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Abstract: Real manufacturing output increased rapidly in China from 1998 to 2012 while
sulphur dioxide (SO2) pollution emissions grew at a much lower rate. To study the reasons
for this, I focus on the contributions of environmental policy and trade liberalisation, among
other factors linked to China’s economic development. Combining firm-level data on pollution,
production and trade and using China’s entry into the World Trade Organisation and the 11th

Five-Year Plan as policy shocks, the difference-in-differences analyses show that these policies
effectively reduced firm-level pollution intensity. The change in pollution is primarily driven by
within-sector firm heterogeneities rather than industry structural change toward cleaner sectors.
Finally, the counterfactual analysis based on a quantitative model reveals that environmental
regulations play a major role in reducing pollution and the implicit pollution tax faced by firms
grew substantially over the period. In addition, tariff cuts due to trade liberalisation reduce
variable costs of trade and allow firms to abate pollution more.
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1 Introduction

The first decade of the 21st century witnessed rapid growth of real output in China. In Figure
1, the solid red line represents the aggregate real output of manufacturing industries at the
national level, which grew nearly five times from 1998 to 2012. By comparison, the aggregate
sulphur dioxide (SO2) emission in the green dashed line grew at a much lower pace and hardly
doubled during the same period. As a result, the pollution intensity (SO2 emission per unit of
output value) in the blue short-dashed line scaled by the left axis, dropped by around 60%.1

Figure 1. SO2 emission and real output

Notes: This figure plots the evolution of real manufacturing output, SO2 total emission and emission intensity

(SO2 per unit of output). The industrial output and 2-digit deflators come from the China Statistical Yearbooks.2

Firm-level emissions come from the Environmental Statistics Database. The trends of other pollutants show

similar patterns and are summarised in Figure A.3.

This paper investigates the reasons behind the different patterns of output and pollution
in Figure 1. There are several possible explanations. China’s rapid output growth led to more
pollution, and China’s participation in world trade also contributed to this growth. However,
the growth of the economy, accompanied by an increase in productivity, may reduce pollution
intensity, so that firms can produce the same output with less input and pollution. Meanwhile,
the industry structure changed, which may contribute to the pollution levels. During the same
period, environmental regulations took place to tackle major air and water pollutants, which
played a significant role in reducing pollution.

The main focus of this paper is the emissions of SO2, a pollutant that has been studied
frequently in the literature. SO2 is one of the most important air pollutants common in cities.
Compared to greenhouse gases with global impact such as carbon dioxide (CO2), SO2 is a
more local pollutant. It is mainly produced by coal burning, which generated more than 60%

1The emission intensity here refers to revenue emission intensity rather than physical emission intensity,
following the literature (see e.g. Rodrigue et al., 2022a). The production data do not include quantity information
so I do not directly observe physical emission intensity. However, I can combine production data with trade data
where there are export value and quantity, and impute export-related emissions, assuming that emission is
proportional to production. The export quantity and value are plotted in Figure A.1a. The revenue versus
physical emission intensities are shown in Figure A.1b. The magnitudes by the end of the period are not far from
Figure 1.

2I can alternatively use 4-digit industry deflators by extending the output deflators from Brandt et al. (2017)
to 2010. The threshold of firm annual sales increased from 5 million RMB to 11 million RMB in 2011, making
the sample incompatible with previous years, so I do not extend the deflators after 2010. Figure A.2 shows that
the real output deflated at 4-digit industries closely follows the trend deflated at 2-digit industries.
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of electricity in China by 2020, according to the State Council. There are detrimental effects
of SO2 on the environment since it is the primary cause of acid rain, which harms plants and
buildings, and can lead to respiratory diseases. The more concentrated the pollutant is, the more
harmful it becomes. Therefore, it is very relevant to study the pollution level and the pollution
intensity of SO2 in this paper. The SO2 emission increased rapidly in China after 2002, from 20
million tons per year to 25.9 million tons in 2006, according to the Ministry of Environmental
Protection of China. The amount was higher than all OECD countries combined. Therefore,
it was an urgent issue to curb the rapid growth of SO2 emissions in China. Another reason
to study SO2 is that the regulations set clear targets to reduce SO2 so that the effectiveness
of the environmental policy can be assessed. The data on SO2 are also recorded with wider
coverage of firms and are more detailed than other pollutants. Extension to other pollutants in
comparison to SO2 is carried out in later sections.

Previous research in this field focused mainly on industry-level data. This paper is among the
first to use detailed firm-level pollution data from China, linked to production and trade data,
to explore the drivers of industrial pollution emissions. First, it provides descriptive evidence
that large firms pollute more but firms that import and export more are less pollution-intensive.
Firms with higher total factor productivity (TFP), which implies better technology, are associ-
ated with lower pollution intensity. State-owned firms have relatively higher pollution intensity,
while foreign-owned firms have relatively lower pollution intensity. Since international trade
opportunities give firms incentives to increase production and pollution, while environmental
regulations are intended to reduce pollution, the two policies may interact and affect the pollu-
tion outcomes. Using China’s entry to the WTO and the environmental regulation during the
11th Five-Year Plan as policy shocks, with difference-in-differences (DiD) strategies, I show for
the first time that trade liberalisation and pollution policy are jointly effective in reducing the
emission intensity of firms across industries and provinces, respectively.

One reason for the change in pollution levels might be industry structural change. Clean
industries may grow faster than dirty industries so total pollution increases more slowly than
output. To assess the role of industry structure, I decompose the total pollution level into scale,
composition, and technique effects after Copeland and Taylor (1994). The scale effect measures
the change in pollution due to the growth of the economy, the composition effect reflects the
change in pollution due to industry structure, and the technique effect is the residual effect due
to industry-level pollution intensity. Among the three components, the scale effect drives up
the total pollution level but the technique effect significantly reduces it. The composition effect
is very small, indicating that industry structural transformation contributes marginally to total
pollution. I further apply firm-level decomposition in the spirit of Melitz and Polanec (2015).
The results reveal that the reduction in pollution intensity is mainly due to reallocation towards
the less pollution-heavy firms within industries, while firm entry and exit play a less important
role.

The regression exercises together with the decompositions provide evidence of the channels
that drive pollution emissions, such as international trade, environmental regulation, and pro-
ductivity. However, they are less informative about the aggregate contributions of these forces,
nor do they shed light on the counterfactual effects of trade and environmental policies on
pollution. To evaluate the overall effect of different channels under a general equilibrium frame-
work, I use the quantitative framework from Shapiro and Walker (2018) and extend it to study
China’s SO2 pollution emissions. The model combines the classic international trade model
(Melitz, 2003) with insights from environmental economics (Copeland and Taylor, 2003), and
can account for various general equilibrium forces in counterfactual scenarios. It features hetero-
geneous firms that choose pollution abatement as a proportion of production costs, conditional
on environmental regulation, productivity, and trade costs. One can derive a market-equivalent
implicit pollution tax which is otherwise not directly observable from the data to capture the
stringency of pollution policies. Not much has been done to structurally estimate the contribu-
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tion of endogenous forces to pollution emission, especially in evaluating environmental policy
in developing countries where the regulations are thought to be weaker. This paper contributes
to the literature on this aspect through a quantitative model using matched data on pollution,
production, and trade of Chinese firms.

The main results suggest that the environmental regulation channel alone would reduce
nearly 50% of SO2 pollution emissions in the counterfactual analysis. The back-of-the-envelope
estimate of the economic gain due to SO2 emission reduction is 127.68 billion RMB in 2005,
accounting for 0.68% of the annual GDP. On the other hand, should there be no environmental
regulation, the counterfactual pollution emissions of manufacturing industries would be 300%
of the initial level by 2012, compared to the actual level of 162%. Although the competitiveness
of Chinese firms in the international market would push up the pollution level through the scale
effect, tariff cuts on Chinese exports due to trade liberalisation imply a smaller portion of a firm’s
output must be paid in order to export, which leads to less pollution. The measured productivity
only moderately decreases the pollution level, which would be confounded with the technique
effect in the conventional decomposition exercise. This indicates that more productive firms
reduce pollution more because they have better export opportunities and larger domestic sales
which allow them to better bear the abatement costs, rather than because of better technology
alone.

The remainder of the paper is structured as follows. Section 2 reviews the relevant literature.
Section 3 introduces the data used in the analysis and explains the environmental policy in China
before showing firm-level regression results in Section 4. I then do the decomposition exercises
in Section 5 to explore the patterns of pollution emission within and across industries. Section
6 introduces the theoretical model, estimates the parameters, and recovers historical values for
counterfactual analysis in Section 7. Section 8 concludes the paper.

2 Literature

This paper is related to several strands of literature. One topic closely related to pollution
emissions is the role of international trade and technology. Many papers take free trade agree-
ments as policy shocks and study their effects on pollution. The policies that attract the most
attention are the North American Free Trade Agreement (NAFTA) and China’s entry into the
World Trade Organisation (WTO). For example, Cherniwchan (2017) estimate the effects of
NAFTA on emissions from manufacturing plants in the US and show that two-thirds of partic-
ulate matter (PM10) and sulphur dioxide (SO2) emission reductions between 1994 and 1998 can
be attributed to trade liberalisation. For Mexico, Gutiérrez and Teshima (2018) use plant-level
data and find that lower tariffs and import competition increase energy efficiency and thus re-
duce emissions. In another case, Richter and Schiersch (2017) find a negative relation between
export intensity and CO2 emission intensity in Germany. For developing countries such as India,
growth in foreign demand led to more carbon dioxide (CO2) emissions but 40% was mitigated
by reduced emission intensity according to Barrows and Ollivier (2021).

In the case of China, the WTO accession provides an ideal environment for difference-
in-differences (DiD) analysis. Evidence shows that tariff cuts reduce firm-level SO2 emission
intensity through increased labour resources for environmental protection or higher abatement
efforts (Cui et al., 2020; Pei et al., 2021). In addition, international trade allows firms to spread
fixed costs of abatement investment across more units, increases firm productivity and thus
reduces emission intensity, yet the overall effect on total emissions is not conclusive (Forslid
et al., 2018; He and Huang, 2022; Rodrigue et al., 2022b; Chen et al., 2023). In this paper, I
examine both total pollution and pollution intensity, combining pollution with production and
trade at the firm level. As pointed out by Cherniwchan and Taylor (2022), the long-run impact
of trade on pollution remains an open question. Rodrigue et al. (2022b) focus on the first few
years of the WTO accession, I extend the analysis beyond the initial period until 2012, when
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the environmental regulations also affected pollution emissions. The detailed firm-level data
in the regressions are later used in a structural model to consistently quantify different policy
effects.

Another line of literature is on environmental regulations. The US enforced the Clean
Air Act in the 1990s (Shapiro and Walker, 2018) and the Clean Water Act in 1972 (Keiser
and Shapiro, 2018), which substantially abated air and water pollution nationwide. In China,
the most frequently mentioned environmental regulation policies were introduced during the
11th Five-Year Plan, covering the period 2006-2010, including both air and water pollutants.
Local regulations are effective when supervised by the central government(Kahn et al., 2015).
However, the pollution regulation mandates may cause some firms to relocate or shift production
to provinces where the regulations are less stringent (Wu et al., 2017; Chen et al., 2021). He
et al. (2020) find evidence that the policy led to lower pollution levels upstream of a monitoring
station, rather than downstream. Without misallocation, pollution would decline by 20% since
more large, low-polluting firms survive (Qi et al., 2021).

The evidence confirms that environmental regulations are highly effective in most conditions
and therefore are vital to the reduction of pollution emissions. However, it is important to take
into account the general equilibrium effects in order to evaluate the environmental policies. In
this paper, I study environmental regulations in China, specifically, the 11th Five-Year Plan on
SO2 pollution reduction. With a structural model, I show that the policy is not only effective
but could quantitatively reduce around half of the total emission level.

To disentangle the forces within and across industries that drive the level of pollution emis-
sions, the environmental literature has a long history of decomposition exercises (Copeland and
Taylor, 1994; Grossman and Krueger, 1995; Antweiler et al., 2001; Levinson, 2009; Rodrigue
et al., 2022a; Barrows and Ollivier, 2018, etc.). In addition to the industry-level decomposition,
I decompose the pollution intensity at the firm level, taking into consideration the entry and
exit of firms (Melitz and Polanec, 2015). The evidence from industry and firm-level decomposi-
tions suggests that within-industry and across-firm production reallocation is a major force that
affects pollution levels in China, rather than industry structure change. The results are in line
with the Indian case by Barrows and Ollivier (2018) using firm-product level emissions, though
it contrasts with the case of Germany, another major country in international trade. Rottner
and von Graevenitz (2022) find that carbon emission from German manufacturing increased
between 2005 and 2017 due to production scale, but there was a clean-up due to a shift towards
a cleaner product composition from 2011 onwards.

