be inter-

preted as the probability that a worker can acquire the skills to move to a new occu-

pation. Formally, 0 ≤ αdistant ≤ αclose ≤ αself = 1. The weights are estimated in next

section.6

2.3 Plot of the Occupation Network

Figure 2.1 plots the occupation network, using a standard network layout.7 Manufactur-

ing occupations are clustered together at the bottom of the network, while high-skilled

service occupations, e.g. banking and insurance, are clustered at the top. Occupations

with general skills, such as sales, transportation and logistics, or management are found

at the center of the plot.8

6Regressing worker flows on the different types of network connections, I find αclose = 0.1 and αdistant =
0.05.

7The spring layout treats edges as springs keeping adjacent nodes close, which otherwise want to repel
each other.

8Many groups of occupations seem to overlap importantly with sectors, e.g. industry. In fact, a lot of
occupations are specific to a certain industry but others, like accounting or sales, exist across all sectors
exist across all sectors.

9



Figure 2.1: The ROME skill network - with spring layout and close transitions only

2.4 Stylized Facts

This subsection documents three stylized facts on the architecture of the occupation

network.

Fact 1. The occupation network is very sparse A network is sparse if its nodes have few

connections relative to the size of the network. This is captured by out-degree centrality,

which counts the number of edges originating from a node.

Figure 2.2.a displays the distribution of out-degree centrality indices across occupa-

tions. On average, occupations are connected to 7 other occupations in the skill network

(out of 500), with a standard deviation of approximately 3. This indicates that occupa-

tions have a limited number of reallocation opportunities, suggesting large frictions to

occupational mobility.
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Figure 2.1: Distribution of network centrality measures in the occupation network
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Fact 2. The occupation network exhibits a community structure

A network exhibits a community structure when nodes are grouped in dense clusters

that are sparsely connected to each other (Newman (2006)). This is captured by the

local clustering coefficient, which measures the share of a node’s neighbors that are also

connected to each other.

Figure 2.2.b compares the distribution of local clustering coefficients in the occu-

pation network to a random network with similar density. The occupation network

exhibits higher clustering than the random network, indicating that occupations tend to

be grouped together. Intuitively, occupations within the same 1-digit family often share
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similar skills, and hence are tightly-connected. 9

Fact 3. The occupation network features bridge occupations

In network analysis, bridges are crucial nodes that connect otherwise loosely linked

clusters. These bridges are identified by (1) low local clustering and (2) high betweenness

centrality, which captures how much a node is ’in-between’ others.1011

Figure 2.2.c plots the distribution of betweenness centrality indices. While most occu-

pations have low betweenness centrality, a small subset has significantly higher values.

These bridge occupations act as hubs through which a large proportion of reallocation

paths between clusters must pass. Examples include logistics technicians, secretaries

and business consultants, occupations which typically require a mix of different skill

sets. Appendix A provides a list of bridges and map their location in the occupation

network.

Intuitively, bridge occupations play a crucial role for reallocation dynamics. If work-

ers find it difficult to transit through bridges, mobility between clusters is severely re-

stricted, impacting reallocation speed. I formalize this intuition in the theoretical model.

3 Empirical Evidence on Worker Flows

This subsection studies workers trajectories within the occupation network. First, I

present the data and the main variables. Then, I study how skill frictions affect pat-

terns of worker transitions. Finally, I show that bridge occupations facilitate workers

reallocation.

9In the appendix, I use community detection algorithms to directly identify clusters within the occupation
network. The clusters exhibit a high degree of modularity, a standard measure of community structure
in network.

10Betweenness centrality is the share of shortest paths in the network that transit through a node.
11Low local clustering ensures bridges link different clusters, not just nodes within the same cluster.
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3.1 Data

To measure worker transitions across occupations and employment states, I use the

DADS panel, a French employer-employee dataset collected by the Social Security agency.

The dataset covers about one-twelfth of the French labor force (all workers born in Oc-

tober) from 2002 to 2010, with data drawn from job contracts. Unique individual iden-

tifiers allow tracking individuals across jobs. The dataset includes employment spell

dates, occupation codes, wages, hours worked, and demographics such as gender, age,

and location.

I restrict the sample to male workers aged 25-55 who held at least two job contracts

during the period, representing a group with high labor force attachment. The analy-

sis is further limited to main job contracts in mainland France and the private sector.

Unemployment spells are defined as periods of more than 30 days between consecutive

employment spells, with occupations based on the last job. I focus on the 2009-2019 pe-

riod, when firms were required to report 4-digit occupation codes, resulting in a panel of

approximately 550,000 workers over ten years. More details are provided in Appendix

B.

There are two key variables of interest. First, the worker transition rates µ
xy
ijt (t), which

measure the number of workers in occupation i and employment state x at quarter t who

transition to occupation j and employment state y the next quarter t + 1. Second, worker

payoffs for model estimation, where wages wit are the average full-time equivalent wage

in occupation i at quarter t, residualized on age. Unemployment benefits bi(t) are calcu-

lated as bwi(t), where b is the wage replacement rate, calibrated later.12

3.2 Gravity Regression

Do workers really transition along the edges of the occupation network built with ROME

data? If experts misidentify skill frictions, the previously constructed occupation net-

12This is a simplification, as actual benefits depend on the last job’s wage and duration. The model can
incorporate occupation-specific replacement rates, but using a single parameter is more tractable.
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work becomes irrelevant for understanding the constraints on worker reallocation.

Specification. To assess how much worker transitions are constrained by the occu-

pation network, I draw on the analogy with the gravity model in trade. Just as trade

economists analyze how geographical distance influences trade flows between countries,

I substitute trade flows with worker flows and geographical distance with skill distance.

My baseline specification uses a two-way fixed effects Poisson regression model:13

µue
ijt︸︷︷︸

transitions
ui → ej

= exp
{

γit + ζ jt︸ ︷︷ ︸
time-varying

origin/destination FE

+ βdistant1(distant)ij + βunlinked1(unlinked)ij︸ ︷︷ ︸
type of network connection

}
ηijt

where µx
ijt represents the number of transitions to occupation j from unemployed work-

ers in occupation i ̸= i, γit and ζ jt are time-varying origin and destination occupation

fixed effects, 1(distant)ij and 1(unlinked)ij are dummy variables for each type of net-

work connection, and ηijt is a multiplicative error term.14

The coefficients of interest, βdistant and βunlinked, capture the change in the likelihood

of switching occupations when a pair is classified as distant or unlinked by experts,

relative to close occupations.

Including time-varying origin and destination fixed effects is crucial for identifica-

tion, as they control for local shocks at both the origin and destination occupations.

Without these controls, low transitions might be mistakenly attributed to low skill fric-

tions instead of negative shocks.

Regression results. Table 3.1 presents the estimated coefficients.

Notes: Each observation is a quarterly occupation-destination cell. The dependent variable is the number
of occupation transitions during a quarter. The variables of interest are dummies capturing whether the
transitions are labeled as close, distant, or unconnected by experts. Standard errors are clustered at the
origin. * p<0.10, ** p<0.05, *** p<0.01.

The coefficients are all negative, statistically significant at the 1% level, and econom-

ically large. Workers switching occupations are about 95% less likely to transition to an

13The Pseudo-Poisson regression is appropriate for non-negative dependent variables. Excluding the 90%
of pairs with no transitions would bias the estimation (see Santos Silva and Tenreyro (2006)).

14Transitions not listed as possible by experts are classified as "unlinked."
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’unlinked’ occupation than to a ’close’ one, all else equal.15

This confirms the importance of the occupation network in shaping job transitions.

The next subsection examines which network features shape long-term worker realloca-

tion dynamics.

3.3 Bridge Regression

Is worker reallocation facilitated by transiting through bridge occupations?

Due to the sparsity of the occupation network, workers often cannot move directly

into occupations outside their skill cluster. However, they could indirectly access these

occupations by transitioning first through bridge occupations, which connect different

clusters. This would help displaced workers acquire new skills, escape declining clusters,

and enter expanding ones.

Specification. I study how transiting through a bridge occupation affects the long-

term outcomes of workers. I estimate the following model:

∆yid = αo(id) + β1(transited through bridge)id + γZid + uid (1)

where id represents worker identifiers, o(id) is the worker’s occupation at the start of the

period, ∆yid is the long-run change in worker outcomes, and 1(transited through bridge)id

is a dummy variable equal to one if the worker transitioned through a bridge occupa-

tion. Zid includes worker-level controls, such as age, and uid is the error term. Appendix

B provides a full list of bridge occupations. The coefficient of interest, β, measures the

change in outcomes for workers who transited through bridge occupations relative to

those who did not.

Including controls and origin-occupation fixed effects is key for identification. With-

out these, an endogeneity bias could occur, as transitioning through a bridge may cor-

relate with the worker’s initial occupation or age. As a robustness check, I run an

15Marginal effects are calculated using the formula eβ − 1.
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alternative regression limiting the control group to high-mobility workers who made at

least two transitions during the period.

Regression results. Table 3.2 reports the estimated coefficients for the period 2013-

2019. Appendix B provides the corresponding estimates for 2008-2012 and for the alter-

native control group with high-mobility workers.16

Each column of the regression table corresponds to a different outcome variable: like-

lihood of changing 1- or 2-digit occupation groups, distance traveled in the occupation

network, wage growth, and change in unemployment risk. All coefficients are statisti-

cally significant at the 1% percentage threshold and economically large.

Table 3.2: Change in worker outcomes vs. transition through bridge, 2013-2019

Dependent Variables

Change 1-digit Change 2-digit Distance Wage Growth Unemployment
Occupation Occupation (Standardized) Rate Change

Through Bridge 0.296*** 0.316*** 0.710*** 0.083*** -0.785***
(0.003) (0.004) (0.008) (0.007) (0.038)

Observations 196,439 196,439 196,439 196,402 196,439
Origin FE Yes Yes Yes Yes Yes

Notes: Each observation is a worker over the period 2013-2019. The dependent variables are the proba-
bility of changing 1-digit or 2-digit occupation, distance traveled within the network, wage growth, and
change in unemployment risk. The variable of interest is a dummy indicating whether workers transited
through a bridge during the period. * p<0.10, ** p<0.05, *** p<0.01.

First, workers who transit through bridges are about 30 percentage points more likely

to switch 1- or 2-digit occupation groups, consistent with the fact that bridge occupations

connect clusters of these groups.

Second, workers who transit through bridges travel farther in the occupation net-

work, about 0.7 standard deviations of the distance distribution. This suggests that

bridge occupations are not just ’rest employment’ jobs where displaced workers tem-

porarily stay. Instead, these workers continue progressing in their career path without

16The sample is split in two to minimize the number of observations lost due to the balanced panel
requirement.
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reverting to their previous occupations.

Third, workers who transit through bridges experience significantly higher wage

growth. Specifically, these workers saw an 8 percentage point cumulative increase in

wages, compared to just 3.5% average wage growth over the same period. This indicates

that workers who use bridge occupations move to better-paying jobs.

Fourth, workers who transit through bridge occupations end up in jobs with lower

unemployment rates, about 0.75 percentage points lower. For comparison, the average

unemployment rate in France during this period was around 10%. This suggests that

bridge occupations help workers move to jobs with lower unemployment risk.

These findings suggest that transiting through bridge occupations significantly ben-

efits workers by enabling them to move to distant, better-paying jobs with lower un-

employment risks. However, these results are correlational, not causal. Additionally,

the impact on other workers is unobservable and part of the intercept. To quantify the

general equilibrium effects of bridge occupations on workers, a model is required.

4 A Tractable Model of Network Search

This section develops a tractable model of job search across occupations connected by a

network structure. The goal is to provide a clear analytical characterization of worker

reallocation dynamics before transitioning to a fully-fledged quantitative model in the

next section.

The model builds on the canonical random search and matching frameworks of Di-

amond (1982) and Mortensen (1982). The key new ingredient is that workers search for

jobs not only within their own occupation but also in adjacent occupations within the

network, naturally leading to worker mobility across occupations.
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4.1 Setting

Time. Time is continuous, starts at zero, runs until infinity, and is discounted at the

rate r.

Occupational structure. There are three occupations, indexed by i ∈ N = {1, 2, 3},

connected by an unweighted and undirected occupation network. Edges indicate that

workers can switch occupations.

Figure 4.1 : A stylized occuption network

The occupation network is assumed to be a line network, as represented Figure 4.1.

Occupation 2 is central in the network, while occupations 1 and 3 are at the periphery.

The line network is the simplest structure that allows for variations in network centrality.

In the quantitative model, I lift this restriction and allow for arbitrary network structures.

Workers. There is a unit mass of infinitely-lived workers distributed across occupa-

tions. Workers can be either employed or unemployed. Unemployed workers in occu-

pation i are those whose last job was in occupation i.17 Employed workers in occupation

i earn a wage wi(t), while unemployed workers receive benefits bi.

The key innovation is that workers search for jobs both within their current occupa-

tion and in adjacent ones in the occupation network. For simplicity, only unemployed

workers search for jobs, and their search is random. These assumptions are relaxed in

the quantitative model.

The distribution of workers across occupations and employment states, referred to as

17I abstract from worker birth-death dynamics, as the entry and exit of generations occur on a much slower
time scale than the one relevant for this model.
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the worker distribution, is represented as:

f (t) = ((ei(t))i∈N , (ui(t))i∈N )′ = (e1(t), e2(t), e3(t), u1(t), u2(t), u3(t))′ (2)

where ei(t) and ui(t) are the number of employed and unemployed workers in occupa-

tion i at t.

Firms. There are infinitely many potential firms in each occupation, each incurring

a flow cost ci to post a job vacancy. When a firm matches with a worker, the vacancy is

filled, and the firm-worker pair produces homogeneous output with productivity yi.18

This specification abstracts from worker learning dynamics. In the model, reallocated

workers instantly acquire the skills of their new occupation and produce at the same level

as experienced workers. Relaxing this assumption would reduce tractability.19 However,

this assumption likely overestimates the speed of worker reallocation, leading to more

frequent occupational switches than observed in reality.

The firm pays the worker a wage wi and collects profits of yi − wi. Wages are set

exogenously as a fixed fraction of productivity, wi = ϕyi, where ϕ reflects worker bar-

gaining power. Finally, firm-worker matches are subject to exogenous separation shocks

at rate si.