Recently, there has been a small strand of literature using quantitative models to distinguish
the contribution of each potential channel to the total level of pollution emissions (Shapiro
and Walker, 2018; Shapiro, 2020; Cruz and Rossi-Hansberg, 2023) or to evaluate regulations
quantitatively (Duflo et al., 2018; Blundell et al., 2020; Chen et al., 2021). Among them, Shapiro
and Walker (2018) develop a two-country, multi-sector model featuring heterogeneous firms in
a monopolistic competitive market based on workhorse models from the international (Melitz,
2003) and environmental (Copeland and Taylor, 2003) literature. It is the main structural
framework of this paper, which is extended and applied to the Chinese context instead of the
original US scenario. The main finding for the US is that environmental regulation, i.e. the
Clean Air Act, accounts for most of the emission reductions rather than productivity and trade
between 1990 and 2008. Further exploration shows that import tariffs and non-tariff barriers are
much lower on dirty than on clean industries due to greater protection of downstream industries
which are relatively cleaner (Shapiro, 2020). Since China is a much more open economy than
the US, and is a developing country that has grown very fast in recent decades, the effects of
the channels can be different. Therefore, I extend the analysis and emphasize factors including
China’s environmental regulation, trade liberalisation and productivity to explore their impacts
on pollution emissions. The results show a substantial increase in the implicit pollution tax
in China over the sample period. In contrast, an application of the model on German carbon
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prices (Rottner et al., 2023) shows the implicit carbon price on emission decreased from 2005
to 2019 in most manufacturing sectors.

The different responses to trade liberalisation in countries at various development stages
lead to pollution offshoring or the “pollution haven” hypothesis. However, the findings are
mixed (Cole and Elliott, 2003; Forslid et al., 2018; Dean et al., 2009; Tanaka et al., 2022;
Cherniwchan et al., 2017, Copeland et al., 2022, and Jayachandran, 2022). This paper focuses
on the local emission of SO2, and the answer to the pollution haven hypothesis requires a more
comprehensive examination in a separate paper. Finally, there is a growing literature on the
labour market outcomes due to pollution, with a focus on developing economies (Greenstone
and Hanna, 2014; Arceo et al., 2016; Ebenstein et al., 2017; Barwick et al., 2024; Bombardini
and Li, 2020). Air pollution level is also related to worker health and productivity (Chang
et al., 2019), absenteeism and firm sales (Leroutier and Ollivier, 2023), earnings (Wan and
Zhang, 2023), job reallocation (Li et al., 2023), and worker migration (Khanna et al., 2021).
The analysis of the current paper is mainly on the level of pollution and pollution intensity,
which can lead to potential effects on health and labour market consequences.

3 Data and policy background

3.1 Data

The firm-level data in the paper are sourced from the EPS (Economy Prediction System) China
micro-economy database. Three sub-datasets at the firm level are used. The first is the En-
vironmental Statistics Database (ESD) provided by the Ministry of Environment Protection
(MEP) of China. The second is the Annual Survey of Industrial Firms (ASIF) conducted by
the National Bureau of Statistics (NBS). The third is the import and export data from the
customs record. The advantage of the EPS data is that firms are matched by name, location,
and registration number so that I can combine production, pollution, and trade information at
the firm level. The pollution data and the production data start from 1998, and the customs
records start in 2000. The common coverage of the three datasets is 2000- 2012. The period
of the study covers the fast development since China entered the WTO in 2001 and the im-
plementation of the 11th Five-Year Plan (2006-2010) when the government regulated pollution
with specific caps for each province. The majority of the firms in the datasets are concentrated
in the manufacturing sectors, which are the focus of this paper. All observations are at the firm
level, not plant or establishment, with 4-digit China Industry Classification (henceforth CIC)
at each prefecture city.

The reliability of the ESD data is a potential concern, since firms may misreport their emis-
sion levels. The ESD is so far the most comprehensive database available on firm-level pollution
for China and cross-verified by previous studies (Cui et al., 2020; Rodrigue et al., 2022b). The
survey is conducted annually on firms that account for 85% of total emissions in each prefec-
ture city. To reduce the incentive of misreporting, the Environmental Protection Law explicitly
states that the survey cannot be used as a reference to punish or regulate polluting firms (He
et al., 2020). In addition, the MEP carries out random monitoring checks and anonymous field
inspections to verify the accuracy of the information reported. Rodrigue et al. (2022b) among
others provide checks on the data by aggregating firm-level SO2 across time and space, and
compare with the annual reports to show that the dataset captures the majority of total emis-
sions and is in line with the official statistics. They also crosscheck with the US satellite data
and find no significant evidence of systematic reporting bias. The pollutants recorded include
sulphur dioxide (SO2), nitrogen oxides (NOx) and smoke dust (close to particulate matter) for
air pollution, chemical oxygen demand (COD), ammonia nitrogen (NH3-N) and waste water for
water pollution.

The ASIF data are frequently used in studies related to China’s firm-level performance,
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which report the major production indicators in the financial statements. The data include all
state-owned enterprises and private firms with annual sales above 5 million RMB.3 With the
information provided, I can estimate firm-level total factor productivity. Finally, the customs
data record the import and export of firms with the quantity and value of each destination,
and can be combined with the emission and production data to assess the effect of trade on
pollution.

At the aggregate level, I obtain the country-industry production and trade data from the
World Input-Output Database (WIOD) for the period 2000-2012 in the structural model esti-
mations. Here I abstract from non-manufacturing industries. The industries are converted from
ISIC Revision 4 to CIC 2017 at the 2-digit level according to the concordance table by China’s
National Bureau of Statistics. Additional industry and province output and emission data come
from the China Statistical Yearbooks and the China Environmental Statistical Yearbooks.

In terms of the industry distribution of SO2, the manufacturing sector accounts for 53%
of total emissions, followed by electricity, heat, gas, and water production and supply, which
cover 42% of total emissions in the sample period. Among manufacturing industries, Table B.1
lists the coverage of the firm-level datasets. The pollution data cover 245,475 manufacturing
firms between 2000 and 2012. The number shrinks to 130,282 when merged with the ASIF
data, accounting for 53% of firms in the pollution data, and 16% of the ASIF data. The
number of firms is further reduced to 38,311 when merged with the Customs data, accounting
for 29% of firms in the combined pollution and ASIF data. In Section 4.1, I use the pollution
data combined with the ASIF and the Customs between 2000 and 2012 to describe the basic
patterns of pollution and firm characteristics. In Section 4.2, I use the pollution data starting
from 1998, combined with tariff data from the World Integrated Trade Solution (WITS) to
evaluate the impact of trade liberalisation. In Section 4.3, I use the pollution data starting
from 1998, combined with province regulation targets to assess the effect of environmental
regulation. Section 6.2 combines the pollution data and the production data to estimate the
model parameters. Finally, Figure A.4 compares the aggregate data from the World Input-
Output Table (WIOT), and the EPS firm-level data in terms of production and trade. The
firm-level aggregate data closely follow the WIOT data, though slightly lower.

3.2 China’s environmental policy

The main environmental policy during the sample period is China’s 11th Five-Year Plan from
2006 to 2010. The policy played an important role in controlling pollution emissions because
there was a specific reduction target of 10% nationwide on pollutants including sulphur dioxide
(SO2) and chemical oxygen demand (COD). The total target was assigned to each province as
a pollution quota. The quota was further allocated to cities within each province and large
firms.4 The evaluation of implementation was directly linked to local government performance
and the promotion of local leaders. Local governments and firms have strong political incentives
to comply with the environmental regulation policy and reduce the pollution emissions to the
regional cap. By 2010, most provinces achieved or even exceeded their targets (Shi and Xu,
2018). Although during the 10th Five-Year Plan, there was also an overall pollution reduction
target of 10%, not all provinces received a reduction quota, and the outcome was not directly
linked to chances of political promotion. Therefore, the 10th Five-Year Plan was not as effective.

3Since 2007, the ASIF data do not cover firms with annual sales below 5 million RMB. The threshold was
further lifted to 20 million RMB in 2011. The equivalent US dollar value is 0.66 million in 2007, and 3 million
in 2011, according to the exchange rate reported by the Central Bank of China (7.6 RMB per USD in 2007 and
6.5 RMB per USD in 2011).

4State-owned enterprises may face more pressure to reduce pollution emissions (e.g. Cui et al., 2020), while
foreign-owned firms may be cleaner due to better technology (e.g. Pei et al., 2021). Firms may also change
industries or shift production across locations (Chen et al., 2021; Wu et al., 2017). Therefore, in Section 4.2 and
Section 4.3, I restrict the sample to firms that remained in the same 4-digit industry or the same prefecture city
as robustness checks, which account for 80.34% and 98.36% of firms, respectively.
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By the end of the period, the total pollution emission of SO2 even increased by 28% according
to the China Environmental Statistical Yearbooks. After the 11th Five-Year Plan, there was
the 12th Five-Year Plan, with further reduction goals. However, later rounds of Five-Year
plans are beyond the period of observation with the current data and I leave the analysis for
future updates. In addition to the 11th Five-Year Plan, there are other regional regulations
in compliance with the 11th Five-Year Plan, such as the “three rivers and three lakes basins”
region targeted by the central government to reduce chemical oxygen demand (COD) as an effort
to control water quality (e.g. Wang et al., 2018) and the “Top 1000” program (later the “Top
10,000” program) that targeted the largest energy consuming firms in the most energy-intensive
industries to improve energy efficiency (e.g. Karplus et al., 2020; Chen et al., 2021).

3.3 China’s trade policy

The most important trade policy for China in recent decades is the accession to the World
Trade Organisation (WTO) on December 31, 2001. There were significant reductions in tariff
rates across all the tradable products, especially in the manufacturing industries. The tariff
reductions were bilateral, and following Brandt et al. (2017), I use import tariffs to measure
trade openness, because they provide the most accurate and detailed information on the trade
reform. The tariff rates on final goods at the 4-digit ISIC level from 1998 to 2011 are retrieved
from the World Bank’s WITS database. The tariff rates are not available in 2012 for China. I
keep both simple average and product line-weighted average tariffs as the output tariffs. The
input tariffs are calculated using China’s input-output (IO) table in 2002.5 Specifically, input
tariffs are weighted averages of output tariffs, where the weights are the industry input shares.
The concordance table to convert 3-digit IO industries to 4-digit CIC industries is sourced from
Brandt et al. (2017). Figure 2a shows the aggregate trend of output and input tariffs over
time. The tariffs dropped significantly after China joined the WTO in 2001 and continued
to decrease in the following years. The output tariffs are substantially higher than the input
tariffs, as in Brandt et al. (2017). Figures 2b and 2c further show that the simple average input
and output tariff levels and tariff changes are positively related to each other. In other words,
industries that used to have higher tariff rates experienced more tariff reductions due to the
WTO accession.

5The input-output tables of China are available every five years. Using the input-output table of 1997 instead
of 2002 gives very similar results. See Table B.3 for summary statistics, Figure A.5 for the tariff levels and changes,
and Table B.4 for the baseline regression results.
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(a) Average output and input tariffs

(b) Input tariffs (simple average) (c) Output tariffs (simple average)

Figure 2. Tariff levels and tariff changes

Notes: These figures plot the simple/weighted average input/output tariffs of 4-digit CIC industries around
China’s WTO accession on December 31, 2001. Panel (a) plots the tariffs in levels. Panel (b) shows the correlation
between the simple average input tariffs and tariff changes since 1998. Panel (c) shows the correlation between
the simple average output tariffs and tariff changes since 1998. Each dot represents a 4-digit CIC industry.

4 Firm-level regressions

In this section, I first show some basic patterns of pollution and firm characteristics. Next, I run
two sets of difference-in-differences (DiD) regressions to show the effects of the WTO accession
and the 11th Five-Year Plan on firm-level pollution intensity.

4.1 Pollution and firm characteristics

To begin with, I focus on importers/exporters and see if the amount of international trade
affects their pollution outcomes. The specification is the following:

yit = β0 + β1logExportit + β2logImportit + β′
3Xit + µs + µc + µt + ϵit (1)

where yit is the outcome variable, which can be log SO2 emission logSO2it or emission intensity
logSO2intit. logExportit and logImportit are log export and import values in current US
dollars, respectively. The control variables Xit include the number of employees labourit, and
firm total factor productivity (TFP ) following Levinsohn and Petrin (2003), with Ackerberg
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et al. (2015) correction.6 I further include the foreign ownership status dummy FOE and the
state ownership status dummy SOE. µs, µc and µt are 4-digit sector, city, and year fixed effects.
The summary statistics are shown in Table B.2.

The first column of Table 1 shows that the SO2 pollution increases with importer and
exporter trade values. The second column shows that taking the firm size into consideration,
the pollution intensity of exporters and importers decreases with trade values. Column (3)
shows that the pollution intensity is positively correlated with firm size, while firms with higher
TFP have lower pollution intensity. Column (4) controls for foreign ownership FOE and state
ownership SOE. Compared to domestic private-owned firms, foreign-owned firms pollute less
intensively, while state-owned firms pollute more intensively.

Table 1. SO2 pollution and firm characteristics

(1) (2) (3) (4)
logSO2 logSO2int logSO2int logSO2int

logExport 0.142*** -0.042*** -0.015* -0.010
(0.005) (0.005) (0.007) (0.008)

logImport 0.031*** -0.130*** -0.096*** -0.091***
(0.004) (0.004) (0.006) (0.006)

labour 0.006*** 0.004***
(0.001) (0.001)

TFP -0.773*** -0.774***
(0.016) (0.016)

FOE -0.318***
(0.045)

SOE 0.177***
(0.043)

Observations 51,141 41,645 18,357 18,357
R-squared 0.389 0.465 0.522 0.524
Year FE yes yes yes yes
Industry FE yes yes yes yes
City FE yes yes yes yes

Notes: This table presents the correlation between SO2 emission and

importer/exporter firm characteristics. Column (1) shows the results

on log SO2 emission (kg). Columns (2)-(4) show the results on log

SO2 emission intensity (kg/1,000 yuan). Column (3) includes firm size

(labour) and total factor productivity (TFP ) estimated following Levin-

sohn and Petrin (2003) with Ackerberg et al. (2015) correction. Col-

umn (4) includes foreign ownership dummy (FOE) and state ownership

dummy (SOE). Standard errors in parentheses. * significant at 10%,

** significant at 5% , *** significant at 1%.

Based on the basic patterns at the firm level, I then explore the effects of two policies on
China’s SO2 emission, namely the WTO accession and the 11th Five-Year Plan.

4.2 Trade liberalisation

I use a generalized difference-in-differences (DiD) method (Pierce and Schott, 2016) to estimate
the impact of WTO accession in 2001 on SO2 pollution intensity. All the manufacturing in-
dustries experienced some bilateral tariff reduction, thus, there is no control group that had

6Specifically, the TFP is measured by the log output minus a weighted sum of log labour, capital, and
materials: TFPit = yit − αllit − αkkit − αmmit. The output is deflated with the 2-digit industry-specific
producer price index, the capital is deflated with the province fixed assets investment price index, and the
materials are deflated with the annual purchasing price index. All price indices are collected from the China
Statistical Yearbooks.
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no industrial tariff change. The research design leverages the different degrees of trade reform
across 429 manufacturing industries at the 4-digit level. The tariff levels are also continuous
instead of a treatment dummy in the canonical DiD approach. Specifically, I estimate the
following equation:

logSO2intit = β0 + β1 tariff
1998
s ×WTOt + log salesit + ηs + δct + µi + ϵit (2)

where logSO2intit denotes log SO2 pollution intensity (kg/1,000 yuan) of firm i at time t.
WTOt is a binary indicator of China’s entry to the WTO, which is equal to 1 if the year is
after 2001 and 0 otherwise. log salesit is log firm sales in 1,000 yuan. ηs, δct, and µi are 4-digit
CIC industry, city-year, and firm fixed effects. ϵit is the error term. The standard errors are
clustered at the industry-year level.

I use tariff1998s to denote the input/output tariff at the 4-digit CIC industry level in 1998,
which is before the WTO accession. Following Cui et al. (2020), I do not use tariffs in the
current year because they may be endogenous to the pollution outcome. Lagged tariffs also
suffer from the problem. As pointed out by Lu and Yu (2015) and shown in Figure 2, the
pre-accession tariff is a good predictor of future tariff reduction and import growth, and is not
subject to reverse causality after the WTO accession. Therefore, I use the tariff levels in 1998
to measure the impact of trade liberalisation in the baseline. Table B.3 presents the summary
statistics of the key variables.

The estimation results of Equation (2) are presented in Table 2. The tariff reduction after
the WTO accession decreases firm SO2 pollution intensity. This is true for simple average
or weighted average input tariffs in the first two columns, as well as for simple average and
weighted average output tariffs in Columns (3) and (4). Column (5) includes both simple
average input and output tariffs, while Column (6) includes both weighted average input and
output tariffs. The effects remain consistent, though the coefficients of output tariffs become
statistically insignificant. According to the baseline estimation, a 1% point lower input tariff
in the initial period would decrease SO2 emission intensity by 1.1% to 1.3% on average in the
following years. The results on firms that remained in the same 4-digit industry are reported in
Table B.5. The coefficients are consistent with the baseline but larger in magnitude, suggesting
that there is reallocation across industries and that the baseline is a lower-bound effect of trade
liberalisation.
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Table 2. Impact of trade liberalisation on SO2 pollution intensity

logSO2int (1) (2) (3) (4) (5) (6)

tariff1998savg.input ×WTO -0.013*** -0.013***
(0.002) (0.002)

tariff1998wavg.input ×WTO -0.011*** -0.011***
(0.002) (0.002)

tariff1998savg.output ×WTO -0.003*** -0.001
(0.001) (0.001)

tariff1998wavg.output ×WTO -0.002*** -0.000
(0.001) (0.001)

log sales -0.683*** -0.683*** -0.681*** -0.681*** -0.680*** -0.680***
(0.006) (0.006) (0.007) (0.007) (0.007) (0.007)

Observations 560,858 560,858 518,866 518,866 518,866 518,866
Adj. R-squared 0.846 0.846 0.848 0.848 0.848 0.848
Firm FE ✓ ✓ ✓ ✓ ✓ ✓
4-digit Industry FE ✓ ✓ ✓ ✓ ✓ ✓
City-Year FE ✓ ✓ ✓ ✓ ✓ ✓

Notes: This table reports the impact of trade liberalisation on SO2 pollution intensity following Equa-

tion (2). The outcome variable logSO2int is log SO2 pollution intensity (kg/1,000 yuan). tariff1998
savg.input,

tariff1998
wavg.input, tariff

1998
savg.output, tariff

1998
wavg.output are simple average input, weighted average input, simple

average output, and weighted average output tariffs at 4-digit CIC industry level in 1998, respectively. WTO

is a dummy variable for China’s WTO accession which is equal to 1 after 2001 and 0 otherwise. log sales is

log firm sales in 1,000 yuan. Standard errors in parentheses, clustered at the industry-year level. * significant

at 10%, ** significant at 5% , *** significant at 1%.

To get a better sense of the trade liberalisation effect over time, I interact the tariff variable
with each year in the sample, instead of one binary WTO variable and run the following event
study regression:

logSO2intit = β0 +
∑
t

βt tariff
1998
s ×Dt + log salesit + ηs + δct + µi + ϵit (3)

whereDt is the year dummy, and the year of the WTO accession 2001 is omitted. The estimation
results are plotted in Figure 3. Consistent with the regressions, the effects of input tariffs are
larger than those of output tariffs. The effect of the input tariff was significant right after the
WTO accession and grew larger over the following years till 2008. The effect of the output tariff
was significant since 2004 and the magnitude became smaller since 2008. For both input and
output tariffs, the effect on firm pollution intensity flattened out and even reversed in the last
few years of the sample period, potentially because tariff rates stabilised and were sufficiently
low to further influence pollution emissions.
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(a) Output tariff (b) Input tariff

Figure 3. Impact of trade liberalisation on SO2 pollution intensity (simple average tariffs)

Notes: These figures plot the estimates of trade liberalisation effects over time following Equation (3), along with

the 95% and 99% confidence intervals. The vertical dashed line indicates the year of China’s WTO accession.

Following Shapiro (2020), I further differentiate industries by dirty and clean. Dirty indus-
tries have pollution per unit cost above average, while clean industries are below average. Dirty
industries include industries with 2-digit code 22 (Manufacture of paper and paper products),
26 (Manufacture of raw chemical materials and chemical products), 28 (Manufacture of chem-
ical fibres), 30 (Manufacture of non-metallic mineral products), 31 (Smelting and pressing of
ferrous metals), 32 (Smelting and pressing of non-ferrous metals), consistent with the structural
parameters in Table 5. The baseline regression results by dirty and clean industries are in Table
B.6. Compared to all industries, the effect of trade liberalisation on SO2 pollution intensity
is larger in dirty industries and smaller in clean industries, suggesting that trade liberalisation
reduced pollution intensity mainly within dirty industry categories.

To check the robustness of the baseline results, in the spirit of Brandt et al. (2017), I use
tariffs before the WTO accession in 1998 as instruments for the one-year lag tariffs with two-
stage least-squares (2SLS) regressions. This could reduce endogeneity concerns such as reverse
causality between tariffs and the outcome variable. The first-stage results are in Table B.7.
There is a strong and positive correlation between the instrument and the tariff changes. The
second-stage results are in Table B.8. The estimated coefficients are consistent with the baseline
results, with larger magnitudes. A 1% point input tariff reduction would decrease SO2 emission
intensity by 1.8% to 2.2% on average in the following years.

The results on other pollutants are summarized in Table B.9. I replicate the baseline re-
gressions of sulphur dioxide (SO2) on chemical oxygen demand (COD), waste gas (WasteGas),
and waste water (WasteWater). The data are not available for nitrogen oxides (NOx) before
2006 and for ammonia nitrogen (NH3-N) before 2001, so they are not included in this exercise.
The effects of trade liberalisation on COD are negative but not statistically significant. The
effects on waste gas are negative and statistically significant in input tariffs with magnitudes
similar to SO2. The effect on waste water is only negative and statistically significant in simple
average input tariffs and the magnitude is much smaller than SO2. The event study graphs
on waste gas and waste water are in Figure A.6. The effects of tariffs on pollution intensity
are not statistically significant before the WTO accession and become statistically significant
afterwards.

4.3 Environmental regulation

Next, I use different emission caps across provinces during the 11th Five-Year Plan to measure
the effect of environmental regulation on firm SO2 emission. Similar to the DiD approach
in the trade reform section, all the provinces received emission quotas, the difference lies in
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the stringency of the policy. Thus, there is not a control group that faces no environmental
regulation. The research design leverages the different degrees of treatment across provinces.
The emission targets are also continuous instead of a treatment dummy in the canonical DiD
approach. I estimate the following generalized difference-in-differences (DiD) specification:

logSO2intit = β0 + β1 logTargetp × FY Pt + log salesit + δp + ηst + µi + ϵit (4)

where logSO2intit is the log emission intensity (kg/10,000 yuan) of firm i and year t. Since the
emission quota was a negotiated outcome between the central government and each province,
it may be related to the size of the province. Therefore, I use logTargetp which is the log SO2

emission target in province p measured by the ratio of the province GDP (yuan) to SO2 target
level (kg) in 2010.7 FY Pt is an indicator variable of the 11th Five-Year Plan which is equal
to 1 if the year is after 2005, and 0 otherwise. A higher emission target indicates more strict
regulation. The coefficient of interest β1 reflects the effectiveness of the policy, a negative β1
means firms in provinces with more strict regulation would emit less. log salesit is log firm sales
in 1,000 yuan. δp, ηst and µi are province, industry-year and firm fixed effects. ϵit is the error
term. The standard errors are clustered at the province-year level. The summary statistics are
shown in Table B.10. The regression results are shown in Table 3. If the provincial Target
increases by 1 %, the firm-level pollution intensity would decrease by around 0.07% to 0.09%.
The results on firms that remained in the same city are reported in Table B.12. The coefficients
are consistent with the baseline but slightly smaller in magnitude, suggesting that there is
pollution reallocation across locations and that the baseline may overestimate the effect of the
environmental regulation.

Again, I run the regression by year following the event study specification:

logSO2intit = β0 +
∑
t

βt logTargetp ×Dt + log salesit + δp + ηst + µi + ϵit (5)

where Dt is the year dummy, and the year before the 11th Five-Year Plan 2005 is omitted.
Figure 4 shows that the impact of environmental regulation is not significant before the policy
but becomes significant after the implementation of the 11th Five-Year Plan, with a growing
trend in magnitude.