Search frictions. Each occupation is a distinct labor market where search frictions

prevent unemployed workers and firms from matching immediately.20

The number of hires in occupation i at date t is governed by a network-augmented

matching function:

hi(t) = ζi ·
(

ui(t) + ∑
j ̸=i

gijuj(t)

)α

· vi(t)1−αi

18Alternatively, each occupation could produce a specific output sold at an exogenous price yi. Price ex-
ogeneity simplifies the model by avoiding complex general equilibrium feedback effects between prices
and worker distributions.

19If productivity depends on the worker’s origin occupation, the model is no longer block-recursive, as
the worker distribution would affect the expected value of a match for firms.

20Search frictions do not arise from underlying heterogeneity, but rather from imperfect information be-
tween workers and firms about suitable matches.
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where ζi represents the matching efficiency of labor market i, vi(t) is the number of

vacancies posted by firms in occupation i at time t, ui(t) + ∑j ̸=i gijuj(t) is the number of

unemployed workers searching in occupation i from both occupation i and neighboring

occupations, and α is the matching elasticity.

The key novelty is that the pool of job seekers includes unemployed workers from

neighboring occupations, which has important implications for the measurement of la-

bor market tightness.21

The labor market tightness ratio in occupation i at date t writes

θi(t) ≡
vi(t)

ui(t) + ∑j ̸=i gijuj(t)

Firms and workers meet randomly, meaning each unemployed worker searching in

occupation i has an equal chance of meeting a firm in this occupation. The flow prob-

ability of matching with a firm in occupation i at t is given by: pi(t) = hi(t)/
(
ui(t) +

∑j ̸=i gijuj(t)
)
= ζθi(t)1−α. Since workers simultaneously search for jobs in all adjacent

occupations, their unemployment outflow rate from occupation i is pi(t)+∑j ̸=i gij pj(t).22

Finally, vacancies in occupation i are filled with flow probability qi(t) = hi(t)/vi(t) =

ζθi(t)−α.

Productivity shock. Consider the following scenario.

At t = 0−, the economy is at steady-state with the productivity distribution denoted

ỹ and the worker distribution by f (0) = f̃∞, where f̃∞ represents the pre-shock steady-

state worker distribution. Hereafter, x̃ denotes pre-shock variables.

At t = 0, the economy experiences an unanticipated permanent productivity shock,

changing the productivity distribution from ỹ to y. The productivity change for each

occupation is represented by the vector dy = (dyi)i∈N , where dyi is the productivity

21A new paper by Costa-Dias et al. (2021) explores the implications of labor market overlap for tightness
measures.

22Workers do not match with more than one firm simultaneously due to the assumptions of continuous
time and Poisson processes of job search.
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shock to occupation i.23

4.2 Values

How does firm vacancy posting react to the productivity shock? This is a function of

their value functions, detailed below.

Firm values. The value of a filled job for firms in occupation i at date t is denoted

Ji(t), and the value of an unfilled vacancy in occupation i at date t is denoted Vi(t).

The value of a job filled Ji(t) solves the Bellman equation

rJi(t) = yi − wi + si(Vi(t)− Ji(t)) + J̇i(t) (3)

The firm collects the flow profits yi −wi. At rate si, the firm-worker match gets separated

and the firm suffers the loss Vi(t) − Ji(t). The value can vary over time during the

transition dynamics.

The value of a vacant job Vi(t) solves the Bellman equation

rVi(t) = −ci + q(θi)(Ji(t)− Vi(t)) + V̇i(t) (4)

The firm pays a flow cost ci to post its vacancy. At rate qi, the vacancy gets filled and

the firm earns Ji(t)− Vi(t). The value function can vary over time during the transition

dynamics.

Free entry. Potential entrants can freely post vacancies in each occupation, driving the

value of posting a vacancy to zero at all times:

Vi(t) = 0 =⇒ c
q(θi(t))

= Ji(t) (5)

This condition determines the equilibrium tightness ratio in each occupation. Equilib-

23I focus on productivity shocks as Cortes et al. (2020) show that most of the decline in routine employment
was driven by reduced job finding rates, attributed to productivity shocks in the model, rather than
separation shocks.
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rium tightness ratio equalizes the expected benefit of posting a vacancy – the value of

a filled vacancy – and the expected cost of posting a vacancy – the flow cost over the

expected waiting time.

Importantly, the model assumes the free entry condition holds at all times. This as-

sumption is key for tractability but arguably quite restrictive, implying that adjustment

in vacancy posting happen infinitely fast relative to other variables, which is counterfac-

tual (see Elsby et al. (2015)).24 However, allowing for slow vacancy adjustments would

only result in slower responses to shocks.

Transition dynamics. In theory, the firm values and tightness ratios can vary during

the transition dynamics. However, Proposition 1 shows they remain constant during the

transition.

Proposition 1. (Job posting along the transition)

Firm values Ji(t), tightness ratios θi(t) and job finding rates pi(t) are constant along the transi-

tion dynamics, and given by

Ji(t) =
ϕyi

r + si
θi(t) =

(
ζi

ci

(
(1 − ϕ)yi

r + si

)) 1
α

pi(t) = ζ
1
α

(
(1 − ϕ)yi

ci(r + si)

) 1−α
α

Firm values, tightness ratios, and job finding rates are "jump variables," adjusting

instantly to new steady-state levels after productivity shocks. This extends a result from

canonical search and matching models to the network case (see Pissarides (2000)).

This follows from the free entry assumption, which imposes that expected benefits

and costs equalize at all times. When a productivity shock occurs, expected benefits

from posting vacancies increase instantly. To maintain equilibrium, expected costs must

rise simultaneously, achieved by an immediate increase in the tightness ratio, which

increases the expected filling time.

24A nascent literature studies departures from free-entry in search and matching models ( Den Haan et al.
(2021)).
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4.3 Laws of Motion

How do workers reallocate across occupations? First, I describe the laws of motion

governing the evolution of the worker distribution. Then, I introduce a measure of

aggregate speed of reallocation.

Laws of motion. The employment in occupation i at date t evolves as

ėi(t) = pi

(
ui(t) + ∑

j ̸=i
gijuj(t)

)
− siei(t) (6)

Workers searching for jobs in occupation i are hired at the rate pi from a pool of job

seekers including unemployed workers from both their own and neighboring occupa-

tions ui(t) + ∑j ̸=i gijuj(t). Workers in occupation i get separated at rate si.

The unemployment in occupation i at date t evolves as

u̇i(t) = siei(t) −
(

pi + ∑
j ̸=i

gij pj

)
ui(t) (7)

Newly separated workers from occupation i enter unemployment at rate si, while un-

employed workers find a job in their own and neighboring occupations at the rate

pi + ∑j ̸=i gij pj.

Transition matrix. The laws of motion can be succinctly written as ḟ (t) = Q f (t), where

f (t) is the worker distribution at date t and Q(t) is the transition matrix.25

Q ≡



−s 0 0 p1 p1 0

0 −s 0 p2 p2 p2

0 0 −s 0 p3 p3

s 0 0 −(p1 + p2) 0 0

0 s 0 0 −(p1 + p2 + p3) 0

0 0 s 0 0 −(p2 + p3)


(8)

25The matrix Q(t) is the continuous time equivalent of the discrete time transition matrix.
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The upper-left and lower-left blocks represent job destructions, while the upper-right

and lower-right blocks represent job creations. Worker mobility across occupations is

reflected by positive off-diagonal terms in the upper-right block, while the absence of

on-the-job search is shown by the null off-diagonal terms in the upper-left block.

The transition matrix contains all the necessary information to predict the evolution

of the worker distribution.

Measure of transition speed. Measuring the speed of worker reallocation is challeng-

ing due to the high dimensionality of distributions. However, the heterogeneous agents

literature in macroeconomics has developed valuable metrics for quantifying transition

times of distributions (Gabaix et al., 2016; Alvarez and Lippi, 2022; Baley and Blanco,

2021; Beraja and Wolf, 2021).

Building on this work, I introduce a new definition of aggregate reallocation time,

defined as the normalized cumulative distance to the steady state.

Definition 1. (Aggregate worker reallocation time)

The aggregate worker reallocation time T is defined as

T ≡ 1
∥ f (0)− f∞∥2

∫ +∞

0
∥ f (t)− f∞∥2dt (9)

where ∥ f (t)− f∞∥2=
√

∑k( fk(t)− fk,∞)2.

The intuition is as follows. The integrand is the distance of the worker distribution

to its steady-state. By integrating this distance over time, we obtain the cumulative

distance to the steady-state distribution. A larger cumulative distance indicates that the

distribution stayed far from the steady-state longer, signifying slower convergence. The

normalization constant ensures the measure is not inflated merely by starting farther

from the steady-state.26

As an illustration, consider the dynamics of unemployment in the canonical search

26This measure of transition time allows for closed-form solutions in higher-dimensions, unlike the half-
life. Moreover, it can be biased, as it only focuses on the initial half of the transition dynamics and
ignores slower transition thereafter.
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and matching model. The unemployment rate evolves as u̇(t) = s(1− u(t))− pu(t). The

general solution is u(t) = u∞ + (u(0)− u∞)e−(p+s)t, implying that a transition time of

T =
∫ +∞

0 e−(p+s)t dt = 1
p+s . This is the inverse of the exponential decay rate, a popular

measure of transition time, corresponding to the time for 63% of the transition to occur.27

4.4 Characterizing Reallocation Speed

What are the determinants of worker reallocation speed? Determining worker realloca-

tion time is challenging in the general case, as it involves computing eigenvalues and

eigenvectors of large matrices, which typically lack closed-form solutions. However, the

tractability of the simple model allows me to derive closed-form expressions.

Additionnal simplifying assumptions. Assume equal productivity yP in periphery

occupations and productivity yC in the central occupation. Let pC and pP denote job

finding rate in central and non-central occupations. Also, assume homogeneous separa-

tion rates, vacancy costs, and matching efficiencies s, c, ζ, with s small compared to job

finding rates.

Asymmetric shocks. I focus on asymmetric shocks, such as trade or technology

shocks, which impact occupations unevenly, with the employment-weighted sum of

occupation-specific productivity shocks equaling zero.28 Some occupations are nega-

tively affected, while others benefit, leading to worker reallocation.

Two types of asymmetric shocks are examined: periphery and central shocks, defined

as

dyP = (−∆, 0, ∆) and dyC = (
2pC + pP

2pC + 2pP
∆,−∆,

2pC + pP

2pC + 2pP
∆)

where ∆ > 0 controls the magnitude of the shock. The periphery shock affects periphery

occupations with opposite sign, while the central shock negatively impacts the central

27In one-dimension, we have T = log (2)× t1/2, with t1/2 the half-life, but this relationship is lost in higher
dimensions.

28Aggregate shocks affect all occupations equally, whereas asymmetric shocks, like trade or technology
shocks, are orthogonal to these and result in an employment-weighted sum of productivity shocks that
equals zero.
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occupation but benefits the periphery occupations. 29

Worker reallocation time. Lemma 1 provides an approximation of worker reallocation

time after periphery and central shocks.

Lemma 1. (Reallocation time after periphery and central shocks)

For small shock, reallocation times after periphery and central shocks are approximately

TP ≈
(

1 +
pP

pC

)
s−1 and TC ≈ s−1

Equipped with this result, we can determine the reallocation time for any asymmetric

shock. An asymmetric shock is defined as a shock such that the employment weighted

occupation productivity shocks sum to zero. Assuming additionnally that productivity

differentials are not too great, such that pC ≈ pP, then any asymmetric shock can be

written as a combination of these eigen-shocks: dy = γCdyC + γPdyP.

Proposition 2. (Reallocation time after any asymmetric shock)

For small shocks, transition time after any asymmetric productivity shock is approximately

T ≈ αP ·
(

1 +
pP

pC

)
s−1 + (1 − αP) · s−1

where the weight on transition time after periphery shock αP is equal to αP ≡ |(pP+pC)γP|

|(pP+pC)γP|+| (2pP+pC)2
pP+pC

γC|
and where γP and γC are the loadings on periphery and central shocks.

The transition time after asymmetric shocks is a weighted average of the transition times

after periphery
(

1 + pP
pC

)
s−1 and central shocks s−1. The weights depend on the relative

importance of productivity shocks to periphery versus central occupations.

There are three main take-aways. First, transition is very slow following asymmetric

shocks. Indeed, transition time is of order s−1, where the separation rate is typically

2.5% per quarter, predicting reallocation times of around 40 quarters. Intuitively, this is

29These productivity shocks are the eigen-shocks of the economy, as defined by Kleinman et al. (2023). The
transition speed following an eigen-shock is determined by the associated eigenvalue.
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because workers must wait to become unemployed before switching occupations.30

Notably, this transition time is an order of magnitude larger than in the canoni-

cal search and matching model, which predicts transition times of order p−1 (about 3

months for a 30% monthly job-finding rate in the US). This suggests that adding labor

market heterogeneity can help match the persistence of shocks.

Second, the centrality of productivity shocks matters for reallocation speed. Transi-

tion times are longer after shocks to periphery occupations than after shocks to central

occupations. This is because peripheral occupations provide fewer opportunities for

displaced workers to transition to new jobs, resulting in slower reallocation processes.

Third, bridge occupations matter for worker reallocation speed. The central occupa-

tion’s job finding rate has a granular effect on reallocation time: if it approaches zero,

the transition time becomes arbitrarily large, while it remains finite if the job finding

rate of periphery occupations approaches zero. Intuitively, bridge occupations can act as

bottlenecks, especially when workers need to transit between periphery occupations.

4.5 Characterizing Welfare Effects

Does the speed of worker reallocation matter for welfare? This subsection examines the

welfare effects of permanent asymmetric productivity shocks. First, I define a measure of

welfare and adjustment costs. Second, I provide closed-form analytical characterization

of adjustment costs after any asymmetric shock.

Defining welfare. Let define social welfare over the transition as the present dis-

counted value of aggregate output net of vacancy costs

SWslow ≡
∫ +∞

0
e−rt ∑

i∈N

[
ei(t)yi + (bi − ciθi)ui(t)

]
dt

The term ei(t)yi +(bi − ciθi)ui(t) is the sum of worker and firm payoffs net of hiring costs

30On-the-job search would not significantly alter the result, as job-to-job transitions across occupations are
infrequent.
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in occupation i at date t.31 Summing over occupation yields the aggregate flow welfare

at date t, and multiplying by the discount factor and integrating over time provides

the present value of the economy’s welfare over the transition. The ’slow’ upperscript

denotes the fact that the worker distribution evolve slowly over time.