7I can use an alternative environmental regulation target measured by the log of the ratio between the SO2

emission target during the 10th Five-Year Plan and the 11th Five-Year Plan. The summary statistics are shown
in Table B.10. The regression results are reported in Table B.11 and are consistent with the baseline measure.
For ease of comparison between the empirical evidence and the model counterfactual, I keep the baseline measure
henceforth.
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Table 3. Impact of environmental regulation on SO2 emission intensity

logSO2int (1) (2) (3) (4)

logTarget× FY P -0.089*** -0.091*** -0.074*** -0.079***
(0.025) (0.025) (0.024) (0.024)

log sales -0.676*** -0.676*** -0.673*** -0.673***
(0.006) (0.006) (0.006) (0.006)

Observations 588,157 588,157 588,157 587,870
Adj. R-squared 0.831 0.832 0.833 0.835
Firm FE ✓ ✓ ✓ ✓
Province FE ✓ ✓ ✓ ✓
Year FE ✓ ✓
2-digit Industry FE ✓
4-digit Industry FE ✓
2-digit Industry-Year FE ✓
4-digit Industry-Year FE ✓

Notes: This table presents the impact of environmental regulation on SO2 emis-

sion intensity following Equation (4). The outcome variable logSO2int is log SO2

pollution intensity (kg/1,000 yuan). logTarget is the log SO2 emission target mea-

sured by the ratio of the province GDP (yuan) to SO2 target level (kg) in 2010. A

higher emission target indicates more strict regulation. FY P is a dummy variable

of the 11th Five-Year Plan which is equal to 1 after 2005 and 0 otherwise. log

sales is log firm sales in 1,000 yuan. Standard errors in parentheses, clustered at

the province-year level. * significant at 10%, ** significant at 5% , *** significant

at 1%. The number of observations is smaller in Column (4) than in the previous

columns because more singleton observations are dropped when controlling for 4-

digit Industry-Year FE.

Figure 4. Impact of environmental regulation on SO2 pollution intensity

Notes: This figure plots the estimates of environmental regulation effects over time following Equation (5), along

with the 95% and 99% confidence intervals. The vertical dashed line indicates the year before China’s 11th

Five-Year Plan.

One concern of the DiD exercises is that trade reform and environmental regulation may be
correlated. Since the 11th Five-Year Plan started in 2006, which was five years after the WTO
accession in 2001, it is unlikely that the environmental regulation affects the tariff reduction.
In addition, as shown in Figure 2a, the tariff rates were sufficiently low after the first few years
of the trade reform and already stabilized upon the beginning of the environmental regulation.
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Since the WTO accession and the 11th Five-Year Plan have overlapping time periods, I combine
them in the same regression to check if they affect each other. The details are in Appendix C
and the results are consistent with the separate effects of the two policies.

Another concern with the DiD regressions is that the pollution targets may be correlated
with some time-varying province characteristics that bias the results. Therefore, following Shi
and Xu (2018) who studied the regional SO2 regulation during the 10th Five-Year Plan, I carry
out a triple difference (DDD) strategy and include variance in industry pollution emissions.
The assumption is that firms in dirtier industries would respond to the emission cap more since
the policy was implemented. The specification is the following:

logSO2intit = β0+β1 logTargetp×FY Pt× logSO2intsector+log salesit+γpt+δps+ηst+µi+ϵit
(6)

where logSO2intit is the log emission intensity (kg/10,000 yuan) of firm i and year t. logTargetp
is the log SO2 emission target in province p measured by the ratio of the province GDP (yuan)
to SO2 target level (kg) in 2010. FY Pt is an indicator variable of the 11th Five-Year Plan which
is equal to 1 if the year is 2006 and afterwards, and 0 otherwise. logSO2intsector is the log SO2

emission to GDP ratio of each 2-digit industry in 2005. γpt, δps, ηst, and µi are province-year,
province-industry, industry-year, and firm fixed effects. ϵit is the error term. The standard
errors are clustered at the province-industry level. The regression results are shown in Table
4. Consistent with the DiD regression results, more stringent pollution regulation during the
11th Five-Year Plan decreases firm pollution intensity, especially in industries with high SO2

pollution emission intensities.

Table 4. Impact of environmental regulation on SO2 pollution intensity (triple differences)

logSO2int (1) (2) (3) (4)

logTarget× FY P× logSO2intsector -0.053*** -0.016* -0.040*** -0.017***
(0.015) (0.009) (0.012) (0.005)

log sales -0.498*** -0.668*** -0.497*** -0.671***
(0.008) (0.009) (0.004) (0.005)

Observations 628,682 576,121 619,121 569,315
Adj. R-squared 0.536 0.830 0.704 0.832
Province-Year FE ✓
Province-Industry FE ✓ ✓
Industry-Year FE ✓ ✓ ✓ ✓
City-Year FE ✓
City-Industry FE ✓ ✓
Firm FE ✓ ✓

Notes: This table presents the impact of environmental regulation on SO2 pollution intensity

following Equation (6). The outcome variable logSO2int is log SO2 pollution intensity (kg/1,000

yuan). logTarget is the log SO2 emission target measured by the ratio of the province GDP

(yuan) to SO2 target level (kg) in 2010. A higher emission target indicates more strict regula-

tion. FY P is a dummy variable of the 11th Five-Year Plan which is equal to 1 after 2005 and

0 otherwise. logSO2intsector is the log SO2 emission to GDP ratio of each 2-digit industry in

2005. log sales is log firm sales in 1,000 yuan. Standard errors in parentheses, clustered at the

province-industry level. * significant at 10%, ** significant at 5% , *** significant at 1%.

The results on other pollutants are summarized in Table B.13. I redo the baseline exercises
of sulphur dioxide (SO2) on chemical oxygen demand (COD) and ammonia nitrogen (NH3-N).
The COD targets are province total quotas similar to SO2, and the NH3-N targets cover only
industry and household. There were no emission targets on nitrogen oxides (NOx), waste gas
(WasteGas), and waste water (WasteWater) during the 11th Five-Year Plan, so they are not
included in this exercise. The effects of environmental regulation on COD and NH3-N are
negative and statistically significant with magnitudes even larger than SO2. The event study
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graphs are in Figure A.7. The effects of environmental regulation on pollution intensity are
not statistically significant before the 11th Five-Year Plan and become statistically significant
afterwards.

One caveat of the DiD analysis is that the policy effects on pollution intensity come from
relative changes across industries or across provinces, while the industry structure may change
over the years, and firm production may shift between different subsidiaries within a conglom-
erate firm (Chen et al., 2021). Therefore, it is necessary to check the contribution of industry
structural change to total pollution in the following section with decomposition exercises. In
addition, Section 6 introduces a multi-sector general equilibrium model to take into account the
potential shift of production and derive aggregate pollution outcomes due to the policies.

5 Decomposition

This section conducts the decomposition exercises of total pollution first at the industry level
following the notation of Levinson (2009). I then decompose pollution intensity at the firm level
in the spirit of Melitz and Polanec (2015), taking into consideration the entry and exit of firms.

5.1 Industry-level decomposition

The total manufacturing pollution Z can be written as:

Z =
∑
s

zs =
∑
s

xses = X
∑
s

κses (7)

where zs is the pollution from each sector s, which equals the output xs times the emission
intensity es. es = zs/xs is the pollution per unit of output value. If each sector’s share of total
output is denoted as κs = xs/X, Z equals the final term of Equation (7). Put in vector forms:

Z = Xκ′e (8)

Totally differentiating equation (8) yields:

dZ = κ′edX︸ ︷︷ ︸
scale

+ Xe′dκ︸ ︷︷ ︸
composition

+ Xκ′de︸ ︷︷ ︸
technique

(9)

The three terms on the right-hand-side of equation (9) represent the scale, composition and
technique effects respectively. The scale effect reflects the change in total pollution due to
the size of the manufacturing sectors, holding the sector composition and pollution intensity
fixed. The composition effect accounts for the change in industry mix, keeping the total size
of manufacturing sectors and pollution intensity constant. The technique effect captures the
change in pollution intensity and represents the technical frontier of production, assuming the
scale and composition are fixed. I then calculate these components according to equation (9),
while the output is deflated with 2-digit industry-year specific indices from the China Statistical
Yearbooks.8

The decomposition results are shown in Figure 5. The blue dashed line depicts what the
total pollution level would look like relative to the year 1998 if the industry composition and
technique remained the same and only the scale effect was at work. The red short-dashed line
plots the hypothetical trend of pollution keeping the technique constant and let the scale and
composition of industries change. The green solid line shows the actual change in total pollution

8The exact decomposition can be written as ∆Zt = ∆Zt

∑
i

κiteit + Zt−1

∑
i

∆κiteit + Zt−1

∑
i

κi,t−1∆eit.

Another way is to write the scale and composition effects as ∆Zt

∑
i

κiteit and Zt

∑
i

∆κiteit, while the technique

effect is the residual from ∆Zt. Both the two methods of decomposition give similar results.
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by combining the scale, composition, and technique effects. The scale effect increases pollution
over the period. Adding the composition effect slightly reduces total pollution, but the trend
closely follows that of the scale effect alone, as in Cole and Zhang (2019) and Rodrigue et al.
(2022a), whereas the technique effect greatly reduces pollution.9,10

Figure 5. Industry-level SO2 emission decomposition

Note: This figure plots the industry-level decomposition results following Equation (9).

The main difference between the components of Chinese and US pollution, as quantified
by Shapiro and Walker (2018) is that the magnitude of China’s pollution level relative to the
baseline period is much higher than in the US. The sum of the three effects nearly doubled
during 15 years in China while in the US the net pollution level decreased by more than half
over 20 years. The combined scale and composition effects are also different between China and
the US, with China more than doubled and the US less than 40% growth. For both the US and
China, the technique effect significantly drives down total pollution.

5.2 Firm-level decomposition

Next, I decompose pollution intensity at the firm level following the method of Melitz and
Polanec (2015), taking into consideration the entry and exit of firms. The change in average
emission intensity e over time (from t = 1 to 2) can be decomposed into three groups of firms,

9Cole and Zhang (2019) use yearbook statistics instead of firm-level aggregate data, while Rodrigue et al.
(2022a) use pollution data matched with manufacturing survey, which reduces the number of firms by half.
Fortunately, firm output information is readily available in the pollution data from the EPS which allows me to
use all firms to capture a full picture of manufacturing pollution in the decomposition. Decomposition at 4-digit
industries with 4-digit deflators from Brandt et al. (2017) instead of decomposition at 2-digit industries gives
similar results, see Figure A.8. In either case, the magnitudes are similar.

10One concern of the conventional industry-level decomposition in the literature is that heterogeneities in
firm markups are not considered. To mitigate the bias of markups, I follow Rodrigue et al. (2022a) and use
cost shares instead of revenue shares to aggregate firm-level emission intensities at the industry level. To do
this, I need to merge the pollution data with the production data, which reduces the pollution sample size by
half. I use operating costs to compute cost shares and compare the decomposition with revenue shares. An
alternative way is to follow Rodrigue et al. (2022a) and use intermediate inputs plus wage bills to represent costs.
However, the data after 2007 are not available. The results are summarized in Figure A.9. The dip around 2009
is because the production was reduced during the global financial crisis, which is reflected in the merged data.
The decomposition using cost shares instead of revenue shares shows a slightly higher scale effect as well as the
combination of scale and composition effects, but the overall trends remain close.
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namely, continuing (C), entering (E), and exiting (X) firms:

e1 =sC1eC1 + sX1eX1 = eC1 + sX1(eX1 − eC1) = ēC1 + covC1 + sX1(eX1 − eC1)

e2 =sC2eC2 + sE2eE2 = eC2 + sE2(eE2 − eC2) = ēC2 + covC2 + sE2(eE2 − eC2)
(10)

The pollution intensity expressed in change ∆e is:

∆e = (eC2 − eC1) + sE2(eE2 − eC2) + sX1(eC1 − eX1)

= ∆ēC︸︷︷︸
within-firm

+ ∆covC︸ ︷︷ ︸
across-firm︸ ︷︷ ︸

continuing firms

+ sE2(eE2 − eC2)︸ ︷︷ ︸
entering firms

+ sX1(eC1 − eX1)︸ ︷︷ ︸
exiting firms

(11)

where sGt =
∑

i∈G sit represents the aggregate market share in revenue of firms in group G
(G ∈ {C,E,X}) and eGt =

∑
i∈G(sit/sGt)eit is the group’s weighted average emission intensity.

Among continuing firms, the first term ēC = 1
n

∑n
i=1 ei is the unweighted mean firm emission

intensity. The second term covC =
∑

i(si − s̄)(ei − ē) is the covariance between revenue share
and emission intensity, where s̄ = 1/n is the mean market share within the subset of continuing
firms. I take the year 1998 as the initial period t = 1 and all the changes are relative to this
baseline year.

I then plot the decomposition results in Figure 6a. The green solid line represents the
real pollution intensity levels when all firms are taken into account. The within-firm average
scale effect is the upper dashed blue line, which drives up the emission intensity of Chinese
manufacturing firms, though the within-firm effect declined over time. The dotted-dash red
line includes both within and across firm effects, i.e., the pollution intensity levels of continuing
firms. The result implies that cross-firm differences reduce the pollution intensity dramatically,
which captures reallocation of market shares towards less pollution-intensive firms. The within-
firm and across-firm effects are very close to the trend of all firms, which indicates that firm
entry and exit contribute relatively less to the overall emission intensity. Figure 6b shows the
effects of firm entry and exit in more detail. Firm entry increases pollution intensity while firm
exit reduces pollution intensity. I also conduct the firm-level decomposition by sector and then
calculate sector averages of each component. The results are plotted in Figure A.10 and are
qualitatively similar.
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(a) Within and across continuing firms

(b) Entry and exit

Figure 6. Firm-level SO2 emission intensity decomposition

Note: These figures plot the firm-level decomposition results following Equation (11).

The evidence from the regressions and decompositions show the following stylized facts: (i)
Firms in industries with more trade liberalisation pollute less intensively. (ii) Firms in provinces
with more stringent environmental regulations pollute less intensively. (iii) Higher TFP and
better technology help firms reduce pollution emissions. (iv) Most pollution reduction is due
to within-sector, across-firm changes, rather than the composition of manufacturing industry
structure. The next question is what are the mechanisms and magnitudes of trade, productivity,
and environmental regulation on pollution under general equilibrium? To answer it, I need a
structural model with heterogeneous firms and variation across sectors over time in the following
section.

6 A structural model of pollution emissions

I use a general equilibrium model from Shapiro and Walker (2018) to analyze pollution emission
levels under various counterfactual conditions. The model features firms that differ in produc-
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tivity, and choose different pollution abatement costs. Labour is the only production factor
and it is supplied inelastically. In addition to fixed and variable trade costs, firms also pay a
pollution tax depending on their emissions. The model is static and hence it doesn’t feature
firm dynamics. One can derive analytical solutions from the model to guide the counterfactual
analysis. I first introduce the key setup of the model in Section 6.1, and then estimate the key
parameters using China’s firm-level data in Section 6.2, and recover some historical values in
Section 6.3 before the counterfactual exercises in Section 7.

6.1 Setup

Preferences The representative consumer in destination country d has the following utility
function:

Ud =
∏
s

[∑
o

∫
ω∈Ωo,s

qod,s(ω)
σs−1
σs dω

] σs
σs−1

βd,s

(12)

where utility across product varieties ω within a sector s is CES and Cobb-Douglas across sec-
tors. Ωo,s is the measure of goods from origin country o and each variety of good is denoted by
ω. The parameter βd,s is country d’s expenditure share on sector s which satisfies

∑
s βd,s = 1.

qod,s(ω) is the quantity of goods and σs represents the elasticity of substitution across varieties
in each sector.

Firms and market structure Firms in sector s pay a sunk entry cost feo,s to draw productivity
φ from a given distribution and, conditional on operating, face fixed production costs fod,s, which
are specific to destination market d. Due to increasing returns to scale, each firm is the only
producer of any variety and operates under monopolistic competition. In particular, a firm
with productivity φ chooses its prices pod,s and emission abatement a to maximize the following
profit function:

πo,s(φ) =
∑
d

πod,s(φ)− wof
e
o,s (13)

πod,s(φ) = pod,s(φ)qod,s(φ)− wolod,s(φ)τod,s − to,szod,s(φ)τod,s − wdfod,s

where pod,s(φ) is the price, wo is the wage of labour lod,s(φ), to,s represents pollution tax on
pollution zod,s(φ) and τod,s ≥ 1 is the iceberg trade cost.

Assume productivity distribution is Pareto with cumulative distribution:

G(φ; bo,s) = 1−
(
φ

bo,s

)−θs

(14)

where bo,s is the location parameter which reflects the country-sector productivity, and θs is the
shape parameter that describes the dispersion of productivity in sector s.

Production and pollution Firms sell the number of units:

qod,s(φ) = (1− aod,s(φ))φlod,s(φ) (15)

where aod,s is the abatement investment. A fraction aod,s of input is used to abate pollution
and the remaining 1− aod,s is used to produce output.

Firms produce pollution emissions:

zod,s(φ) = (1− aod,s(φ))
1
αs φlod,s(φ) (16)

where αs is the pollution elasticity by sector. This equation shows that pollution is decreasing
in abatement and increasing in output which is adopted by Copeland and Taylor (2003).
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Intermediate results Combing equations (15) and (16), one can write the output as a Cobb-
Douglas function of pollution emissions and productive factors:

qod,s = (zod,s)
αs(φlod,s)

1−αs (17)

where αs is the Cobb-Douglas share of pollution emissions.
Firms choose prices pod,s and abatement cost aod,s to maximize profits. The first-order

condition for aod,s gives:

1− aod,s =

(
wo

φto,s

αs

1− αs

)αs

(18)

These results will be used later for comparative statics and parameter estimates.

Competitive equilibrium There are two conditions for a competitive equilibrium. The first
condition is on labour market clearing, where labour supply must equal labour demand in each
country. The second condition is that the expected profit must equal the fixed cost of drawing
productivity.

Comparative statics Before carrying out the quantitative analysis, it is useful to show the
effects of pollution taxes, productivity, and trade liberalisation analytically to better understand
the implications of the model. The proofs of the propositions are detailed in the appendix of
Shapiro and Walker (2018).

PROPOSITION 1:
At the firm level, pollution intensity is locally decreasing in productivity.

The reason is that firms with higher productivity invest more in pollution abatement to
maximize profit, as shown in the first-order condition (18).

PROPOSITION 2:
At the sector level, pollution intensity is locally decreasing in pollution taxes, in productivity

and in trade liberalisation.

The intuition is that pollution tax makes firms invest more in pollution abatement as shown
in Equation (18). Productivity increases the output, thereby decreasing pollution intensity.
Lower trade cost allows a sector to emit less pollution in order to obtain the same output. The
reallocation effect of trade also shifts market share towards more productive firms that have
lower pollution intensity.

Method of counterfactual analysis To analyze counterfactual pollution emissions, one can
use the hat algebra following Dekle et al. (2008) and rewrite each variable as a proportional
change from a baseline year. The benefit of this method is that unchanged variables that are
difficult to measure will be canceled out and do not appear in changes so there is no need to
worry about their exact values. Formally, let x denote a variable from the model, x′ denotes the
variable under a counterfactual scenario, and the proportional change in the variable due to the
counterfactual is x̂ = x′/x. China is considered the home country while the rest of the world is
considered foreign. The equilibrium conditions can be expressed in changes as follows:11

1 = ψo

(∑
s M̂

e
o,sRo,s

(σs−1)(θs−αs+1)
σsθs

+ η′o∑
sRo,s

(σs−1)(θs−αs+1)
σsθs

+ ηo

)
(19)

11I refer readers to the appendix of Shapiro and Walker (2018) for more details on the derivations.
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ŵo =
∑
d

ζod,sŵ
−θs
o Γ̂od,s∑

o λod,sM̂
e
o,sŵ

−θs
o Γ̂od,s

β̂d,s
R′

d −NX ′
d

Rd −NXd
(20)

where firm entry M̂ e
o,s and nominal wage ŵo are endogenous variables to be solved. The other

variables can be obtained from the data. β̂d,s is the Cobb-Douglas expenditure share, Γ̂od,s is a
market competitiveness measure detailed in Section 6.3, which contains the implicit pollution
tax t̂o,s. Ro,s is national revenue from sector s, and λod,s is the share of country d’s expenditure
in sector s going to country o. ζod,s = Xod,s/

∑
dXod,s is export share, and NX represents net

exports (exports minus imports). σs, θs and αs are parameters to be estimated in Section 6.2.
ψo and ηo are parameter combinations.

From the two conditions, one can solve a set of non-linear equations for each year and obtain
the wages ŵo and firm entry decisions M̂ e

o,s that characterize each counterfactual. The system
has 2s+ 1 equations and 2s+ 1 unknowns so it is just-identified.

Each sector’s pollution emissions in country o between a baseline year and a counterfactual
is:

Ẑo,s =
M̂ e

o,sŵo

ˆto,s
(21)

where M̂ e
o,s and ŵo are endogenous variables that depend on changes in foreign and home

market competitiveness, expenditure shares and pollution tax {Γ̂od,s, β̂d,s, t̂o,s}. I then extend
the analysis to include additional channels relevant to the Chinese economy and pollution.
Specifically, I extract the variable trade cost and productivity τ̂od,s and b̂o,s from home market

competitiveness Γ̂od,s to look at counterfactual pollution outcomes.

6.2 Parameter estimates

There are three sets of parameters to estimate in order to run the model, namely, the pollution
elasticity αs, the elasticity of substitution σs and the Pareto shape parameter θs for each sector
s. I combine the firm-level pollution data from the ESD and the production data from the ASIF
to estimate the model parameters.

6.2.1 Pollution elasticity

The pollution elasticity is estimated in Shapiro and Walker (2018) by regressing pollution in-
tensity on abatement investment. They then instrument changes in abatement cost share with
changes in local environmental regulation stringency. However, it is not feasible with the Chi-
nese data due to the lack of precise abatement cost information and prefecture-level regulation
stringency is neither readily available nor comprehensive.12 Therefore, I estimate equation (17)
instead:

qod,s = (zod,s)
αs(φlod,s)

1−αs

where the pollution elasticity αs is the Cobb-Douglas share for pollution emissions. The firm
productivity φ is the total factor productivity (TFP) following Levinsohn and Petrin (2003),
with Ackerberg et al. (2015) correction.13 I then rewrite the equation into the following econo-
metric specification:

lnqit = αlnzit + (1− α)ln(φlit) + νt + νc + νs + ϵit (22)

12Rodrigue et al. (2022b) instead measures emission output abatement rather than abatement cost.
13Specifically, the TFP is measured by the log output minus a weighted sum of log labour, capital, materials

and energy input: TFPit = yit −αllit −αkkit −αmmit −αeeit. The output is deflated with the 2-digit industry-
specific producer price index, the capital is deflated with the provincial fixed assets investment price index, the
materials are deflated with the annual purchasing price index, and the energy input is measured by industrial coal
consumption. Coal is the major source of energy and SO2 emissions for manufacturing industries in China. Coal
consumption takes up 71% of total manufacturing energy consumption in 2012 according to the EPS database.
All price indices are collected from the China Statistical Yearbooks.
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where the pollution elasticity α is the estimated average coefficient of pollution emission zit for
all manufacturing firms, qit and lit are output and labour employment of firm i respectively.14

The year, city, and 4-digit industry fixed effects are also controlled. Once the average α is
obtained, the industry-specific pollution elasticities at the 2-digit level are calculated using the
pollution per unit cost of each industry as weights (Shapiro andWalker, 2018), where the weights
are listed in Column (1) of Table 5. The estimated pollution elasticity for each 2-digit sector s
is listed in Column (2) of Table 5. The mean pollution elasticity is 0.019, compared to 0.011 in
Shapiro and Walker (2018). The industry with the lowest pollution elasticity is “Manufacture of
communication equipment, computers, and other electronic equipment” (α=0.0007), while the
industry with the highest pollution elasticity is “Manufacture of non-metallic mineral products”
(α=0.0789). In Shapiro and Walker (2018), the industry with the lowest pollution elasticity
is “Radio, television, communication” (α=0.0005), and the industry with the highest pollution
elasticity is “Basic metals” (α=0.0557). These industries are closely comparable.