By contrast, the social welfare if the economy remains at the old steady-state writes

SWold ≡ 1
r ∑i∈N

[
ẽi∞ỹi + (b̃i − ci θ̃i)ũi∞

]
, where variables denoted by x̃ represent their

old steady-state level. Moreover, the social welfare if the economy immediatly jumps to

the next steady-state writes SWnew ≡ 1
r ∑i∈N

[
ei∞yi + (bi − ciθi)ui∞

]
.

Adjustment costs. The adjustment costs AC measure the percentage point reduction

in welfare gains due to slow reallocation, relative to a counterfactual scenario where

transition would be instantaneous.

AC ≡ SWslow − SWold

SWnew − SWold − 1

The numerator measures the change in social welfare if transition is slow, while the

denominator measures the change in social welfare if transition is instantaneous.32 For

instance, if the welfare change with slow transition is only a half of the welfare change

with instantaneous-transition scenario, then SWslow−SWold

SWnew−SWold = 0.5 and adjustment costs are

equal to −50%.

Characterizing adjustment costs. First, I begin by providing closed-form analytical

characterizations of adjustment costs after periphery and central shocks.

Proposition 3. (Adjustment cost after periphery and central shocks)

The adjustment cost after the periphery shock and central shocks can be approximated as

ACP ≈ − TP

r−1 + TP and ACP ≈ − TC

TC + r−1 ·
pC + pP + p2

P/(pC + pP)

2pC + 3pP + p2
P/(pC + pP)

(10)

31Note that wages cancel out since they are a transfer, and hiring costs can be written civi(t) = ciθiui(t).
32This definition of adjustment costs aligns closely with that in Caliendo et al. (2019), who define

adjustment costs as AC = log SWslow−SWold

SWnew−SWold . Both definitions are approximately equivalent when
SWslow−SWold

SWnew−SWold ≈ 1. An advantage of this approach is that it allows for closed-form solutions.
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where TP ≡ pP+pC
spC

and TC ≡ 1
s are the transition times after periphery and central shock, resp.

There are two main take-aways. First, these expressions establish a direct and positive

connection between the magnitude of adjustment costs and the speed of reallocation

after periphery and central shocks. Longer reallocation times lead to larger adjustment

costs.

Second, adjustment costs can be very large after periphery shocks. Intuitively, this

is because misallocation is particularly severe along the transition, with labor shortages

and productivity shocks being perfectly negatively correlated. As a result, delays in

adjustment are very costly, leading to large adjustment costs. For example, if realloca-

tion time is very long, adjustment costs approach -1, indicating a complete reduction in

welfare gains compared to an instantaneous transition.

In contrast, adjustment costs are lower after central shocks because transitory misal-

location is less severe, with labor shortages and productivity shocks not perfectly anti-

correlated. Adjustment costs are bounded from below by a misallocation term and can-

not drop to -100%.

Equipped with this, I am now ready to derive an analytical characterization of ad-

justment costs after any asymmetric shock.

Proposition 4. (Adjustment cost after any asymmetric shock)

The adjustment cost after any asymmetric productivity shock is approximatively

AC ≈ ΛP
−TP

r−1 + TP︸ ︷︷ ︸
=ACP

+(1 − ΛP)
−TC

r−1 + TC
pC + pP + p2

P/(pC + pP)

2pC + 3pP + p2
P/(pC + pP)︸ ︷︷ ︸

=ACC

(11)

where TP and TC are the transition times after the periphery and central shock, respectively, and

where the weight on periphery adjustment costs ΥP writes ΛP ≡ γP2(2pC+pC)
γP2(2pC+pC)+γC(2pC+3pP+pP2/(pC+pP)

.

This means that the adjustment costs after any asymmetric shock is a weighted aver-

age of adjustment costs after central and periphery shock. The weight depends on the

relative importance of the periphery and central shocks, γP and γC respectively, in the
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shock decomposition.

An important implication is that shock centrality matters for the size of adjustment

costs. Adjustment costs are larger after shocks to periphery occupations, than shocks to

central occupation. This is for two reasons: after periphery shocks, transition is slower

and misallocation is more severe along the transition.

5 A Quantitative Model of Network Search

This section develops a quantitative version of the network job search model.

While the tractability of the stylized model allowed for an analytical characterization

of reallocation time, it came at the cost of assuming a simplistic occupation network

structure and rather mechanical worker behavior. The quantitative model lifts these

restrictions, allowing for an arbitrary occupation network and strategic decision-making

in response to shocks.

5.1 Extensions

Occupation structure. There are N distinct occupations, indexed by i ∈ N , connected

by the edges of the occupation network. The network structure is captured by the adja-

cency matrix G = (gij)(i,j)∈N 2 , where gij ∈ (0, 1) represents the probability that workers

in occupation i can learn the skills of occupation j. The matrix G is asymmetric (gij ̸= gji),

with each occupation perfectly accessible to itself (gii = 1 for all i).33

Workers. Employed workers can search on-the-job, but have less time for search com-

pared to unemployed workers (ηi < 1). As a result, firm-worker matches can end due to

exogenous separation shocks or because the worker found a job in another occupation.

Workers choose their search effort, allowing them to partially direct their search toward

certain occupations. Unemployed workers have 1 unit of time, while employed workers

33The occupation network is strongly connected, ensuring a positive worker population in all occupations
over time.
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have ηi. The search time in occupation j by workers in i and state x ∈ {e, u} is denoted

τx
ij . Search time translates into effective search effort, σx

ij, according to:

σx
ij = τx

ij

ψ
ψ+1

where ψ ≥ 0 measures the degree of concavity of the search effort technology. The

assumption of decreasing returns to search captures the idea that workers initially con-

tact a few salient firms, but subsequent contacts require more time, resulting in fewer

applications per hour invested.

Wage determination. Workers and firms negotiate wages using a generalized Nash

bargaining rule, where the worker bargaining strength ϕi determines the surplus split.

Wages are continuously renegotiated during the transition. The model abstracts from

wage-setting frictions, such as downward wage rigidity or infrequent negotiations. How-

ever, adding these frictions would slow down reallocation dynamics even further.

Search frictions. The details of the search frictions are provided in Appendix D.

Importantly, the transition rate of workers in occupation i and state x to employment in

occupation j date t writes

µx
ij(t) ≡ gijσ

x
ij(t)pj(t)

where σx
ij(t) is the search effort, and pj(t) the the job finding rate per unit of search effort.

The transition rate is the product of three terms: (1) the skill friction gij reflects

whether the transition is feasible, (2) the search effort σx
ij reflects whether the transition

is desirable for workers, while (3) the job finding rate per unit of search pj(t) reflects

whether the transition is desirable for firms (i.e., their hiring rate).

5.2 Values

How do workers allocate their search efforts? How are wages negotiated, and how does

it affect vacancy posting? Workers’ and firms’ decisions depend on their values, which I

define now.
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Workers values. The value of being employed in occupation i at date t is denoted

Ei(t), and the value of being unemployed in occupation i at date t is denoted Ui(t). The

value of being unemployed from occupation i at date t Ui(t) solves

rUi(t) = max
{τu

ij (t)}j≥0
bi + ∑

j∈N
µu

ij(t)(Ej(t)− Ui(t)) + U̇i(t) (12)

s.t. µu
ij(t) = gij pj(t)τu

ij (t)
ψ

ψ+1 and ∑
j

τu
ij (t) = 1

Unemployed workers from occupation i receive flow unemployment benefits bi and al-

locate their search time τu
ij to maximize the expected value of being hired in their own

or adjacent occupations. They match with firms in j at the rate µu
ij, in which case they

earn Ei(t)− Ui(t), hereafter the switching gain. The value function can vary over time

during the transition dynamics.

The value of being employed in occupation i at date t Ei(t) solves the Bellman equa-

tion

rEi(t) = max
{τe

ij(t)}j≥0
wi(t) + ∑

j∈N
µe

ij(t)(Ej(t)− Ei(t)) + si(Ui(t)− Ei(t)) + Ėi(t) (13)

s.t. µe
ij(t) = gij pj(t)τe

ij(t)
ψ

ψ+1 and ∑
j

τe
ij(t) = ηi

Employed workers earn a flow wage wi(t) and allocate their search time to maximize the

expected value of being hired, but have less time to search than unemployed workers

(ηi < 1). They match with firms in j at rate µe
ij(t) and gain Ej(t)− Ei(t). At the exogenous

rate si, the firm-worker match is separated, and the worker becomes unemployed. The

value function can vary over time during the transition dynamics.

Optimal search times. The optimal search times, derived from the first-order condi-

tions of the Bellman equation, are

τu
ij (t) =

(
gij pj(t)max{Ej(t)− Ui(t), 0}

)ψ

∑k
(

gik pk(t)max{Ek(t)− Ui(t), 0}
)ψ τe

ij(t) =

(
gij pj(t)max{Ej(t)− Ui(t), 0}

)ψ

∑k
(

gik pk(t)max{Ek(t)− Ui(t), 0}
)ψ

(14)
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Workers exert higher search time to occupations with (1) high skill similarity gij, (2)

high job finding rate pj(t) or (3) high switching gains, Ej(t) − Ui(t) or Ej(t) − Ei(t).

Conversely, they do not exert effort in unconnected occupations, or where switching

would result in a loss.

The parameter ψ represents the elasticity of search effort to expected gains from

switching occupations. This formulation encompasses random and directed search as

special cases: when ψ approaches zero, workers search randomly across occupations,

whereas when ψ approaches infinity, workers fully direct their search effort towards the

highest-return occupations. This parameter governs how workers adjust their search in

response to economic shocks.

This specification mirrors choice probabilities in discrete choice models. However,

there are two main differences. First, effective search efforts σx
ij do not sum to one, allow-

ing workers in high-return occupations to search more. Second, the Bellman equation is

linear in payoffs, significantly simplifying the estimation of values. Further discussion

on this comparison can be found in Appendix D.

Firm values. The Bellman expressions for firm values are similar to those in the

stylized model and are therefore relegated to Appendix D. The main difference is that

the value of a filled job now accounts for the possibility of endogenous job separation

due to worker on-the-job search.

Nash bargaining. When a firm and a worker meet, they bargain over the wage. At any

date t, the negotiated wage in occupation i, denoted wi(t), maximizes the generalized

Nash product

max
wi(t)

(Ei(t)− Ui(t))ϕi(Ji(t)− Vi(t))1−ϕi

Importantly, the worker’s outside option is the value of being unemployed from occupa-

tion i onwards, regardless of previous occupations or employment status. This reflects

that wages are negotiated only after the worker has transitioned to a new occupation,

consistent with the idea that only ex post negotiations are credible in a world of incom-
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plete contracts. This assumption ensures analytical tractability by making all workers

applying in occupation i have the same outside options and receive the same wage.34

The negotiated wage can be expressed as

wi(t) = ϕiyi +(1−ϕi)w̄i with w̄i ≡ bi + ∑
j

µu
ij(t)(Ej(t)− Ui(t))︸ ︷︷ ︸

outside option

−∑
j

µe
ij(t)(Ej(t)− Ui(t))︸ ︷︷ ︸

option value of on-the-job
(15)

The proof is detailed in Appendix D.

The wage wi(t) is a weighted average of the worker-firm productivity yi and the

worker’s reservation wage w̄i(t), with the weight determined by worker’s bargaining

power ϕi. In other words, Nash bargaining strikes a balance between the maximum

wage acceptable to the firm (productivity yi) and the minimum wage acceptable to the

worker (reservation wage w̄i).

The worker’s reservation wage w̄i has two components: the outside option, which

raises the wage, and the option value of future on-the-job search, which leads workers

to accept a lower current wage in anticipation of better future prospects. However, the

bargaining channel always dominates, raising wages, since µu
ij(t) ≥ µe

ij(t).

A key new implication is that the reservation wage now depends on job prospects in

adjacent occupations within the network, creating spillover effects across occupations.

A wage increase in one occupation raises the reservation wages in neighboring occupa-

tions, enhancing their negotiated wages. In the appendix, I show that wages are pro-

portional to occupations’ Katz-Bonacich centrality in a certain network, implying that

centrality increases bargaining power and wages.

Free entry. As in the stylized model, potential entrants can freely post vacancies in

each occupation, driving the value of posting a vacancy to zero at all times: Vi(t) = 0.

A new implication is that tightness ratios are interconnected across occupations

through the reservation wage channel, leading to negative spillovers in vacancy postings.

34Otherwise, wages would depend on both the current and previous occupations, wij, leading firm and
worker values to depend on both—breaking the block-recursive structure of the model.
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Higher vacancy postings in neighboring occupations improve workers’ search prospects,

raising their reservation wages and potentially reducing the firm’s incentive to post va-

cancies.

5.3 Law of Motion

The laws of motion of worker employment and unemployment closely resemble those

in the stylized model and are therefore relegated to Appendix D.

Importantly, the worker distribution’s law of motion still writes ḟ (t) = Q(t) f (t), but

where the quantitative transition matrix Q(t) has a slightly more complex expression:

Q(t) =


diag

(
p
)
(G ⊙ σe)′diag − diag

(
G ⊙ σe)p

)
− diag

(
s)︸ ︷︷ ︸

e → e

diag
(

p
)
(G ⊙ σu)′︸ ︷︷ ︸

u→ e

diag(s)︸ ︷︷ ︸
e → u

−diag
(
(G ⊙ σu)p

)︸ ︷︷ ︸
u → u


(16)

where ⊙ denotes matrix element-wise multiplication.

First, the upper-left block now has non-zero diagonal elements, reflecting on-the-job

search by employed workers. Second, the upper-right and lower-right blocks incorporate

worker search efforts, accounting for the semi-directed nature of job search

5.4 Definition of the Equilibrium

Definition of the equilibrium. The equilibrium is a collection of time-varying value func-

tions {Ei(t)}i∈N , {Ui(t)}i∈N , {Ji(t)}i∈N , {Vi(t)}i∈N , time-varying search times {τe
ij(t)}(i,j)∈N 2 ,

{τu
ij (t)}(i,j)∈N 2 , time-varying wages {wi(t)}i∈N , time-varying labor market tightness ratios

{θi(t)}i∈N and a time-varying distribution of workers f (t), such that:

i) The value functions satisfy the worker and firm Bellman equations

ii) The search times satisfy the first order conditions of the Bellman equations

iii) The wages satisfy the Nash bargaining condition at all dates

35



iv) The tightness ratios are such that the free entry condition holds at all dates

v) The distribution of workers evolves according to the matrix law of motion

Block recursive equilibrium. The equilibrium in this model is block recursive, as

defined by Menzio and Shi (2010) and Menzio and Shi (2011). Block recursivity means

that the agents’ value and policy functions do not depend on the worker distribution.