14Physical output qod,s is proxied with revenue, deflated by 2-digit industry-specific output price deflators
from the China Statistical Yearbooks.
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Table 5. Parameter estimates

CIC sector Pollution
per unit
cost

(g/yuan)

Pollution
elasticity

(α)

Input
share

Elasticity of
substitution

(σ)

Pareto
shape

parameter
(θ)

Code Name (1) (2) (3) (4) (5)

13 Processing of food 0.88 0.0114 0.89 10.01 14.06
14 Manufacture of food 0.99 0.0128 0.76 4.31 5.51
15 Manufacture of beverages 1.09 0.0141 0.63 2.77 2.73
16 Manufacture of tobacco 0.29 0.0038 0.45 1.81 1.41
17 Manufacture of textile 0.81 0.0104 0.85 7.02 10.87
18 Manufacture of textile wearing apparel,

footware, and caps
0.32 0.0042 0.79 4.84 5.56

19 Manufacture of leather, fur, feather and
related products

0.16 0.0021 0.87 8.04 12.12

20 Processing of timber, manufacture of
wood, bamboo, rattan, palm and straw
products

1.47 0.0189 0.89 10.57 13.38

21 Manufacture of furniture 0.25 0.0032 0.77 4.38 9.37
22 Manufacture of paper and paper prod-

ucts
4.03 0.0520 0.83 8.13 10.17

23 Printing, reproduction of recording me-
dia

0.21 0.0027 0.78 4.54 5.56

24 Manufacture of articles for culture, ed-
ucation and sport activities

0.14 0.0018 0.85 6.57 13.19

25 Processing of petroleum, coking and
nuclear fuel

0.90 0.0116 0.90 11.18 11.20

26 Manufacture of raw chemical materials
and chemical products

2.40 0.0310 0.80 5.68 6.94

27 Manufacture of medicines 0.97 0.0125 0.57 2.37 2.35
28 Manufacture of chemical fibers 1.55 0.0200 0.83 6.57 7.00
29 Manufacture of rubber and plastics 0.92 0.0119 0.82 5.79 7.64
30 Manufacture of non-metallic mineral

products
6.11 0.0789 0.76 5.82 8.28

31 Smelting and pressing of ferrous metals 2.54 0.0328 0.87 10.43 10.93
32 Smelting and pressing of non-ferrous

metals
4.75 0.0614 0.82 7.73 7.94

33 Manufacture of metal products 0.27 0.0035 0.83 5.92 6.84
34 Manufacture of general purpose ma-

chinery
0.31 0.0039 0.78 4.51 4.83

35 Manufacture of special purpose machin-
ery

0.56 0.0072 0.79 4.88 6.14

36 Manufacture of transport equipment 0.21 0.0027 0.81 5.32 4.81
38 Manufacture of electrical machinery

and equipment
0.13 0.0016 0.78 4.57 4.83

39 Manufacture of communication equip-
ment, computers and other electronic
equipment

0.05 0.0007 0.82 5.58 5.64

40 Manufacture of measuring instruments
and machinery for cultural activity and
office work

0.14 0.0018 0.80 5.07 5.18

41 Manufacture of artwork and other man-
ufacturing

0.49 0.0063 0.81 5.54 5.87

All Mean 1.18 0.019 0.79 6.07 7.51
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Alternatively, I can estimate the production function taking into consideration labour, cap-
ital, materials, energy input, and pollution emission together to simultaneously obtain the
pollution elasticity and productivity, the result is an estimated average pollution elasticity α =
0.022, which is very close to the baseline estimation of 0.019. Using 4-digit industry deflators
from Brandt et al. (2017) gives the estimated average pollution elasticity 0.017, and 0.020 with
the joint estimate, which are both close to the baseline estimate. In addition to the baseline
SO2 pollution elasticity, I also estimate the pollution elasticities of other pollutants as reported
in Table B.14, where the magnitude ranges from 0.009 to 0.035.

The overall estimate of pollution elasticity implies that firms pay around two percent of
their annual costs on pollution abatement. Though detailed firm-level data are not available to
check this, I can compare it with some related statistics. According to the China Environmental
Statistical Yearbooks, the average pollution abatement investment as a percentage of the GDP
of each province is 1.6 percent, which is of similar magnitude to the estimate. Though this may
seem large, it is of the same order of magnitude compared to the US. For example, Shapiro
and Walker (2018) show that according to the Pollution Abatement Costs and Expenditures
(PACE) survey, pollution abatement costs of manufacturing industries account for about 0.5%
of total manufacturing sales.

An alternative way to check the accuracy of the estimation of αs is to retrieve the abatement

cost aod,s by combining equations (15) and (16) to get
zod,s
qod,s

= (1− aod,s)
(1−αs)/αs and compare

to the data. I use industrial waste gas abatement cost as a proxy for SO2 abatement cost since
SO2 is a major component of waste gas. Figure A.11 compares the abatement cost in industrial
waste gas summed by province according to the China Environmental Statistical Yearbooks and
the abatement cost implied by the model. The trends are very similar between the data and
the model.

One assumption of the model is that firms spend a fraction a of input on pollution abatement,
while the remaining 1−a is used on production. The higher the pollution abatement cost a, the
more emissions should be reduced. The EPS data provide information on the pollution generated
by each firm, the emission reduction, and the final emission. Although this information is not
directly on the cost of emission abatement, as suggested by Rodrigue et al. (2022b), one can
measure the level of emission abatement using the difference between the emission generated
and the emission reduction. Figure A.12 shows the correlation between the emission reduction
and abatement cost by industry across time. The left panel shows the correlation in shares and
the right panel shows the correlation in values. In any case, the emission reduction and the
abatement cost are positively correlated, which supports the implication of the model.

6.2.2 The elasticity of substitution

Next, I estimate the elasticity of substitution σs using the following equation:

woL
p
o,s = (1− αs)

σs − 1

σs
Ro,s (23)

where wo is the nominal wage of the origin country, Lp
o,s is the labour used in production. The

product of the two woL
p
o,s represents firm costs. αs is the pollution elasticity estimated above,

and Ro,s is sector revenue. The elasticity of substitution σs is estimated separately for each
2-digit industry as follows:

σs = (1− αs)/(1− αs − woL
p
o,s/Ro,s) (24)

where woL
p
o,s/Ro,s is the sector input share reported in Column (3) of Table 5. The method to

estimate the elasticity of substitution is built on Hsieh and Ossa (2016) and Antràs et al. (2017)
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and the estimates are plausible as they are similar to previous findings.15 I use the information
provided by the ASIF to estimate this set of parameters and the results are listed in Column (4)
of Table 5. The cross-sector mean is 6.07. The sector with the largest elasticity of substitution
is “Processing of petroleum, coking, and nuclear fuel” (σ=11.18), which has more homogeneous
products and the sector with the smallest elasticity of substitution is “Manufacture of tobacco”
(σ=1.81) followed by “Manufacture of medicines” (σ=2.37), which have relatively more dif-
ferentiated products. The industries are comparable to the estimates in Shapiro and Walker
(2018). In their paper, the elasticity of substitution is highest for “Coke refined petroleum,
and nuclear fuels sector” (σ=8.18), while the elasticity of substitution is smallest for “Medical,
precision, and optical products sector” (σ=2.89), with a cross-sector mean of 4.76.

6.2.3 The Pareto shape parameter

Finally, I estimate the Pareto shape parameter according to the Pareto tail cumulative distri-
bution function Pr{x > Xi,s} = (bi,s/Xi,s)

θs/(σs−1) for Xi,s ≥ bi,s. Taking logs gives:

ln(Pr{x > Xi,s}) = γ0,s + γ1,sln(Xi,s) + ϵi,s (25)

where Xi,s represents sales. I estimate the coefficient γ1,s and the Pareto shape parameter is
in turn given by θs = γ1,s(1 − σs). Only firms above the 90th percentile of sales within each
sector are used because the Pareto distribution best fits the right tail of the firm distribution.
The results are in Column (5) of Table 5. The estimates support the assumption of the model
that θs > (σs − 1)(1− αs).

6.3 Recovering historical values of key variables

There are three main components in the model that may generate counterfactual pollution
emission outcomes if they were not taken at their actual historical values. The components are
environmental regulation, expenditure shares, and market competitiveness of home and foreign
countries. I recover the historical values of these variables to prepare for the counterfactual
analysis. In addition, I extend the analysis and extract variable trade cost and productivity from
home competitiveness to specifically examine the impact of trade liberalisation and technology
improvement, corresponding to the empirical findings.

6.3.1 The environmental regulation

The first set of historical values to recover is the environmental regulation measured by model-
implied pollution tax, which is of interest on its own. It is useful to clarify that the pollution tax
is an exogenous variable in the model. Since there is not a clear mapping between actual policies
and this variable, I need to retrieve it from the behaviour of other endogenous variables that
react to the tax. One of the equations pinning down general equilibrium delivers an expression
that can be easily quantified using the available data. The pollution tax is measured by the
following equation:

t̂o,s =
M̂ e

o,sŵo

Ẑo,s

(26)

where Ẑo,s is the change in pollution of origin country o in sector s. M̂ e
o,s and ŵo are changes in

firm entry and factor prices, respectively. The pollution tax implied by the model is determined

15Antràs et al. (2017) estimate the elasticity of 3.85 for the US, while Hsieh and Ossa (2016) estimate the
median elasticity of 6.1 for China. The cross-sector mean estimate of 6.07 falls within this range. Alternative
estimates using China’s trade data with the Soderbery (2015) method give the mean elasticity of 5.72, which is
also close to the baseline estimates. I will later use the alternative elasticity of substitution σ independent of the
pollution elasticity α to substitute the baseline elasticity of substitution in the counterfactual section and show
that the results are qualitatively robust.
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by the change in the mass of firm entry, factor price, and pollution emission, which reflects the
overall level of regulation on SO2. The recovered trend is shown in Figure 7.

Figure 7. Implicit pollution tax of SO2 (model-implied)

Note: This figure plots the implicit pollution tax of SO2 emissions t̂o,s recovered from Equation (26). The 2-digit

CIC industries are aggregated into dirty and clean industries. Dirty industries have pollution elasticity αs above

average, while clean industries are below average, weighted by the baseline output of each industry.

The dirty industries are those with pollution elasticity above the sector mean and the clean
industries are below the mean pollution elasticity.16 The two groups of industries are weighted by
baseline industry revenue from the World Input-Output Tables (WIOT). The implicit pollution
tax on SO2 increased significantly during the sample period, with clean industries higher than
dirty industries. I plot the implied pollution tax for other pollutants in Figure A.13. The
implicit pollution taxes on the other pollutants also increased significantly during the sample
period.

There is no direct pollution tax for firms since local governments may implement policies
at different times and policy details. One can think of the pollution tax as a measure of the
shadow price of pollution. According to the State Council, SO2 pollution charges were to be
doubled within three years since 2007, from 0.63 yuan/kg to 1.26 yuan/kg. Figure 7 reflects
the change in pollution tax with similar magnitudes, especially for dirty industries, which is
reassuring that the model-implied measure of pollution tax is not far from the goal of the policy.

Alternatively, I can divide implicit pollution tax into high-regulation provinces and low-
regulation provinces. The province regulation level is measured by the change in SO2 emission
divided by the change in output before and after the 11th Five-Year Plan between 2005 and 2010.
Provinces with high regulation are below the average value and provinces with low regulation
are above average.17 The province pollution tax is obtained by using the implicit pollution
tax by industry from the model and take industry output share in the initial year as weights.

16The dirty industries include industries with 2-digit code 22 (Manufacture of paper and paper products),
26 (Manufacture of raw chemical materials and chemical products), 28 (Manufacture of chemical fibres), 30
(Manufacture of non-metallic mineral products), 31 (Smelting and pressing of ferrous metals), and 32 (Smelting
and pressing of non-ferrous metals). The rest are relatively clean industries.

17Provinces with low regulation include Hebei, Shanxi, Liaoning, Shandong, Henan, Guangxi, Chongqing,
Sichuan, Guizhou, Shaanxi, and Ningxia. The rest are with relatively high regulation.
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The results are plotted in Figure A.14. High-regulation provinces face a higher level of implicit
pollution tax compared to low-regulation provinces and the gap slowly widened over the sample
period.

6.3.2 Expenditure share

The second set of historical values to recover is expenditure share. The equation to derive
expenditure shares is the following:

β̂∗d,s =

∑
oX

′
od,s/

∑
o,sX

′
od,s∑

oXod,s/
∑

o,sXod,s
(27)

which is the sectoral expenditure share of a country’s expenditure on sector s in a counterfactual,
divided by the baseline year value. Here I use data from the WIOT and convert the ISIC
Revision 4 sectors to CIC 2017 2-digit industries. Whenever there are multiple sectors with the
CIC 2017 codes linked to the same ISIC Revision 4 sector, I assign equal weights to the number
of sectors linked. The retrieved values are shown in Figure 8. The definition of dirty and clean
industries is the same as above, where dirty industries have above-average pollution elasticities
and clean industries below average. The two groups are aggregated using unweighted means.
The rest of the world apart from China is aggregated into Foreign as one destination. In both
panels, the change in dirty industries is higher in general than in clean industries. There are
drops in expenditure shares of dirty industries after the 2008 financial crisis and increases in
expenditure shares of clean industries.

6.3.3 Market competitiveness

The third group of historical values is foreign and Chinese market competitiveness. Here, Chi-
nese “competitiveness” refers to the ability of Chinese firms selling to the international market
a wide range of varieties at relatively lower prices, and vice versa for foreign competitiveness.
Mainly, competitiveness combines productivity, environmental regulation, and trade costs for
both foreign and domestic countries. Here foreign competitiveness is taken as a single variable
because it does not provide further explanations to domestic pollution, and I also lack the data
on each single component of foreign competitiveness. The expressions are:

Γ̂od,s = (1/b̂o,s)
−θs(τ̂od,s)

−θs/(1−αs)(f̂od,s)
1−θs/(σs−1)(1−αs)(t̂o,s)

−αsθs/(1−αs) (28)

=
λ̂od,s

M̂ e
o,sŵ

−θs
o

, o ̸= China (29)

Γ̂od,s = (1/b̂o,s)
−θs(τ̂od,s)

−θs/(1−αs)(f̂od,s)
1−θs/(σs−1)(1−αs) (30)

= t̂
αsθs
1−αs
o,s

λ̂od,s

M̂ e
o,sŵ

−θs
o

, o = China (31)

where the endogenous variables are nominal wage ŵo, and firm entry M̂ e
o,s. λ̂od,s is the share of

country d’s expenditure on sector s that is purchased from country o.
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(a) Foreign expenditure shares (b) Chinese expenditure shares

(c) Foreign wages (d) Chinese wages

(e) Foreign firm entry (f) Chinese firm entry

Figure 8. Historic values

Notes: These figures plot the historical values of key variables from the model. Panels (a) and (b) plot the foreign

and Chinese expenditure shares β̂d,s from Equation (27). Panels (c) and (d) plot the foreign and Chinese wages

ŵo solved from equilibrium conditions (19) and (20). Panels (e) and (f) plot the foreign and Chinese firm entry

M̂e
o,s solved from equilibrium conditions (19) and (20). The 2-digit CIC industries are aggregated into dirty and

clean industries in panels (a), (b), (e), and (f). Dirty industries have pollution elasticity αs above average, while

clean industries are below average, unweighted mean.
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It is not very informative to plot the market competitiveness per se, so I plot the historical
values of some sum-components of the market competitiveness, namely, the Foreign and Chinese
wages, as well as firm entry in Figure 8.

The wages recovered from the model show that the nominal wages for countries outside of
China dropped gradually after 2000 to reach a level of 80% of its initial value. In contrast, the
nominal wages for China increased to over 300% of their level in 2000. To make sense of the
foreign wage changes from the model, Shapiro and Walker (2018) report that the US nominal
wage in 2008 from the model is around 70% of the 2000 level, while the wage in the rest of the
world grew by less than 20%. For China, the US accounts for a large share of foreign wages,
which corresponds to the model-implied mild decline in foreign wages. On the other hand, for
the US, the rapid wage increase in China contributes to the wage growth of the rest of the
world.

To verify the Chinese wage changes solved from the model, I compare the results to wage
data from other sources. One source is the average wage bill from financial accounts of industrial
firms in the ASIF database, weighted by the annual firm employment. Figure A.15 shows that
by the end of 2012, the average wage was over 250% of the 2000 level. The caveat is that the
data from 2008 to 2010 are missing, and many firms did not report their payroll information.
Another source of Chinese wage data is the Urban Household Survey (UHS) conducted by
the National Bureau of Statistics (NBS), where the manufacturing workers in urban areas were
asked about their earnings. Figure A.15 plots the trend, which shows that manufacturing wages
increased to over 450% of the 2000 level. The alternative sources of Chinese industrial wages are
not perfect substitutes for the retrieved values from the model, however, they offer a reasonable
range where the endogenous wages lie in between.

The firm entry effects reflect the changes in expenditure shares. Both China and Foreign
witnessed a slight drop at the beginning of the 21st century and then rapid growth until 2008
when the global financial crisis hit and firm entry dropped sharply before recovering. However,
clean industries in China seem to be less affected by the crisis since they experienced a much
milder shock. The equivalent of firm mass in the data can be the relative number of firms by
industry across time. Figure A.16 plots the correlation between the two measures and shows
that they are positively correlated. One caveat is that the firms from the EPS data are relatively
large firms above a certain threshold and are not the universe of firms. However, the positive
correlation reflects that the model captures the variances across industry and time in the data.

In addition to the baseline counterfactual results, I extend the exercises of Shapiro and
Walker (2018) and further decompose the Chinese competitiveness according to equation (30)
into export tariff τ̂od,s which is the variable cost of trade, and sector productivity measured

by the Pareto location parameter b̂o,s. Since China is more open than the US economy, it is
likely that trade liberalisation affects production and pollution more in China. Therefore, it is
useful to specifically evaluate the effect of tariff reduction. This would also link the model to
the regression analysis and allow for checks on the pollution response to policy interventions.

I use effective applied (AHS) simple average export tariff data for China from the World
Bank’s WITS database at 4-digit ISIC Revision 3 level and convert to CIC 2-digit level to
account for tariff τod,s in the model. The Pareto location parameter bo,s can be obtained along
with the estimation of the Pareto shape parameter θs. Effectively, the Pareto location parameter
bo,s is the lower bound of the productivity distribution. Alternatively, I could substitute bo,s
with sector average total factor productivity weighted by firm sales. The retrieved historical
values of firm productivity from the production function estimation are very similar to sector
productivity from Pareto distribution in terms of both trend and magnitude. The retrieved
historical values of the additional set of variables are shown in Figure 9. I can then look at
counterfactual pollution emissions if each of these variables alone follows the historical values.
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(a) Tariff

(b) Log sector productivity (c) Log firm productivity

Figure 9. Historic values of additional variables

Notes: These figures plot the historical values of additional variables for the counterfactual. Panel (a) plots the

tariff τod,s using the effective applied (AHS) simple average export tariff data for China from the World Bank’s

WITS database at 4-digit ISIC Revision 3 level and converted to CIC 2-digit level. Panel (b) plots the log sector

productivity from the Pareto location parameter bo,s in the model. Panel (c) plots the log firm productivity

from the production function estimation following Levinsohn and Petrin (2003), with Ackerberg et al. (2015)

correction. Dirty industries have pollution elasticity αs above average, while clean industries are below average,

unweighted mean.

7 Counterfactuals

In this section, I run counterfactual analysis on what the pollution emission would look like
if I take the trade, pollution emissions and production from the initial year 2000 and add
the historical values of foreign and domestic competitiveness, environmental regulation and
expenditure shares {Γ̂∗

od,s, t̂
∗
o,s, β̂

∗
o,s} one at a time, keeping the other components at their 2000

values. The purpose of the exercise is to disentangle the contribution of each channel to the total
level of SO2 pollution emissions in a general equilibrium framework. I then extend the exercise
to variable trade costs and productivity to assess their effects on total pollution. Section 7.2
shows other counterfactual results such as the effects of a single channel and pollution intensity
outcomes. Section 7.3 compares the magnitudes of the model and data in terms of policies
on trade liberalisation and environmental regulation. I then calculate the economic cost of
environmental regulation, before experimenting with other counterfactual policies. Section 7.4
conducts sensitivity analyses of the model. Finally, Section 7.5 summarizes the counterfactual
emissions of other pollutants.
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7.1 Baseline results

The baseline counterfactual results are plotted in Figure 10. The blue solid line represents the
actual data when all variables follow their historical values. The red dashed lines represent
the contribution of Foreign competitiveness, Chinese competitiveness, Chinese regulation, and
Chinese expenditure share respectively, keeping the other variables at their initial levels in the
year 2000. The figure shows that Chinese competitiveness would greatly increase the total
SO2 emission level, while Chinese regulation would drive down emissions by more than 50%.
In contrast, foreign competitiveness and Chinese expenditure share do not seem to affect the
pollution levels much.

Figure 10. Counterfactual Chinese manufacturing pollution emissions

Notes: This figure plots the counterfactual Chinese manufacturing pollution emissions of foreign competitiveness,

Chinese competitiveness, Chinese regulation and Chinese expenditure share, respectively. The solid blue line is

the data when all channels are included. The dashed red lines are counterfactual pollution emissions when only

one channel follows the historical values while the other variables are at the initial values in 2000.

The additional counterfactual results by decomposing Chinese competitiveness are plotted
in Figure 11. The blue dashed lines show that the tariff changes would reduce the total SO2

pollution emission level by the most among other channels since 2004, later surpassed by Chinese
regulation since 2008. While the sector productivity would reduce the pollution level, however,
the magnitudes are moderate.
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Figure 11. Additional counterfactuals (decomposed Chinese competitiveness)

Notes: This figure plots the additional counterfactual Chinese manufacturing pollution emissions by decomposing

Chinese competitiveness to tariff and productivity, respectively. The solid blue line is the data when all channels

are included. The dashed red and blue lines are counterfactual pollution emissions when only one channel follows

the historical values while the other variables are at the initial values in 2000.

In the benchmark counterfactual results, I aggregate firm-level pollution merged with pro-
duction information used for parameter estimates, so there is a dip in the actual total pollution
level in 2009. Alternatively, I can aggregate firm-level pollution without matching the pro-
duction information and apply the estimated parameters to all firms with emission records.
Another approach is to use the yearbook pollution data, which includes the total amount of
emission in each 2-digit CIC industry. The results are reported in Figure A.17a and Figure
A.17b, respectively. The counterfactual pollution levels are qualitatively similar, though the
effect of tariffs is more pronounced than in the benchmark.

7.2 Other counterfactuals

This section explores other counterfactual results including the effect of a single channel and
pollution intensity outcomes.

7.2.1 Effect of a single channel

The baseline counterfactual results are structural decompositions when one variable follows the
historical values, and the other variables remain at the initial values. Alternatively, one can
evaluate the counterfactual effect of a single channel (e.g. flat pollution tax or no environmental
policy), computed by keeping one variable at the initial value, and the other variables follow
their historical values. The results are shown in Figure A.18. If the Chinese regulation is
constant, the total pollution level by 2012 would be 300% of the initial level in 2000, which is
much higher than the actual pollution level at 162%. If the level of trade liberalisation is kept
at the original level, SO2 pollution would have increased to over 200%. In contrast, if Chinese
market competitiveness stayed constant, pollution would be lower by 50%. If foreign market
competitiveness stayed constant, pollution would also be slightly lower than the actual level.
The effects of productivity and expenditure shares are relatively less important.
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7.2.2 Pollution intensity

In terms of pollution intensity, Figure A.19 shows that it dropped over the period to less
than 50% of the initial value, corresponding to Figure 1 in the introduction. All the factors
examined decrease pollution intensity proportional to their effects on pollution level. In line
with the comparative statics propositions, productivity, pollution tax, and trade liberalisation
help reduce pollution intensity, and each channel alone would decrease pollution intensity to
the level of around 30%, 15%, and 20% of the base year respectively by the end of 2012.

7.3 Magnitudes of model and data

In this section, I take the estimates from the regressions to check the external validity of the
model predictions. Specifically, I look at the “elasticity” of pollution intensity to trade liber-
alisation and environmental regulation, which are the main forces to reduce pollution in the
model. I then calculate the economic cost of environmental regulation, before experimenting
with counterfactual policies.

7.3.1 Trade liberalisation

Recall that in Table 2, a 1% point reduction in input tariff would reduce firm SO2 intensity by
1.1% to 1.3% on average. I then regress the industry-specific counterfactual pollution intensity
from the model on average industry tariff. The first two columns in Table B.15 show that a 1%
tariff cut would reduce pollution intensity by 1.4% to 1.9%, which is of similar magnitude to
the estimate from the regressions.

7.3.2 Environmental regulation

Table 3 shows that if the province SO2 pollution regulation stringency (yuan/kg) increases by
1%, firm pollution intensity would decrease by 0.07% to 0.09%. Taking the implied pollution
tax to approximate the pollution regulation, I then regress the industry-specific counterfactual
pollution intensity on the average pollution tax from the model. Columns (3) and (4) in Table
B.15 show that a 1% increase in the pollution tax would reduce the pollution intensity by
roughly 0.13% to 0.16%, which is larger than the estimate from the DiD regressions.

One caveat is that the DiD analysis examines the policy difference across provinces during
the 11th Five-Year Plan, while there might be other local policies that are not included in the
DiD analysis but captured in the structure model. Also, the response of pollution intensity
to regulation identified in the regressions is across provinces, but the model exploits variance
across industries, which may be different from regional differences.