Block recursivity is crucial for maintaining the tractability of models with heterogeneous

agents.

This gives me my solution strategy. First, I solve for the agents’ optimal actions

and values. This determines the equilibrium transition rates. Second, I solve for the

dynamics of worker reallocation, given the previously determined equilibrium matrix of

transition rates.

Stability, existence and unicity of equilibrium. Although, in theory, worker and firm

value and policy functions might vary during the transition, Appendix D provides a

sufficient condition under which these functions must remain constant throughout the

transition.

Furthermore, I show that a steady-state equilibrium always exists. Under additional

assumptions, detailed in appendix D, which can be verified numerically, this equilibrium

is also unique.

5.5 Dynamic Hat-Algebra

This subsection solves for counterfactuals following small permanent productivity shocks.

Solving for counterfactuals in this quantitative model is challenging due to the num-

ber of variables and their complex interactions. Moreover, it requires estimating a large

number of parameters. To address this, I build on the ’hat algebra’ method from trade,

which drastically reduces the number of parameters to estimate (Jones (1965), Dekle

et al. (2008), Caliendo et al. (2019)). Here, I extend dynamic hat algebra to incorporate

search frictions. In what follows, x̂ ≡ dx/x denotes log-changes.

36



Proposition 5. (Dynamic Hat-Algebra)

Following small productivity shock dy, the approximate hat-changes in values and actions solve

Êi =
1

rEi

(
wiŵi + ∑

j
µe

ij∆
e
ij

(
µ̂u

ij + ∆̂e
ij

))
Ûi =

1
rUi

(
∑

j
µu

ij∆ij

(
µ̂u

ij + ∆̂u
ij

))

µ̂u
ij = (ψ + 1) p̂j + ψ∆̂u

ij − ψ ∑
j

σu
ij( p̂k + ∆̂u

ik) µ̂e
ij = (ψ + 1) p̂j + ψ∆̂e

ij − ψ ∑
j

σe
ij( p̂k + ∆̂e

ik)

ŵi =
1
wi

(
ϕdyi + (1 − ϕ)∑

j
µu

ij∆
u
ij

(
µ̂u

ij + ∆̂u
ij

)
− (1 − ϕ)∑

j
µe

ij∆
u
ij

(
µ̂e

ij + ∆̂u
ij

))
p̂i =

1 − α

α
∆̂u

ii

where ∆u
ij ≡ (Ej −Ui) and ∆e

ij ≡ (Ej − Ei) denote switching gains. Proof in Appendix D.

The first two equations describe how worker values react to changes in agents’ ac-

tions. The other four describe how agents’ actions react to changes in values and baseline

actions.

Several key elasticities determine the magnitude of equilibrium changes. The search

elasticity ψ controls how transition rates respond to changes in worker values, while

the matching elasticity α influences how job-finding rates adjust to variations in worker

values. Worker bargaining power ϕ affects how wages respond to changes in both pro-

ductivity and worker values.

An important implication is that, given baseline transition rates (µu
ij)i,j, (µe

ij)i,j, (si)i,

baseline payoffs (wi)i, (bi)i and a vector of productivity shocks (dyi), only the discount

rate r and three elasticities ψ, α, ϕ are needed to compute counterfactuals.

6 Estimation

This section presents the estimation and calibration strategy for the key model parame-

ters.

Few parameters are needed to solve counterfactuals. The search elasticity, which

determines how workers reallocate their search in response to shocks, can be estimated

using a reduced-form regression with structural interpretation. This method leverages
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the gravity structure of worker transitions across occupations, making the estimation

both efficient and transparent. The other parameters are calibrated.

Discount rate and replacement rate. I begin by setting the discount rate r at a quar-

terly value of 3%, corresponds to a time horizon of 8 years as in Le Barbanchon et al.

(2021). The replacement rate b is calibrated at 40%, which falls within the mid-range of

values reported in the literature, spanning from 0.1 to 0.9 (e.g. Hagedorn and Manovskii

(2008), Conlon et al. (2018)).35

Given worker payoffs, transition rates and the discount rate, the worker value func-

tions can be computed for each quarter t. The vector of worker values at quarter t,

denoted V(t) = (E1(t), . . . , EN(t), U1(t), . . . UN(t))′, is

V(t) = (rI − Q′(t))−1

w(t)

b(t)


The intuition is that worker values are the discounted sum of future income flows, ac-

counting for transitions to other occupations and employment states. Assuming workers

do not anticipate further shocks, expected future incomes and expected future transition

probabilities are equal to today’s, and therefore worker values can be computed.36

From this, the switching gains for employed and unemployed workers can be com-

puted as ∆e(t) = (Ej(t)− Ei(t)),ij∈N 2 and ∆u(t) = (Ej(t)− Ui(t))i,j∈N 2 .

Search elasticity. To estimate search elasticity ψ, I study how worker occupation

transitions respond to changes in switching gains, controlling for confounding factors.

The model predicts that worker flows have a gravity structure:

35There is no consensus on the calibration of flow unemployment values. Shimer (2005) sets b at 40% for
the US based on monetary benefits (in France, the replacement rate was approximately 70% of net wages
at that time). However, this approach ignores non-monetary factors like leisure (utility) and social stigma
(disutility). A low replacement rate increases job search incentives, speeding up reallocation, providing
a lower bound on reallocation speed.

36Each quarter a new productivity shock hits, resulting in a new equilibrium with a distinct vector of
worker values.
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log µu
ijt = (ψ + 1) log gij + (ψ + 1) log pjt − log Nu

it + ψ log ∆u
ijt

where µu
ijt is the transition rate, gij is the skill friction, pj(t) is the job finding rate, Nu

it is

a normalization constant, and ∆x
ijt is the switching gain.37

The search elasticity ψ could ideally be estimated directly by regressing switching

gains on observed variables and extracting the relevant coefficient. However, many ele-

ments such as skill frictions and job finding rates are not directly observable. Omitting

these factors introduces a missing variable bias, as worker values are correlated with

skill frictions and job finding rates.

Building on the similarity with the gravity framework, I control for these unobserved

terms with fixed effects (FE): time-invariant origin-destination FE control for skill fric-

tions, while time-varying destination FE control for job finding rates. However, the

number of fixed effects can become too large, leading to non-robust estimates, in partic-

ular because of the large number of time-invariant origin-destination fixed. To mitigate

this, I follow Head and Mayer (2014) recommendation to first demean along the time

dimension, before running a two-way fixed effect Poisson regression. Further details are

provided in Appendix E.

I find a value of 0.09, much lower than Caliendo et al. (2019)’s quarterly estimate of

0.2. This means a 1% increase in switching gains results in a 0.09% increase in worker

transitions, all else equal. This lower estimate might be due to the fact that I do not

model explicitly the geographical frictions, leading to an attenuation bias.

Matching elasticity and worker bargaining power. I calibrate the matching elasticity

and worker bargaining power α at ϕ = 0.5, a standard calibration value in macro-labor

models.38 39

37In seminal papers, Artuç and McLaren (2015) and Cortes et al. (2020) also exploit the gravity structure
of worker flows to estimate occupation switching costs. I extend their approach by incorporating search
frictions.

38This corresponds to the Hosios condition, which ensures efficiency in search & matching models. In-
terestingly, the model predicts new sources of inefficiency as firms and workers do not internalize
congestion effects on neighboring occupations. But the Hosios condition still holds approximately.

39Lacking job vacancy data, I cannot estimate matching elasticity directly. Ideally, this would involve
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7 Application: Robots

This section uses the estimated quantitative model as a ’laboratory’ to explore the effects

of the robots on the French labor market. First, I calibrate the robot shock. Then, I study

the labor market adjustments after the shock. Finally, I simulate policy interventions and

assess their effectiveness in accelerating worker reallocation.

7.1 Calibration of the Robot Shock

The robot shock is modelled as a permanent unexpected shock to the productivity vector.

It is decomposed into two components: an aggregate shock, representing economy-wide

productivity gains, and an asymmetric shock, reflecting the relative effects of technology

across occupations.

Calibration of productivity shocks. To calibrate the asymmetric productivity shocks,

I use Webb (2019) measure of occupation exposure to robots. I first apply Webb’s esti-

mated effect of robot exposure on wages to predict wage changes.40 I then infer produc-

tivity changes to match the predicted wage response. Details are in Appendix E.

The aggregate part of the productivity shock is calibrated to match the 3.5% aggregate

productivity gain reported by Acemoglu and Restrepo (2022) for robots and software in

the US from 1980-2016.41 Since I focus on robots and my data starts in 2009, I calibrate

the aggregate productivity gains at approximately 1%.

Most affected occupations. Which occupations are most affected by robots? The

"declining" occupations, negatively impacted by robots, are those where tasks involve

moving objects, such as construction operators, rail operators and industrial unskilled

workers. In contrast, the "expanding" occupations, positively affected by robots, involve

regressing hires on vacancies and job seekers within an occupation. Note that the model includes job
seekers from adjacent occupations, and not controlling for this may introduce measurement bias.

40Ideally, I would estimate these effects directly, but the short time span of my data precludes such analy-
sis.

41Recovering the GE effects of robot would require a more complex model, beyond the scope of this study.

40



socio-linguistic skills, including interpreters, telemarketers, journalists and social work-

ers.

Figure 7.1: Expanding (blue) vs. declining (red) occupations in the occupation
network

a) Expanding vs. Declining b) Labels
Notes: The occupation network is aggregated at the level of 3-digit FAP occupations.

Figure 7.1 plots the location of declining and expanding occupations within the net-

work of occupation after the robot shock. It show that expanding and declining oc-

cupations are very clustered, forming two clearly divided groups of occupations with

little overlap between them. This suggests that the robot shock strongly resembles the

periphery shock from the toy model.

7.2 Transition Dynamics

How do French labor markets adjust to the introduction of robots? In this subsection

I simulate the economy’s transition dynamics after the robot shock. The baseline is

calibrated at the time-average of the French economy over 2009-2012.

Aggregate reallocation times. How fast do workers reallocate following the robot

shock? I find that the worker distribution converges quite slowly to its new steady-state

distribution.

Figure 7.2.a shows the dynamics of the worker distribution’s distance to its steady
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Figure 7.2: Characterizing the worker reallocation transition dynamics

(a) Aggregate distance to steady-state (b) Reallocation time, by occupation

state after the robot shock. The results indicate slow reallocation, with an aggregate re-

allocation time of approximately 39 quarters, or 10 years. Interestingly, this reallocation

time aligns closely with predictions from the simple model, suggesting that the quanti-

tative extensions balance each other. A larger occupation network may slow reallocation

by requiring workers to move to more distant occupations, while richer search behav-

iors—such as on-the-job and semi-directed search—allow workers to switch occupations

without waiting for unemployment, thus speeding up reallocation.

Although the predicted reallocation time might seem short, it should be considered a

lower bound. Simplifying assumptions—such as continuously renegotiated wages, free

entry in vacancy creation, and immediate skill acquisition—likely overestimate the speed

of adjustment.

Heterogeneous reallocation times. Do all occupations adjust at the same speed? The

moderate aggregate reallocation time actually masks substantial heterogeneity across

occupations.

To capture this, let define reallocation time at the occupation level as

Ti =
1

maxh|mi(h)− mi|

∫ +∞

0
|mi(t)− mi|dt

where mi(t) ≡ ei(t) + ui(t) is the mass of workers in occupation i at t, and mi its steady-
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state level. This metric measures the cumulative distance of an occupation’s population

from its steady state.

Figure 7.2.b plots the distribution of occupation-specific worker reallocation times,

measured in quarters. The results reveal substantial heterogeneity in transition times

across occupations. While most occupations adjust relatively quickly to their new steady-

state worker levels—with a median reallocation time of 25 to 40 quarters—a small mi-

nority experience very long transition times, exceeding 80 quarters. These occupations

include retail assistants, security guards, skilled warehouse worker. Intuitively, this is

because occupations at the center of the occupation network experience persistent flows

until the entire reallocation process is complete, leading to prolonged adjustment peri-

ods.42

Adjustment costs. How does the robot shock affect social welfare? Does the slow

reallocation dynamics lead to adjustment costs? I find that flow social welfare adjusts

slowly after the robot shock, leading to large adjustment costs of around -40%.

Figure 7.3: Flow social welfare over time

Figure 7.3 shows the evolution of flow social welfare over time under three scenarios.

42Results on unemployment are presented in Appendix F. Interestingly, I find that aggregate unemploy-
ment decreases significantly after the shock – even though the aggregate productivity shock is small –,
and the adjustment is fast. However, this masks substantial heterogeneity across occupations in terms
of speed of adjustment, with a minority of occupations adjusting very slowly.
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The upward-sloping curve represents social welfare in the slow transition case, where

workers reallocate gradually. The top horizontal line represents social welfare in the

case where the worker distribution jumps immediately to its new steady state, while the

bottom line shows the case where the robot shock does not occur. The figure illustrates

that social welfare adjusts slowly, converging toward its new steady-state level.

This slow reallocation results in large adjustment costs, measured graphically as the

area between the top line and the upward-sloping curve. I find that adjustment costs

amount to approximately -40%, much higher than previous estimates of comparable

shocks. For instance, Caliendo et al. (2019) estimate adjustment costs from the China

shock at around -3.5%. One reason for this discrepancy is the inclusion of search fric-

tions. Since unemployed workers are not immediately matched with firms, staying un-

employed while waiting to transition to new jobs is costly and leads to welfare losses.

This highlights the importance of accounting for search frictions when measuring wel-

fare gains from shocks, as ignoring these frictions could overestimate the benefits of

technological advances by nearly a factor of two.

7.3 Policy Experiment

How can policymakers speed up worker reallocation? In this subsection, I simulate the

effect of different policy interventions on reallocation speed.

Employment subsidies. I examine the effect of targeted employment subsidies on

worker reallocation speed. These subsidies, commonly used to support specific groups

like young or low-education workers, involve the government paying part of workers’

wages when they find a job. Since economic incidence often differs from legal incidence,

I model subsidies as an exogenous productivity increase, shared between workers and

firms through Nash bargaining.

Subsidies can be targeted to specific occupations under three schemes: (1) declining

occupations, negatively impacted by shocks (e.g., unskilled manufacturing workers); (2)

expanding occupations, positively impacted (e.g., telemarketers); and (3) bridge occupa-
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tions, those linking declining and expanding occupations (e.g., maintenance technicians,

sales representatives, and sports instructors).

The subsidy is set at 5% of pre-shock productivity for targeted occupations, normal-

ized to ensure comparability across policy schemes. More details are in Appendix F.

Effect on reallocation speed. Which targeted policy interventions are the most effi-

cient at speeding up worker reallocation? To answer this, I simulate a scenario where

policymakers permanently distribute targeted employment subsidies after a technology

shock, calculate the counterfactual reallocation time, and compare the change to the

baseline.

Table 7.1: Change in reallocation time after different targetings, in p.p.

Declining Expanding Bridges

∆ log T 0.82 % -0.73 % -2.28%

Table 7.1 shows the percentage-point changes in reallocation times for different tar-

geting strategies. There are two main takeaways. First, targeting declining occupations

makes worker reallocation longer, as displaced workers stay inefficiently long in their de-

clining occupations. Second, targeting both expanding and bridge occupations speeds

up reallocation, with bridge-targeting being three times more effective than targeting

expanding occupations.

It is not immediately obvious why targeting bridge occupations is more effective

than targeting expanding occupations. Conventional thinking suggests that targeting

jobs with labor shortages (e.g., web developers) would boost wages and job postings,

encouraging workers to switch. However, this overlooks the role of skill frictions: work-

ers may lack the skills needed for expanding occupations, limiting their ability to switch,

even with higher wages. By targeting bridge occupations, policymakers enable workers

to reskill into jobs with skills similar to those in expanding occupations, broadening the

pool of workers who can transition effectively.
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This shows that leveraging the occupation network structure allows policymakers

to design more effective strategies. Identifying and targeting bridge occupations can

significantly accelerate reallocation following large structural shocks.

8 Conclusion

This paper introduces a novel network-based framework for understanding labor market

reallocation in response to technology shocks. By modeling skill frictions as connections

within a network of occupations, I provide new insights into the slow dynamics of

worker reallocation and its welfare implications. The analysis highlights the critical

role of bridge occupations in shaping reallocation speed, and the significant adjustment

costs due to slow transitions.

These findings have important implications for labor market dynamics in the context

of technological change, trade disruptions, and the green transition. Targeting bridge

occupations with policy interventions can significantly accelerate reallocation and reduce

adjustment costs. This framework offers a valuable tool for policymakers aiming to

mitigate the effects of labor market shocks.
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9 Appendix A: The Occupation Network

9.1 Alternative Algorithms to Detect Community Structure

Several algorithms have been developed to detect community structures in large net-

works (e.g. Louvain, Walktrap, Label Propagation, or Edge Betweenness). These meth-

ods, either divisive or constructive, aim to maximize metrics like modularity, which

compares the actual number of edges within clusters to the expected number in a ran-

dom network.43 For example, the Louvain algorithm starts by assigning each node to its

own community, then iteratively reassigns nodes to maximize modularity until a local

maximum is reached, defining community boundaries. Below is a plot of the occupation

network, with nodes colored by their community as identified by the Louvain algorithm.

Figure 9.1: The occupation network with communities found with Louvain algorithm

43Values above 0.3 indicate significant community structure.
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9.2 Bridge Occupations

An occupation is classified as a bridge if its clustering coefficient is in the lowest decile

and its betweenness centrality is in the highest decile of their respective distributions.

Below is a list of the top 10 bridge occupations.

Rank Betweenness Clustering Job Title

1 0.062 0.171 Emergency Management
2 0.054 0.109 Recreation Workers
3 0.054 0.162 Scientific Research
4 0.052 0.090 Technical Sales Representatives
5 0.043 0.190 Fine Artists
6 0.041 0.179 Logistics Worker
7 0.039 0.141 Management Consultant
8 0.039 0.156 Sales Secretary
9 0.035 0.133 General and Operations Managers

10 0.033 0.171 Maintenance Workers

Figure 1.2 plots the occupation network with node sizes proportional to between-

ness centrality, revealing that bridges are concentrated in social services, sales, retail,

transport, and logistics.

Figure 9.2: The bridge occupations in the occupation network
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10 Appendix B: Worker Flows

10.1 Data

Unemployment definition. I assign occupations to unemployed workers based on

their last job, rather than the occupations they are currently searching in. This approach

has several advantages: it only requires matched employer-employee data, accounts

for workers searching in multiple occupations, and aligns better with theories of skill

frictions by reflecting workers’ current skills and the difficulty of acquiring new ones.

Multiple job holding. Some workers hold multiple jobs despite focusing on main

jobs. I interpret this as transitioning between main jobs. To address this, I assign the

worker to the job with the most recent start date. If the new job ends before the old one,

I drop the new contract, assuming it to be a side job.

Occupation codes. The DADS panel provides imperfect 4-digit occupation codes,

especially before 2008 when reporting was not mandatory. Missing values are not uni-

formly distributed, particularly in low-skilled and public sector jobs, so I restrict the

analysis to post-2008 data when reporting became mandatory.

Additionally, DADS and ROME use different occupational nomenclatures: DADS

uses PCS, which groups by social rank, while ROME groups by skills. For consistency,

I map both onto a third nomenclature, FAP, at the 3-digit level, resulting in around 200

distinct occupations.

10.2 Construction of the main variables

Discrete time transition matrix. Let Q(t) denote the transition matrix between oc-

cupations and employment states at quarter t. It can be decomposed into four block

matrices Qx→y(t) representing the occupation transition from employment state x to

employment state y, with x, y ∈ {u, e}. For example, Qu→e(t) represents occupation

transitions from unemployment to employment.
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The general coefficient of Qx→y(t) = (µ
x→y
ij (t))i,j∈N 2 is computed as

µ
x→y
ij (t) ≡ # workers in occupation i and state x at t who are in occupation j and state y at t + 1

# workers in occupation i and state x at t

Intuitively, this is akin to conducting a large-scale survey of the entire labor force at a

fixed quarterly frequency, recording each worker’s occupation and employment state at

t and t + 1. Transitions are as the number of workers who change occupation or state

between these dates.

Time Frequency. I use a quarterly sampling frequency to balance two risks in measur-

ing transition probabilities. First, time-aggregation bias occurs because transitions happen

continuously, but are measured at discrete intervals, potentially underestimating actual

transitions. While Shimer (2007) offers corrections for two or three states, no general

corrections exist for larger state spaces. Shorter intervals (e.g., monthly) would reduce

this bias.

Second, small sample bias arises when there are too few observations to estimate tran-

sition rates accurately. With around 40,000 rates to estimate and limited transitions

recorded, small sample bias can significantly affect estimates, especially when no tran-

sitions are observed in a given quarter. A shorter sampling interval would worsen this

bias.

A quarterly frequency offers a good compromise, reducing time-aggregation bias

while limiting small sample bias, ensuring more accurate mobility rate estimates.

Controlling for Seasonality. Estimating transition rates is complicated by strong sea-

sonality, with more transitions occurring at certain times, such as January or Septem-

ber.44 To control for seasonality, I apply a simple strategy: using a moving average of

the last four quarterly transition matrices. This assumes that seasonality effects cancel

out over time, focusing on relative rather than absolute effects.

44This is especially true for employment-to-employment transitions, where many within-firm transitions
happen on January 1st, as firms often report these changes annually due to the administrative burden
of continuous reporting.
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Estimation of the continuous-time transition matrix. The transition matrix con-

structed above is a discrete-time transition matrix. However, our theoretical model op-

erates in continuous time, so we need to construct a continuous-time transition matrix.

To convert a discrete-time transition matrix to a continuous-time transition matrix, I use

the fact that f (t + h) = eQh f (t). For small time intervals, the matrix exponential can be

approximated as eQ(t)h ≈ I + Q(t)h. Setting h = 1, we find Q(t) ≈ eQ(t) − I.45

Wages. Let me explain each step in more detail, following the methodology of Le Bar-

banchon et al. (2021) on the same dataset. First, I measure net wages (in constant euros)

rather than gross wages, as the former are more relevant for workers considering job

changes. Second, I construct full-time equivalent quarterly net wages. For full-time

workers, I calculate daily earnings and multiply by 120 (30 days × 4 months) for quar-

terly earnings. For part-time workers, I compute hourly earnings and multiply by 35 ×

4 × 4. Third, I control for age by regressing wages on a second-order polynomial of age

and quarter-specific occupation fixed effects, isolating wage variation by occupation and

quarter. Fourth, I adjust for seasonality using a four-quarter moving average.

Recoding of Skill Frictions. An important methodological challenge arises from the

recoding of expert-based measures of skill frictions into a new occupation nomenclature.

Worker occupation transitions use a different code (PCS) than the expert measure of skill

frictions (ROME). Both nomenclatures must be converted into a third one, labelled FAP,

at the 3-digit level. This is a many-to-one matching: each FAP code is associated with

one or many ROME codes.

First, I assign numerical values to ROME skill frictions: 1 for self-connections, 2

for close transitions, 3 for distant transitions, and 4 for unlinked transitions. Second, I

compute FAP-level connection values by averaging ROME connection weights across all

ROME occupations associated with each FAP occupation:

gFAP
ij =

1
|Ni × Nj| ∑

(k,l)∈Ni×Nj

gROME
kl

45This approximation makes sense because the diagonal terms of the discrete-time transition matrix are
1 − ∑j ̸=i qij, so subtracting one gives −∑j ̸=i qij, ensuring rows sum to zero.
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where Ni denotes the set of ROME occupations associated with FAP i, and Ni × Nj is the

set of all ROME connections between two FAP occupations i and j. Third, I discretize the

continuous FAP connection values into four categories (self, close, distant, unlinked) by

partitioning them into intervals: gFAP
ij = 1 (self), gFAP

ij ∈ (1, 2.5] (close), gFAP
ij ∈ (2.5, 3.5]

(distant), and if gFAP
ij ∈ (3.5, 4](unlinked).

10.3 Bridge Regression

Outcome variables. The long-run difference in worker outcome, ∆yid, is measured as

the difference between the outcome at the end of the sub-period (4th quarter of 2012 or

2019) and the outcome at the beginning of the sub-period (1st quarter of 2008 or 2013). I

divide the sample into two periods to avoid dropping too many observations due to the

balanced panel assumption (the worker must be present at both the beginning and the

end of the period).

I consider several outcome variables: probability of changing 1-digit or 2-digit occu-

pation group, distance traveled in the occupation network (centered and standardized),

wage growth, and change in unemployment risk (measured as the difference in the un-

employment rate between the origin and destination occupations in percentage points).

The dummy 1(bridge) equals one if the worker transited through a bridge occupa-

tion, defined as occupations in the top tenth decile of betweenness centrality and bottom

tenth decile of clustering coefficient. It excludes workers who start or end in bridge oc-

cupations, requiring at least two transitions: from a non-bridge occupation to a bridge

occupation, and then to another non-bridge occupation.

Period 2008-2012. The Table 2.1 gives the estimated coefficients over the period 2009-

2012. All coefficients are statistically significant and have the same sign as in the 2013-

2019 period. Compared to the subsequent period, workers transiting through bridge oc-

cupations have slightly higher chances of changing 1- or 2-digit occupation groups and

travel farther in the network. However, their wage growth and reduction in unemploy-

ment risk are halved. Despite this, the effect remains economically significant, especially
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Table 10.1: Change in worker outcomes vs. transition through bridge, 2009-2012

Dependent Variables

Change 1-digit Change 2-digit Distance Wage Growth Unemployment
Occupation Occupation (Standardized) Rate Change

Through Bridge 0.317*** 0.342*** 0.816*** 0.044*** -0.345***
(0.003) (0.003) (0.008) (0.002) (0.026)

Observations 196,439 196,439 196,439 253,375 253,423
Origin FE Yes Yes Yes Yes Yes

Notes: Each observation is a worker over the period 2008-2012. The dependent variables are the proba-
bility of changing 1-digit or 2-digit occupation, distance traveled within the network, wage growth, and
change in unemployment risk. The variable of interest is a dummy indicating whether workers transited
through a bridge during the period. * p<0.10, ** p<0.05, *** p<0.01.

considering that wages declined and unemployment rates rose over the period.

Robustness check. As a robustness check, I restrict the control group to workers who

made at least two transitions over the period. This controls for unobserved personality

traits, such as high mobility, which could confound the effect of transiting through a

bridge occupation.

Table 2.2 presents the estimated coefficients for the 2013-2019 subperiod with the

alternative control group. The main take-away is that most results go through. All

coefficients are still statistically significant at the 1% threshold. The magnitude of the

first three coefficients is reduced but still quite high: workers transiting through bridges

still have a higher probability of changing 1-digit and 2-digit occupation groups and

travel farther away, but the difference with the control group is reduced. What is more,

the magnitude of the fourth and firth coefficients are unchanged, if not slightly increased

for unemployment risk.
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Table 10.2: Change in worker outcomes vs. transition through bridge, 2013-2019, ro-
bust control

Dependent Variables

Change 1-digit Change 2-digit Distance Wage Growth Unemployment
Occupation Occupation (Standardized) Rate Change

Through Bridge 0.103*** 0.053*** 0.168*** 0.049*** -0.744***
(0.004) (0.004) (0.008) (0.010) (0.048)

Observations 110,368 110,368 110,368 110,343 110,368
Origin FE Yes Yes Yes Yes Yes

Notes: Each observation is a worker over the period 2008-2012. The dependent variables are the proba-
bility of changing 1-digit or 2-digit occupation, distance traveled within the network, wage growth, and
change in unemployment risk. The variable of interest is a dummy indicating whether workers transited
through a bridge during the period. * p<0.10, ** p<0.05, *** p<0.01.

11 Appendix C: Stylized Network Search Model

11.1 Firm Values

Proposition 1. (Job posting along the transition)

Firm values Ji(t), tightness ratios θi(t) and job finding rates pi(t) are constant along the transi-

tion dynamics, and given by

Ji(t) =
ϕyi

r + s
θi(t) =

(
ζi

ci

(
(1 − ϕ)yi

r + si

)) 1
α

pi(t) = ζ
1
α

(
(1 − ϕ)yi

ci(r + si)

) 1−α
α

Proof : Firm value is unstable, thus the only stable dynamics is the constant-steady-state

value. Plugging the free entry condition, the Bellman equation of firm value writes

J̇i(t) = (r + si)Ji(t)− (yi − wi). Solving for this differential equation gives Ji(t) =
ϕyi
r+s +(

yi−wi
r+si

− Ji(0)
)

e(r+si)t. If the initial condition is not equal to the steady-state value of

firm value, then firm value diverges over time. Consequently, the only stable trajectory

is the constant steady-state value. Using the free entry condition ci
q(θi)=Ji

then gives the

equilibrium tightness ratios. Using the functional form the matching function yields the
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job finding rate.

11.2 Approximating worker reallocation dynamics

For small enough shocks, the baseline pre-shock transition matrix is sufficient to com-

pute the dynamics of the worker distribution, as the next lemma shows.

Lemma (Approximation of worker reallocation dynamics)

The deviation from steady-state, δ f (t) ≡ f (t)− f∞ evolves approximately as:

δ̇ f (t) ≈ Q̃ δ f (t) with δ f0 ≈ f̃∞ − f∞

where Q̃ is the pre-shock transition matrix, and f̃∞ − f∞ is the deviation in steady-states.

Proof: The proof is in three steps, and extensively leverages properties of first-order

approximations. First, for small enough shocks, the post-shock job finding rates can be

expressed as ppost-shock ≈ ppre-shock + κδy with κ ≡ 1−α
α

(
ζ(1−ϕ)
c(r+s)

) 1−α
α ȳ

1−2α
α The new job

finding rate is the sum of the old job finding rate and a shock term, which is proportional

to productivity shock. Because the shock size can be rescaled by 1/κ, in what follows I

simply denote the job finding rate shock by ∆.

Second, for small enough shocks, the post-shock steady-state distribution can be

expressed as f∞ = f̃∞ + ∆ · x0, where ∆ controls the magnitude of the shock, and x0

is a vector independent of shock size (which depends on the shock structure, and will

specified later). This implies that the initial deviation from the new steady-state is small,

and of order ∆.

Third, a first-order Taylor approximation of the post-shock transition matrix gives

Q ≈ Q̃ + ∆ · δQ, where ∆ controls the magnitude of the shock, and δQ is a matrix

independent of shock size (which depends on the shock structure, and will specified

later).
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Taking together, these three results imply that

δ̇ f (t) ≈ (Q̃ + ∆δQ)δ f (t) ≈ Q̃δ f (t) + ∆δQδ f (t)

Integrating each term yields: δ f (t) = eQ̃tδ f0 + ∆2eδQtx0 The second term is of order ∆2,

and hence negligible, yielding the desired result.

To sum up, this means the pre-shock transition matrix is sufficient to simulate worker

reallocation dynamics after small shocks.

11.3 Spectral decomposition

Lemma. (Spectral decomposition)

The worker distribution at date t can be expressed as a function of the post-shock transition

matrix’s eigenvalues and eigenvectors

f (t) = f∞ +
6

∑
k=2

γkeλktvk (17)

where λk < 0 are the eigenvalues of the baseline pre-shock transition matrix Q, vk are the

associated right-eigenvectors, and γk are the associated loadings. The loadings depend on the

initial distribution: γk = w′
k f0, where wk are the left-eigenvectors of the transition matrix.

Intuitively, the eigenvalue-eigenvector decomposition expresses the complex transi-

tion dynamics of the worker distribution as a sum of simpler convergence modes. Gen-

erally, the worker distribution converges at varying speeds, but along these eigenvectors,

each segment converges at the same speed determined by the eigenvalue.

11.4 Spectral properties of transition matrix

Here, I turn to characterizing the eigenvalues and left- and right-eigenvectors of the base-

line pre-shock transition matrix. The details of the computation have limited economic

interest, and hence are not shown - but are available upon request.
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Lemma. The eigenvalues of the pre-shock transition matrix are approximately

λ1 = 0, λ2 ≈ pCs
pP + pC + s

, λ3 ≈ s +
spP pC

(pP + pC)(2pP + pC)

λ4 ≈ pP + pC + s − 2spC

pP + pC + s
, λ5 ≈ pP + pC + s − spC

pP + pC + s
, λ6 ≈ 2pP + pC + s − 2spP

(2pP + pC)

Lemma. The second and third right-eigenvectors of the pre-shock transition rate matrix are

v2 =
(

pC + pP 0 −(pC + pP) s 0 −s
)′

v3 =
(

pC + pP −− 2(pC + pP) pC + pP s −s s
)′

I do not provide an analytical characterization of other right-eigenvectors, as it turns out

that the loadings on these eigenvectors is negligible for asymmetric shocks. It is, however,

not the case for aggregate shocks - which is not focus of the current focus.

Lemma. The left-eigenvectors of the pre-shock transition rate matrix are

w2 = Z−1
2

(
1 0 −1 pP

pP+pC
0 − pP

pP+pC

)′
w3 = Z−1

3

(
1 −2pP

pC
1 − pP pC

(pP+pC)(2pP+pC)
2pP
pC

pP pC
(pP+pC)(2pP+pC)

− pP pP
(pP+pC)(2pP+pC)

)′
w4 = Z−1

4

(
1 − 2s

pP+pC
1 pP+pC

s −2 pP+pC
s

)′
w5 = Z−1

5

(
s 0 −s −(pP + pC) 0 −(pP + pC)

)′
w6 = Z−1

6

(
s pP(2pP+pC)

pC
s −(2pP + pC) − pP(2pP+pC)

2

spC
−(2pP + pC)

)′
where the normalization constants are set such that wT

k vk = 1.

11.5 Reallocation times after periphery and central shocks

In this subsection, I derive an approximation of the aggregate reallocation time after both

periphery and central shocks. All proofs are relegated to the online appendix.

Periphery Shocks. I begin by analytically characterizing reallocation time following
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periphery shocks. With the eigenvalues already computed, the next step is to charac-

terize the distribution of loadings in the spectral decomposition, and thus the initial

deviation from steady state.

Lemma. After the periphery productivity shock, the initial deviation from steady-state writes

δ f (0)P ≡ f̃∞ − f∞,P ≈ ∆Z−1(− (2pP + pC), 0, (2pP + pC),−s, 0, s
)′

where Z is the normalization constant of the steady-state worker distribution before the shock.

Equipped with this result, and the distribution of left eigenvectors, I can now com-

pute the distribution of loadings using the formula: γk = w′
k( f̃∞ − f∞,P), where wk are

the left-eigenvectors of the baseline transition matrix.

Lemma. The distribution of loadings after the periphery shock is approximately

γ2 ≈ −∆Z−1 (pP + pC) γ3 ≈ 0 γ4 ≈ 0 γ5 ≈ −s∆Z−1 3pP + 2pC

pP + pC
γ6 ≈ 0

Using the spectral decomposition, one can now solve entirely for the worker distribution

at any point in time - and thus compute the aggregate reallocation time.

Proposition. For small enough shock size ∆, the transition time after the central productivity

shock can be approximated as

TC =
pC + pP

spC

Central shocks. I begin by analytically characterizing reallocation time following cen-

tral shocks. The approach is the same as for periphery shocks.

Lemma. After central shock, the initial deviation writes

δ f (0)C ≡ f̃∞ − f∞,C ≈ ∆Z−1
(
−2pP+pC

2 2pP + pC −2pP+pC
2 − s

2 s − s
2

)′
where Z is the normalization constant of the steady-state worker distribution before the shock.
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Lemma. The distribution of loadings after the central productivity shock is approximately

γ2 ≈ 0 γ3 ≈ ∆Z−1 (2pP + pC)
2

pC
γ4 ≈ −s∆Z−1 2pP + pC

2(pP + pC)
γ5 ≈ 0 γ6 ≈ s∆Z−1 2pP

pC
(2pP + pC)

2

Proposition. For small enough shock size ∆, the transition time after the central productivity

shock can be approximated as

TC =
1
s

11.6 Reallocation time after any asymmetric shock

In this subsection, I show that the reallocation time after any asymmetric shock can be

expressed as a weighted average of reallocation times after periphery and central shocks.

To make this result, I first need to assume further that the productivity levels in periphery

and central occupations are not too different, such that the gap pP − pC is small.

Lemma. (Linear decomposition of asymmetric shocks)

Assume pP − pC is small. Then all asymmetric productivity shocks, i.e. productivity shocks such

that the employment weighted occupation productivity shocks sum to zero, can be decomposed

as a linear combination of the central and periphery productivity shocks, respectively, δyP =

(−∆, 0, ∆) and δyC = ( 2pC+pP
2pC+2pP

∆,−∆, 2pC+pP
2pC+2pP

∆)

δyasymmetric = γPδyP + γCδyC

where γP is loading on periphery shocks γC is the loading on central shocks.

Leveraging the linarity of the first-order approximations, it can be shown that the

change in job finding rate, transition matrix and steady-state deviation can be expressed

as a linear combination of the associated periphery and central shocks’ changes; charac-

terized above.

For small asymmetric shocks, the job finding rates can be approximated as fol-

lows pafter-shock ≈ pbefore-shock + γPκ∆δyP + γCκ∆δyC Similarly, the post-shock tran-
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sition matrix can be approximated as Qafter-shock = Qpre-shock + γP∆δQP + γC∆δQC.

Finally, the deviation from the new steady-state is a linear combination of the devi-

ations from steady-state after the periphery and central shocks:δ f (0) ≡ f̃∞ − f∞ =

γP∆δ fP(0) + γC∆δ fC(0) Equipped with these results, I can now compute the realloca-

tion time after any asymmetric shock.

Proposition. For small shocks, the transition time after an asymmetric productivity shock is

T ≈ αP · pC + pP + s
pP

s−1︸ ︷︷ ︸
≡ TP

+(1 − αP) · s−1︸ ︷︷ ︸
≡ TP

with αP ≡ | (pP + pC) γP |
| (pP + pC) γP | + | − (2pP+pC)2

pP+pC
γC |

Proof: The worker distribution at date t can be approximated as

f (t) ≈ f̃∞ − ∆Z−1γP(pP + pC)e−λ2tv2 − ∆Z−1γC
(2pP + pC)

2

pP + pC
e−λ3tv3

Therefore, the transition time is approximately

T
∫ +∞

0

∥−γP(pP + pC)e−λ2tv2 − γC
(2pP+pC)

2

pP+pC
e−λ3tv3∥2

∥−γP(pP + pC)v2 − γC
(2pP+pC)2

pP+pC
v3∥2

dt

where ∆Z−1 cancel out from the numerator and denominator.

Now, I use the fact that both right eigenvectors v2 and v3 are orthogonal to each other.

Hence, by Pythagorean theorem, we have

∥−γP(pP + pC)e−λ2tv2 − γC
(2pP + pC)

2

pP + pC
e−λ3tv3∥2=∥−γP(pP + pC)e−λ2tv2∥2+∥−γC

(2pP + pC)
2

pP + pC
e−λ3tv3∥2

=|γP(pP + pC)|e−λ2t + |γC
(2pP + pC)

2

pP + pC
e−λ3t|

where the last line uses the fact that ∥v2∥2= ∥v3∥2 = 1.

Finally, integrating over time yields the desired result.
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11.7 Adjustment costs

The adjustment costs can be written more compactly in terms of the worker distribution

and the vector of agents’ payoffs as follows:

AC =
SWslow − SWnew

SWnew − SWold =

∫ +∞
0 e−rt( f (t)− f∞)Tudt

(1/r) · ( f T
∞u − f̃∞

T
ũ)

where u = (y1, . . . , bN − cNθN) is the vector of flow utilites.

By applying spectral decomposition, the adjustment costs can be further decomposed

into the transition matrix’s eigenvectors and eigenvalues, as clarified in the next lemma.

Lemma. (Spectral decomposition of adjustment costs)

After small productivity shocks, the adjustment costs can be approximated as

AC =
2N

∑
k=1

r
r + |λk|︸ ︷︷ ︸

speed

·wT
k ( f0 − f∞)︸ ︷︷ ︸

loading

·
vT

k u

f T
∞u − f̃∞

T
ũ︸ ︷︷ ︸

misallocation

(18)

where λk is the k-th smallest eigenvalue of the pre-shock transition matrix, while wk and vk are

the associated left- and right-eigenvectors, respectively.

The interpretation is as follows: the spectral decomposition breaks down the dynam-

ics of worker transitions into a sum of simpler transition patterns, each characterized by

a fixed speed of convergence, given by the eigenvalues of the transition matrix. Along

each of these simpler transition patterns—represented by the eigenvectors of the transi-

tion matrix—the welfare effect can be easily quantified as the product of three terms.

The first term r
r+|λk|

captures the effect of transition speed on welfare. Smaller eigen-

values |λk| indicate slower reallocation and higher adjustment costs. This is because

slower reallocation delays the realization of long-term benefits from the shock, which

reduces the present value of these benefits and increases adjustment costs.

The second term wT
k ( f0 − f∞) reflects the magnitude of the simpler transition pattern
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in the spectral decomposition. It measures the extent to which the initial deviation of

the worker distribution from the steady-state f0 − f∞ aligns with the right eigenvector

vk. For example, if the initial deviation is proportional to vk, then the loading is one for

vk and zero for all other eigenvectors.46

The third term vT
k u

f T
∞u− f̃∞

T
ũ

captures the impact of transitory misallocation on aggregate

welfare. For example, if labor shortages occur in certain occupations (vk(i) < 0)) where

the flow payoff ui is high, the numerator turns negative, indicating that workers are

misallocated over the transition. The denominator scales these misallocations by the

total welfare change that would occur if the transition were instantaneous, thus yielding

percentage-point variations in welfare due to the slow transition.

By plugging in the analytical characterizations of the eigenvalues and eigenvectors of

the baseline transition matrix and simplifying the terms, we obtain the desired results.

12 Appendix D: Quantitative Network Search Model

12.1 Search frictions

The number of hires in occupation i at date t is now given by

hi(t) = ζi ·
(

σu
ii (t)ui(t) + ∑

j ̸=i
σu

ji(t)uj(t) + ∑
j ̸=i

σe
ji(t)ej(t)

)α

· vi(t)1−αi

where vi(t) is the total number of vacancies posted by firms in occupation i at date

t, and σu
ii ui + ∑j ̸=i σu

ji gjiuj + ∑j ̸=i σe
jigjiηjej represents total search exerted by workers in

occupation i at date t, from unemployed and employed workers.

The tightness ratio in occupation i at date t is now defined as θi(t) ≡ vi(t)/
(
σu

ii (t)ui(t)+

∑j ̸=i σu
ji(t)uj(t) + ∑j ̸=i σe

ji(t)ej(t)
)
.

46Without loss of generality, the left-eigenvectors can be normalized such that W TV = I, where W and V
are the matrices of left- and right-eigenvectors, respectively. In other words, wT

l vk = 1 if k = l, and 0
otherwise.
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Matching is random conditional on search efforts, so the job finding rate in occupa-

tion i at date t per unit of search effort is pi(t) = hi(t)/
(
σu

ii (t)ui(t) + ∑j ̸=i σu
ji(t)uj(t) +

∑j ̸=i σe
ji(t)ej(t)

)
= ζθi(t)1−α. Similarly, vacancies in occupation i face a flow probability

qi(t) = hi(t)/vi(t) = ζθi(t)−α of matching with a worker at date t.

12.2 Firm values

The value of a filled job for firms in occupation i at date t is denoted Ji(t), and the value

of an unfilled vacancy in occupation i at date t is denoted Vi(t).

The value of a job filled in occupation i at date t Ji(t) solves a modified Bellman

equation

rJi(t) = yi − wi︸ ︷︷ ︸
flow profits

+

(
si + ∑

j∈N
σe

ij(t)pj(t)

)
︸ ︷︷ ︸

on-the-job adjusted separation rate

[Vi(t)− Ji(t)] + J̇i(t) (19)

The main differences stems from the job separation rate si + ∑j∈N gijσ
e
ij(t)pj(t), which

accounts for the possibility that the employed worker leaves because she has matched

with another firm.

The value of a vacant job in occupation i at date t solves the Bellman equation

rVi(t) = −ci + q(θi)[Ji(t)− Vi(t)] + V̇i(t) (20)

It is the same as the Bellman equation in the tractable model.

12.3 Search efforts

In this subsection, I provide an analytical characterization of the equilibrium search time

and search effort of both unemployed and employed workers.

Lemma (Equilibrium search time of unemployed workers)
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The equilibrium search time of unemployed worker in occupation i searching in occupation j at

date t writes

τu
ij (t) =

(
gij max{Ej(t)− Ui(t), 0}

)ψ+1

∑j
(

gij max{Ej(t)− Ui(t), 0}
)ψ+1 .

Proof: The first order condition of the unemployed worker problem writes

gij(Ej(t)− Ui(t))τu
ij (t)

−1
ψ+1 = Λu

i (t),

where Λu
i (t) ≥ 0 is the Lagrange multiplier associated with the time constraint ∑k τu

ik =

1. Intuitively, the optimal search time equalizes the marginal return and the marginal

cost of searching.

Rearranging terms, we get

τu
ij (t) =

(
gij(Ej(t)− Ui(t))

Λu
i (t)

)ψ+1

.

Summing over j and using the time constraint, we obtain

Λu
i (t)

ψ+1 = ∑
j

(
gij(Ej(t)− Ui(t))

)ψ+1.

This yields the desired expression. From this, we can derive optimal search effort:

σu
ij(t) = τu

ij

ψ
ψ+1 =

(
gij pj(t)max{Ej(t)− Ui(t), 0}

)ψ[
∑k
(

gik pk(t)max{Ek(t)− Ui(t), 0}
)ψ+1

] ψ
ψ+1

.

Let me turn now to the equilibrium search time of employed workers, which has very

similar expression from that of unemployed workers.

Lemma. (Equilibrium search time of employed workers)

The equilibrium search time of employed worker in occupation i searching in occupation j at date
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t writes

σe
ij(t) = τe

ij

ψ
ψ+1 =

η
ψ

ψ+1
i
(

gij pj(t)max{ Ej(t)− Ei(t), 0}
)ψ[

∑k
(

gik pk(t)max{ Ek(t)− Ei(t), 0}
]ψ+1

] ψ
ψ+1

Comparison with discrete choice models. The formulation of optimal search efforts

mirrors choice probabilities in discrete choice models with Fréchet taste shocks. In such

models, the probability that a worker in i chooses occupation j at date t is P(j | i)(t) =
vij(t)ψ

∑k vik(t)ψ , where vij(t) is the expected payoff of occupation j for workers in i at date t and

ψ is the shape parameter of the Fréchet distribution.

However, the endogenous search setting differs significantly from discrete choice

models in several key aspects. Firstly, normalization constants in discrete choice models

must sum to one, which is not required in endogenous search. Secondly, the endogenous

search model preserves the linearity of the Bellman equation in terms of transition rates,

unlike the non-linear aggregation in discrete choice settings:

rUi(t) = bi +

(
∑
k
(gij pj(t)max{Ej(t)− Ui(t)})ψ+1

) 1
ψ+1

.

The linearity of the Bellman equation enhances tractability and simplifies estimation of

values.

12.4 Wages

Lemma (Equilibrium wages)

The equilibrium wage in occupation i at date t, denoted wi(t), is given by

wi(t) = ϕiyi + (1 − ϕi)
(

bi + ∑
j
(µu

ij(t)− µe
ij(t))(Ej(t)− Ui(t))

)

Proof: The equilibrium wage in occupation i at date t maximizes the generalized Nash

product maxwi(t)(Ei(t)− Ui(t))ϕ Ji(t)1−ϕ. The FOC of the maximization program above

gives the so-called Nash bargaining condition (1 − ϕ)(Ei(t) − Ui(t)) = ϕJi(t). This is
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implicitly a function of the wage, through the value functions Ei(t) and Ji(t).

We now use the Bellman equation to make explicit the dependance of the value

functions on the wage. The value of a filled job to the firm in i at date t, denoted

Ji(t), solves
(

r + si + ∑j µe
ij(t)

)
Ji(t) = yi − wi(t) + J̇i(t) and the value of being em-

ployed in occupation i at date t, denoted Ei(t), solves
(

r + si + ∑j µe
ij(t)

)
Ei(t) = wi(t) +

∑j µe
ij(t)Ej(t) + siUi(t) + Ėi(t) Therefore, the net value of employment in occupation i at

date t is
(

r + si + ∑j µe
ij(t)

)
(Ei(t)− Ui(t)) = wi(t)− rUi(t) + ∑j µe

ij(t)(Ej(t)− Ui(t)) +

Ėi(t). We can further plug the flow value of unemployment rUi(t) from the Bell-

man equation, yielding
(

r + si + ∑j µe
ij(t)

)
(Ei(t)−Ui(t)) = wi(t)− bi +∑j µe

ij(t)(Ej(t)−

Ui(t))− ∑j µu
ij(t)(Ej(t)− Ui(t)) + Ėi(t)− U̇i(t). Plugging both expressions in the Nash

bargaining condition and dividing by the effective discount rate gives

(1−ϕi)

(
wi(t)− bi + ∑

j
µe

ij(t)(Ej(t)− Ui(t))− ∑
j

µu
ij(t)(Ej(t)− Ui(t)) + Ėi(t)− U̇i(t)

)
= ϕi(yi −wi(t)+ J̇i(t))

Note that the time-derivative terms cancel out. Indeed, taking the derivative of the Nash

condition with respect to time gives (1 − ϕ)(Ėi(t)− U̇i(t)) = ϕ J̇i(t). Finally, we isolate

the wage on the left-hand side and we obtain the desired result.

12.5 Vacancy posting

Lemma (Equilibrium tightness ratios)

The equilibrium tightness ratio in occupation i at date t, denoted θi(t), is given by

θi(t) =
(

ζi

ci

1 − ϕ

ϕ
(Ei − Ui)

) 1
α

Proof: The equilibrium tightness ratio in occupation i at date t satisfies the free entry

condition Vi(t) = 0. Plugging this condition in the Bellman equation for the value

of vacancy, I get ci
q(θi(t))

= Ji(t). Given qi(t) = q(θi(t)) = ζiθi(t)−α, we get θi(t) =(
ζi
ci

Ji(t)
) 1

α . Making use of the Nash bargaining condition, we have Ji(t) = 1−ϕ
ϕ (Ei(t)−

Ui(t). Replacing in the expression above gives the desired result.
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Corollary (Equilibrium job finding rates)

The equilibrium job finding rates are given by

pi(t) = ζiθi(t)1−α = ξi ((Ei(t)− Ui(t)))
1−α

α with ξi ≡ ζ
1
α
i c

α−1
α

i

(
1 − ϕ

ϕ

) 1−α
α

12.6 Laws of motion

How do workers reallocate across occupations?

Variations in employment. The employment in occupation i at date t evolves as

follows

ėi(t) = pi(t)

(
∑

j∈N
σu

ji(t)uj(t) + σe
ji(t)ej(t)

)
︸ ︷︷ ︸

search effort by neighboring u and e workers

−
(

si + ∑
j∈N

σe
ij(t)pj(t)

)
︸ ︷︷ ︸
OJS-adjusted separation rate

ei(t)

The variation in employment for occupation i at time t is determined by the balance of

new hires and job destructions. The flow of new hires is the product of the job finding

rate per unit of search effort and the total search effort from neighboring employed and

unemployed workers targeting occupation i. Conversely, the flow of job destruction is the

product of the separation rate and the number of employed workers in occupation i,

adjusted for on-the-job search.

Variations in unemployment. The unemployment in occupation i at date t evolves as

follows

u̇i(t) = siei(t) −
(

∑
j∈N

σu
ij(t)pj(t)

)
︸ ︷︷ ︸

unemployment outflow rate adjusted for search effort

ui(t)

As above, the variation in unemployment for occupation i at date t reflects the difference

between job destructions and hires. The flow of job destruction is the product of the sep-

aration rate—unadjusted for on-the-job search—with the number of employed workers

in occupation i. Conversely, the flow of hires in neighboring occupations is the prod-
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uct of the outflow rate from unemployment—adjusted for search effort—by the mass of

unemployed workers originally from occupation i.

12.7 The Master equation

In this subsection, I show that the dynamics of the whole economy can by described by

a single matrix differential equation.

Lemma 4. (The Master equation)

Let V(t) = (E1(t), . . . , EN(t), U1(t), . . . , UN(t))′ denote the vector of worker values at date t.

The vector of worker values V(t) is sufficient to characterize the economy over the transition, and

evolves as
˙V(t) = G(V(t))

with G(·) defined as follows

Gi(V) = rEi(t)− wi(V(t))− ∑
j

µe
ij(V(t))(Ej(t)− Ei(t))− si(Ui(t)− Ei(t)) (21)

Gi+N(V) = rUi(t)− bi − ∑
j

µu
ij(V(t))(Ej(t)− Ui(t)) (22)

and where

wi(V(t)) = ϕiyi + (1 − ϕi)
(

bi + ∑
j
(µu

ij(V(t))− µe
ij(V(t)))(Ej(t)− Ui(t))

)
(23)

µu
ij(V(t)) =

gψ+1
ij pj(V(t))ψ+1(Ej(t)− Ui(t))

ψ
+

∑k gψ+1
ik pk(V(t))ψ+1(Ek(t)− Ui(t))+

)ψ (24)

µe
ij(V(t)) =

ηig
ψ+1
ij pj(V(t))ψ+1(Ej(t)− Ei(t))

ψ
+

∑k gψ+1
ik pk(V(t))ψ+1(Ek(t)− Ei(t))+

)ψ (25)

pi(V(t)) = ξ j(Ei(t)− Ui(t))
1−α

α (26)

Proof: The lemmas above show that all control variables – eg. transition rates, wages and

tightness – can be expressed as a function of worker values only. Collecting all equations
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from these lemmas, I can to construct G(.).

The first two equations and give the change in equilibrium worker values as a func-

tion of equilibrium agents’ actions, while the other four equations give the equilibrium

agents’ actions as a function of worker values. The firm values are omitted because

Nash bargaining implies they are proportional to the net value of employment. Finally,

note the worker distribution is absent from the Master equation, because the model is

block-recursive.

Proposition (Linear approximation of the Master equation)

We compute the total differential of the Master equation with respect to worker values, evaluated

at V0. For expositional clarity, we drop the dependence on V0 for all functions.47 Moreover, we

define: x̂ = dx
x . The total differential writes

d fi = rdEi − dwi − ∑
j

µe
ijΓ

e
ij

(
µ̂u

ij + Γ̂e
ij

)
d fN+i = rdUi − ∑

j
µu

ijΓij

(
µ̂u

ij + Γ̂u
ij

)

with

dwi = (1 − ϕ)∑
j

µu
ijΓ

u
ij

(
µ̂u

ij + Γ̂u
ij

)
− (1 − ϕ)∑

j
µe

ijΓ
u
ij

(
µ̂e

ij + Γ̂u
ij

)
µ̂u

ij = d log µu
ij = (ψ + 1) p̂j + ψΓ̂u

ij − ψ ∑
j

σu
ij( p̂k + Γ̂u

ik)

µ̂e
ij = d log µe

ij = (ψ + 1) p̂j + ψΓ̂e
ij − ψ ∑

j
σe

ij( p̂k + Γ̂e
ik)

p̂i =
1 − α

α
Γ̂u

ii

Γ̂u
ij =

dEi − dUi

Γu
ij

and Γ̂e
ij =

dEi − dEi

Γe
ij

Proof: We begin by computing the total differential of fN+i. The formula for the total

47For example, wi = wi(V0), etc.
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differential of fi and the total differential of the wage follows the same steps. We have

d fN+i = d
(

rUi − ∑
j

µu
ijΓ

u
ij

)
= rdUi − ∑

j
d
(

µu
ijΓ

u
ij

)

where the second equality follows from the linearity of the differential operator. Now,

we exploit the fact that

d
(

µu
ijΓ

u
ij

)
= dµu

ij · Γu
ij + µu

ij · dΓu
ij

=
dµu

ij

µu
ij

µu
ijΓ

u
ij +

dΓu
ij

Γu
ij

µu
ijΓ

u
ij

= µu
ijΓ

u
ij

(
µ̂u

ij + Γ̂u
ij

)
Plugging in the expression above gives the desired expression for the Bellman equation

of the value of unemployment.

Now, we compute the hat-change of transition rates from unemployment to employ-

ment. The formula for the hat-change of transition rates from employment to employ-

ment and the hat-change of job finding rates follows the same steps. We exploit the fact

that

µ̂u
ij =

dµu
ij

µu
ij

= d log µu
ij

This substantially simplifies computation because log transforms products into sums.

Plugging the expression of µu
ij we find

µ̂u
ij = d

(
(ψ + 1) log gij + (ψ + 1) log pj + ψ log Γu

ij − log Ni

)
= (ψ + 1) p̂j + ψΓ̂u

ij − N̂i

where Ni ≡ ∑ik(gik pkΓik)
ψ is the normalization constant ensuring that the search prob-

abilities of unemployed workers sum to one: that is, ∑ik σu
ik = 1. We recover N̂i by
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differentiating the constraint, which gives

d ∑
k

σu
ik = 0

⇔∑
k

σu
ikσ̂u

ik = 0

⇔∑
k

σu
ik
(
ψ p̂k + Γ̂u

ik − N̂i
)
= 0

⇔N̂i = ∑
k

σu
ik
(
ψ p̂k + Γ̂u

ik
)

where the second equality uses same trick as above, namely: dσu
ik = σu

ik
dσu

ik
σu

ik
= σu

ikσ̂u
ik.

The third line replaces the hat-change of search efforts σu
ik by its expression, which can

be found using the same steps as above. The fourth line makes use of the fact that

∑k σik = 1. Plugging N̂i in the equation above gives the desired expression.

These total differentials can be stored into a single Jacobian matrix denoted DG)(V).

The exact analytical expression of the Jacobian matrix is delegated to the online ap-

pendix.

12.8 Stability, existence and uniqueness

The stability and uniqueness of the equilibrium depend on the properties of this Jacobian

matrix.

Theorem. (Stability)

The values are instable over time. Therefore, the only stable solution is that values immediately

jump to steady-state and stay constant afterwards.

Proof: The Master equation can be rewritten as: dVt
dt =

[
rI − Q(Vt)

′
]

Vt. Note that the

dependence of the transition rate matrix on the worker values, through the endogenous

search efforts and tightness ratios. This implies that the equation above defines a non-

linear matrix differential equation, which is very hard to solve in the general case.

My strategy is to discretize the process, and characterize the properties of small
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changes along the transition. Let ∆ denote a small time interval. The Master equation

can be approximated as Vt+∆−Vt
∆ =

[
rI − Q(Vt)

′
]

Vt. Rearranging terms yields: Vt+∆ =[
I + ∆(rI − Q(Vt)

′
]

Vt.

Assume that the worker values is not at steady-state, such that Vt ̸= V∞.48. I show

this implies values grow far away from the origin without bound: that is, ∥Vt+∆∥ > ∥Vt∥.

Plugging the equation above gives ∥Vt+∆∥ = ∥
[

I + ∆(rI − Q(Vt)
′
]

Vt∥ ≥ ∥
[

I + ∆(rI − Q(Vt)
′
]
∥ ·

∥Vt∥, where the inequality follows from properties of the vector norms. Let λ be the

eigenvalues of
[

I + ∆(rI − Q(Vt)
′
]
. It holds that: |λ| ≤ ∥

[
I + ∆(rI − Q(Vt)

′
]
∥, and

therefore: ∥Vt+∆∥ ≥ |λ| · ∥Vt∥. Note that if λ > 1, then ∥Vt+∆∥ > ∥Vt∥, which is the

desired result.

I turn to characterize λ, the eigenvalues of
[

I + ∆(rI − Q(Vt)
′
]
. Because the values

are not at the steady-state
[
r − Q(Vt)

′
]

Vt ̸= 0.49 Let ν denote the eigenvalues of the

transition matrix Q(Vt). By properties of continuous time transition rate matrix, we

always have ν ≤ 0. Because a matrix and its transpose share the same spectrum, ν is

also an eigenvalue of Q(Vt)
′
. Hence, r − ν > 0 is an eigenvalue of rI − Q(Vt)

′
, and

1 + ∆(r − ν) > 1 is an eigenvalue of
[

I + ∆(rI − Q(Vt)
′
]
, which completes the proof.

Existence and uniqueness. Let me turn now to the existence and uniqueness of a

vector of steady-state worker values. The steady-state vector of worker values solves

0 = G(V) This can be rewritten as a fixed-point problem

V = H(V)

where H(V) = G(V) + V . Let DH(V) = DH(V) + I denote the associated Jacobian.

Theorem. (Existence and uniqueness of steady-state worker values)

The vector of steady-state worker values always exists. Furthermore, assume that for any V

ℜ[λ(DH)](V) ̸= 1

48Otherwise the solution is trivial: the process simply stays at steady-state thereafter.
49By definition, the steady-state values solve rV∞ = Q(V∞)

′
V∞.
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Then the steady-state vector of worker values is unique. Consequently, steady-state worker search

efforts, wages and tightness ratios exist and are unique too.

Proof: We begin by proving the existence of a solution to the fixed-point equation above.

The existence proof relies on the Poincaré-Miranda theorem, which is equivalent to the

more widely known Brouwer fixed-point theorem, often used in economics.

The Poincaré-Miranda theorem can be stated as follows: Consider N functions f1, . . . , fN

of N variables x1, . . . , xN, where each xi varies between a lower bound li and an upper

bound Li. If fi is non-negative when xi = li and non-positive when xi = Li, then there

exists a point where all functions fi are simultaneously zero.

In our case, we have 2N functions { fi, fN+i}i of 2N variables {Ei, Ui}, where the fi

functions follow the same conditions as above. The lower bounds are li = 0 for each

function, as worker values cannot be negative. The upper bounds are Li = maxj
yj
r ,

which is the value a worker would receive if employed indefinitely at the maximum

wage a firm is willing to pay. This upper bound also applies to unemployment values,

as workers always prefer employment.

The functions fi are negative at the lower bound. Consider Ui = 0, then

fN+i(0) = −bi − ∑
j

µu
ij(V)Ej < 0

The sum is negative since bi > 0, µu
ij > 0 and Ej > 0 for all i, j. The demonstration is

exactly the same for Ei = 0.

The functions fi are positive at the upper bound. Consider Ui = maxj yj/r, then

fN+i(max
j

yj/r) ≥ r max
j

yj/r + ∑
j

µu
ij(max

j
yj/r − Ej) > 0

where the second term is positive because Ej ≤ maxj yj/r, by definition of the upper

bound.

Taken together, this means that the assumptions of the Poincaré-Miranda theorem

are verified, and therefore that there exists a vector such that all functions fi are null at
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the same time. This implies that a fixed-point exists, and consequently, a steady-state

vector of worker values exists.

Finally, uniqueness follows directly from a result in Kellogg (1976).

I am unable to provide an analytical demonstration of this assumption, but numerical

computations show that this assumption is always verified.

12.9 Reservation wages and network centrality

Definition 1. (Katz-Bonacich centrality)

Given a graph with adjacency matrix G, the index Ki of Katz-Bonacich centrality of the node i is

Ki(G, α, β, γ) = αi + ∑
j

γiβ jgijKj(G, α, β, γ)

The Katz-Bonacich centrality index of node i is the sum of two terms. The first com-

ponent is a node-specific term αi, which provides an exogenous centrality value to the

node. The second component is a linear combination of the Katz-Bonacich centrality

indices of node i’s neighbors, reflecting how much centrality is conveyed by neighboring

nodes. The parameters γi and β j control how much this effect is dampened as it propa-

gates through the network. 50

Proposition 1. (Distribution of reservation wages)

Assume no on-the-job search. The steady-state reservation wages are equal to their occupation’s

index of Katz-Bonacich centrality in the appropriate network, and they solve the recursion

w̄i = bi +
∑k∈N µu

ik
r + ∑k∈N µu

ik

(
∑

j∈N

µu
ij

∑k µu
ik

ϕjr
r + sj

yj − bi

)
+ ∑

j∈N

1
r + ∑k µu

ik

r(1 − ϕj) + sj

r + sj
µu

ijw̄j (27)

50This measure of centrality stems from the sociology literature, where it was interpreted as a proxy for
agents’ power in networks of social interactions. The intuition for the recursion is the following: agents
are central in the network - and therefore powerful - because they are linked to other central powerful
agents.
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Proof: See online appendix.

The worker reservation wage is closely linked to the Katz-Bonacich centrality index of

their occupation, because it follows a similar a recursive relationship. Here, the reserva-

tion wage in an occupation is high if it is connected to occupations with high reservation

wages too. Indeed, a worker’s reservation wage is a function of the wages she could po-

tentially earn in neighboring occupations. Thanks to the Nash sharing rule, the former

is a function of the reservation wages in these same neighboring occupations.

A crucial implication is that, everything else being equal, occupations more central

within the network have larger outside options. Workers in central occupations enjoy

many reallocation possibilities should the bargaining with the firm fail. They can lever-

age this better outside option in order to secure higher wages. In fact, this prediction is

robust to assuming on-the-job search. In the appendix, I derive the closed-form expres-

sion of worker outside options in the general case.51

13 Appendix E: Estimation

Following Head and Mayer (2014) recommendation, I first implement a demean to re-

duce the number of fixed effects before running the two-way fixed effects Poisson re-

gression.

First, I drop all observations with no transitions or switching gains over the entire

period. Let me briefly explain this sample restriction. Intuitively, occupation pairs with

no transitions or gains throughout the time period provide very little information and are

likely true "zeros" that can be safely discarded. In contrast, pairs that alternate between

zero and positive transitions are informative, and these "zeros" should be retained.

51The closed-form expression is however not as clearly interpretable as in the simple case. The relation
with Katz-Bonacich centrality still holds, but in a more complicated network. In addition, I show that
the value of being employed in an occupation is also given by the occupation’s index of Katz-Bonacich
centrality, in the appropriate network. Given the option value is a linear combination of the values of
being employed and unemployed, this means that that the option value is a function to Katz-Bonacich
centrality too, although in a less clear way than for the outside option.
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Second, I divide by the average transition over the entire period. This is feasible due

to the previous sample restriction. Crucially, I retain the zero transitions for occupation

pairs that experienced at least one transition during the time interval. This demeaning

procedure allows me to remove time-invariant fixed effects, which are numerous (around

40,000).

Finally, this gives

µijt

µij
= exp

{
log

(
N−1

it

N−1
i

)
+ (ψ + 1) log

(
pjt

pj

)
+ ψ log

(
∆ijt

∆ij

)}
(28)

In other words, the gravity equation be rewritten as a Poisson regression with time-

varying origin and destination fixed effects. Using standard packages, the search elas-

ticity is then simply estimated as the coefficient associated to switching gains.

14 Appendix F: Application to Robots

14.1 Occupation exposure to robots

Webb’s methodology for measuring occupation exposure involves three steps. First, he

groups patents by technology class (e.g., robots or software) and identifies the tasks these

patents perform. Second, he examines the tasks carried out by various occupations using

US occupation data and compares them to the tasks performed by the patents. Third,

he calculates the overlap between the tasks performed by patents and workers, ranking

occupations based on the degree of overlap.

To apply his measure to the French labor market, I map the US ONET occupation

categories to the French nomenclature of occupations, specifically FAP. This process in-

volves several crosswalks: first, from ONET to the European nomenclature ISCO, then

from ISCO to PCS, and finally from PCS to FAP. After mapping, I rank the occupations

based on their exposure and normalize these ranks between zero and one, with zero

corresponding to the least exposed occupations. This provides the baseline measure of
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occupation exposure to various new technologies, and in particular robots.

14.2 Calibrating productivity shocks

Solving for productivity shocks presents a complex, high-dimensional problem. Indeed,

the wage changes induced by productivity shocks cannot be computed in isolation due

to their interconnections within the occupational network: wage adjustments in one oc-

cupation influence the reservation wages of adjacent occupations, subsequently affecting

their wages, and so forth. This interdependence quickly leads to the curse of dimension-

ality. To circumvent this issue, and because it is not the heart of the paper, I assume the

outside option channel is quantitatively small: that is, dwi = ϕdyi + (1 − ϕ)dw̄i ≈ ϕdyi,

where w̄i is the reservation wage in occupation i. If worker bargaining power is not too

large, this approximation is reasonable.

14.3 Unemployment effects

(a) Aggregate unemployment rate
(b) Unemployment transition time, by occu-
pation

Figure 14.1: Unemployment over the transition

Aggregate unemployment. How does aggregate unemployment respond to the robot

shock? The aggregate unemployment rate quickly decreases to its new lower steady-

state level.
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Figure 14.1.a plots the dynamics of the aggregate unemployment rate after the robot

shock. There are two main take-aways. First, the figure shows that aggregate unem-

ployment quickly adjusts following the robot shock, with a transition time of only a few

quarters. This contrasts with the pattern observed when examining the worker distribu-

tion and suggests that the aggregate unemployment rate might be a misleading metric

of the underlying movements across disaggregated labor markets.

Second, the robot shock leads to a decrease in the long-term aggregate unemploy-

ment rate. Intuitively, this is because robots reduce employment in high-unemployment

occupations, such as manufacturing, while increasing employment in low-unemployment

occupations, like services. Perhaps surprisingly, the economy does not experience a tem-

porary increase in unemployment due to the worker reallocation dynamics.

Heterogeneity in unemployment adjustment speed. Does unemployment adjust uni-

formly across occupations? The rapid adjustment of aggregate unemployment actually

masks substantial heterogeneity in unemployment adjustment at the occupation level.

I define the unemployment transition time at the occupation level similarly to the

occupation-level reallocation times as Tu
i = 1

maxh|ui(h)−ui|
∫ +∞

0 |ui(t)− ui|dt.

Figure 14.1.b plots the distribution of unemployment transition times for each oc-

cupation after the robot shock. There are two main takeaways: First, it shows that, on

average, the transition time of unemployment at the occupation level is much longer than

at the aggregate level. Intuitively, this is because upward and downward adjustments at

the occupation level cancel out in the aggregate, masking the slower adjustments occur-

ring within individual occupations.

Second, there is significant heterogeneity in unemployment transition times across

occupations. While the majority of occupations adjust relatively quickly, a small minority

adjust very slowly. These occupations typically include journalists, unskilled workers in

metallurgy, banking technicians, and architects. These occupations are spread through-

out the network, encompassing both expanding and declining occupations, whether

central or peripheral.
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14.4 Targeted subsidies

In practice, I define declining occupations and expanding occupations as the occupation

with in the top or bottom deciles of productivity changes. Bridge occupations are de-

fined as the occupation with the top 5% indices of betweenness centrality in the FAP

occupation network, where betweenness centrality is computed using declining occupa-

tions as sources and expanding occupations as targets. In other words, it represents the

occupations in-between the declining and expanding occupations.
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