7.3.3 Economic cost of environmental regulation

According to the report by the Ministry of Environment Protection, the economic cost of SO2

emission was 20,000 yuan per ton in 2005.18 The baseline counterfactual pollution level of
Chinese environmental regulation is approximately 50% of the initial level in 2000, while the
actual pollution level by 2012 is 162% of the initial level, which means that the net effect of
environmental regulation is 112% of SO2 emission reduction in manufacturing industries. The
manufacturing SO2 emission in 2000 was 5.7 million tons according to the China Environmental
Statistical Yearbook, which indicates that the environmental policy reduced 6.384 million tons

18The economic cost of emission per ton of SO2 estimated by the European Commission for the EU25 Member
States is 5,600 EUR at a lower bound in 2005, which is equivalent to 53,200 RMB at the exchange rate of 1
EUR=9.5 RMB in 2005. The value is much higher than the cost in China. However, the GDP per capita in
the EU25 Member States was significantly higher than in China. Given that the GDP per capita is positively
related to the economic cost of pollution, the economic costs of pollution in the EU and China are incompatible.
Therefore, I do not directly use the EU standard in the calculation of the economic cost of pollution.
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of SO2 emission (5.7 million tons ×112%), equal to 127.68 billion RMB in 2005 (6.384 million
tons × 20,000 RMB/ton), roughly 0.68% of annual GDP in 2005.19

7.3.4 Counterfactual policies

In this section, I explore the counterfactual effects of alternative policies regarding pollution tax
and tariff cost. Recall from Figure 7 that the pollution tax faced by dirty industries is smaller
than clean industries. Suppose all industries face the same level of pollution tax so that they
are treated equally by the policy. Figure A.20a displays the scenario when all industries receive
the same level of environmental regulation so that they face a uniform pollution tax. The
counterfactual shows that Chinese environmental regulation would further decrease pollution
in 2012 by 3% of the 2000 level. If the implicit pollution tax were twice the actual level, SO2

emissions would further decrease to 25% of the initial level.
One can also examine the counterfactual pollution emissions due to alternative tariff rates.

Figure A.20b shows that if tariff costs were reduced by half, SO2 emissions would further
decrease to 38% of the initial level. The results indicate that trade conflicts such as the US-
China trade war would have inverse effects on pollution emissions. As tariff costs increase, firms
are left with little room to abate pollution, and as a result, emission levels will rise.

Finally, combining the trade policy and the environment policy has synergy effects in Figure
A.20c and further reduces the total SO2 pollution to roughly 27% of the 2000 level.

7.4 Sensitivity analyses

I conduct a series of sensitivity analyses on the main counterfactuals in this section. The first row
of Table 6 presents the actual change in SO2 pollution emissions between 2000 and 2012, setting
the level in 2000 to 100. The value means China’s manufacturing SO2 pollution emissions were
162.180 percent of the 2000 level in 2012. The second row shows the main estimates where each
column corresponds to a counterfactual in the baseline Figure 11. Again, Chinese environmental
regulation alone would reduce total pollution level by approximately one-half, followed by tariff
cost reduction which would decrease 36% of pollution emissions, while technology/productivity
and expenditure shares contribute only slightly to pollution reduction.

One concern about the current results is that the parameters are essentially based on the
estimation of pollution elasticity α. To alleviate the potential bias in parameter estimation,
I use an alternative approach to estimate the elasticity of substitution σ independently using
trade data and the method from Soderbery (2015), which is an improvement based on Feenstra
(1994) and Broda and Weinstein (2006). The counterfactual results are summarized in Row 3
of Table 6. Compared to the main counterfactuals, this exercise provides very similar results,
except that the change in tariff is 10% less effective in reducing SO2 pollution level.

Rows 4 and 5 explore counterfactuals when the Pareto shape parameter θ of productivity
distribution is estimated using alternative cutoffs at the right tail, such as the top 25% and
50% instead of 10% in the baseline. The model is not sensitive to changes in parameter θ since
counterfactuals change only marginally. Rows 6 and 7 explore sensitivity to changes in the
estimated pollution elasticity α when the parameter is halved or doubled. The counterfactuals
are a bit more volatile to changes in parameter α, but remain qualitatively stable.

Regarding regulation, Row 8 presents partial equilibrium where there is no change in factor
prices or firm entry: ŵo = M̂ e

o,s = 1. In this case, market competition and expenditure shares
do not affect pollution emissions and only environmental regulation consistently decreases total
pollution emissions by nearly one-half.

19The GDP of China in 2005 was 18.73 trillion RMB.
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Table 6. Sensitivity analysis

Foreign
competitiveness

Chinese
competitiveness

Chinese
expenditure

shares

Chinese
environmental
regulation

Tariff Technology/
productivity

1. Actual change 162.180
2. Main estimate 124.726 289.988 94.147 49.662 63.566 98.361
3. σ: Feenstra 124.289 292.573 94.124 49.768 73.522 96.444
4. θ: top 25 % 124.646 290.096 94.136 49.800 71.307 95.794
5. θ: top 50 % 124.452 288.870 49.916 94.119 72.038 93.669
6. α: × 0.5 124.443 285.067 50.323 94.139 71.442 97.976
7. α: × 2 125.592 343.825 94.181 44.728 75.548 99.519
8. Partial equilibrium 100.000 100.000 100.000 50.815 100.000 100.000

Notes: This table presents the sensitivity analysis of the main model counterfactual SO2 emissions between 2000 and 2012. The SO2

emission at the beginning of the period is set to 100. Row 1 reports the actual change in the data, which means at the end of the period in

2012, the SO2 emission from the Chinese manufacturing industries increased by 62.18%. Row 2 shows the main estimate corresponding to

the baseline counterfactual Figure 10. Row 3 uses an alternative method to estimate the elasticity of substitution σ following Soderbery

(2015). Rows 4 and 5 estimate the Pareto shape parameter θ using the top 25% and 50% tails respectively, instead of the 10% tail in the

baseline. Rows 6 and 7 change the estimated pollution elasticity α by half or double. Row 8 presents partial equilibrium where there is

no change in factor prices or firm entry: ŵo = M̂e
o,s = 1.

7.5 Counterfactuals for other pollutants

Apart from SO2, I reproduce the counterfactual analysis with regard to other pollutants follow-
ing the same procedure of the model. The comparison between other pollutants to SO2 may
provide insights about the spillover of SO2 regulations on other airborne pollutants. The analy-
sis of water pollutants such as COD (chemical oxygen demand), which was also targeted by the
environmental policy during the 11th Five-Year Plan can offer a comparable assessment of the
effect of policies. The counterfactual exercises are summarized in Figure A.21. Reassuringly,
the counterfactual trends of COD are close to those of SO2, showing that the environmental
policies affect targeted pollutants in a similar way. Firms are more pollution efficient and emit
less under more stringent environmental policies. In terms of other air pollutants, environmental
regulations would have reduced NOx (nitrogen oxides) emissions by around 50%, while almost
all smoke dust emissions could be reduced. These results indicate that there is a spillover of
environmental policies on air pollutants that are not directly targeted. This could be achieved
through pollution abatement investment and end-of-pipe filtering equipment. For water pollu-
tants, the effectiveness of pollution policies is smaller in magnitude than air pollutants, probably
because the pollutants are more likely to be carried down the rivers and into the water bod-
ies across regions, which makes it harder to regulate locally. However, tariff reduction would
become more useful in reducing emissions in later years.

8 Conclusion

The relationship between economic growth, international trade, and pollution has been under
debate for years. However, studies that comprehensively disentangle the primitive drivers of
pollution levels have been rare, especially in developing countries where more economic growth
and potentially more pollution are expected. In this paper, I look into the problem using
matched data on China’s firm-level financial statistics, trade, and pollution emissions. I find that
large firms pollute more, but the more firms import and export, the less pollution-intensive they
are. Higher total factor productivity and foreign ownership are associated with lower pollution
intensity while state-owned firms have higher pollution intensity. Policies such as international
trade liberalisation and environmental regulation can effectively reduce the emission intensity
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of firms. I then perform both industry-level and firm-level decompositions and find that within-
sector firm heterogeneities are important in explaining the changes in pollution levels, rather
than industry structural change or firm entry and exit.

To structurally estimate the effects from the regressions and decompositions and to conduct
counterfactual analysis, I adopt the quantitative framework of Shapiro and Walker (2018) to de-
rive the contribution of each channel. The model applies insights from environmental economics
to the international trade literature and features heterogeneous firms that pay a pollution tax
and decide on pollution abatement costs under monopolistic competition in open economies.
The parameters are estimated by sector using firm-level data on pollution and production. The
counterfactual exercises show that environmental regulation is very effective in reducing the
total SO2 emission level and that the policy alone would reduce pollution by over one-half,
with model-implied pollution tax significantly increased. In contrast, China’s market compet-
itiveness would greatly push up total pollution. I further single out two additional channels,
namely, the variable trade costs measured by tariffs and productivity. The results show that
tariff cuts from trade liberalisation are the force second to environmental regulation to drive
down pollution levels. Meanwhile, productivity alone would reduce pollution only moderately.
Finally, I compare the magnitudes from the regressions with the implications from the model,
and explore some alternative environmental policies and tariff costs to derive the counterfactual
emission outcomes.

The findings of this paper highlight the importance of environmental and trade policies
in reducing pollution emissions. Regulations can be important to keep a low level of pollution
while sustaining economic growth. This is not only true for industrialized countries (e.g. Shapiro
and Walker, 2018) but also for developing economies (e.g. Burgess et al., 2019). The analysis
could potentially be extended to pollutants other than what has been discussed in this paper,
including greenhouse gases (GHG) such as carbon dioxide (CO2) and alternative environmental
policies where data are available. It would also be interesting to explore the relationship between
environmental regulations, intermediate inputs, and product markups in future work.
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Appendix

A Additional figures

(a) Export and emission

(b) Revenue and physical emission intensities

Figure A.1. Export emission intensities

Notes: Panel (a) plots the export value, quantity and SO2 emission by combining production data with trade

data, assuming that emission is proportional to production. Panel (b) plots The revenue and physical emission

intensities, respectively. The export data come from the customs, the pollution data come from the Ministry of

Environment Protection.
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Figure A.2. SO2 emissions and real output (different deflators)

Notes: This figure plots the evolution of real manufacturing output, SO2 total emission and emission intensity

(SO2 per unit of output value). The real manufacturing output is deflated with 2-digit and 4-digit deflators, re-

spectively. The industrial output and 2-digit deflators come from the China Statistical Yearbooks. I alternatively

use 4-digit deflators by extending the output deflators from Brandt et al. (2017) to 2010. The threshold of firm

annual sales increased from 5 million RMB to 11 million RMB in 2011, making the sample incompatible with

previous years, so I do not extend the deflators after 2010. The real output deflated at 4-digit industries closely

follows the trend deflated at 2-digit industries. Firm-level emissions come from the Environmental Statistics

Database.
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(a) SO2 (b) COD

(c) NOx (d) NH3-N

(e) Smoke dust (f) Waste water

Figure A.3. Pollution emissions and real output (other pollutants)

Notes: These figures plot the evolution of real manufacturing output, total emission and emission intensity

(emission per unit of output value) across pollutants. The industrial output and 2-digit deflators come from

the China Statistical Yearbooks. Firm-level emissions come from the Environmental Statistics Database. The

pollutants include sulphur dioxide (SO2), nitrogen oxides (NOx) and smoke dust for air pollution, chemical oxygen

demand (COD), ammonia nitrogen (NH3-N) and waste water for water pollution. The data are not available for

NOx before 2006 and for NH3-N before 2001.
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(a) Production

(b) Export

(c) Import

Figure A.4. Data match

Note: These figures plot the match between the WIOT data and the EPS firm-level data between 2000 and 2012.
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(a) Average output and input tariffs

(b) Input tariffs (simple average)

Figure A.5. Tariff levels and tariff changes (1997 input-output table)

Notes: These figures plot the simple/weighted average input/output tariffs of 4-digit CIC industries around
China’s WTO accession on December 31, 2001, using the input-output table of 1997 to derive the input tariffs
from output tariffs. Panel (a) plots the tariffs in levels. Panel (b) shows the correlation between simple average
input tariffs and changes in tariffs since 1998. Each dot represents a 4-digit CIC industry.
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(a) Waste gas (b) Waste water

Figure A.6. Impact of trade liberalisation on pollution intensity
(simple average input tariffs, other pollutants)

Notes: These figures plot the estimates of trade liberalisation effects over time, along with the 95% confidence

intervals. The vertical dashed line indicates the year of China’s WTO accession.

(a) COD (b) NH3-N

Figure A.7. Impact of environmental regulation on pollution intensity (other pollutants)

Notes: These figures plot the estimates of environmental regulation effects over time, along with the 95% confi-

dence intervals. The pollutants are chemical oxygen demand (COD) and ammonia nitrogen (NH3-N), respectively.

The vertical dashed line indicates the year before China’s 11th Five-Year Plan.
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Figure A.8. Industry-level SO2 emission decomposition (alternative deflator)

Notes: This figure plots the industry-level decomposition results following Equation (9) at 4-digit industries with

4-digit deflators from Brandt et al. (2017) instead of decomposition at 2-digit industries. The sample with 4-digit

deflators covers 1998-2010 due to the compatibility of deflators.
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(a) Revenue shares

(b) Cost shares

Figure A.9. Industry-level SO2 emission decomposition (alternative shares)

Notes: These figures plot the industry-level decomposition results following Equation (9). To mitigate the bias

of markups, I follow Rodrigue et al. (2022a) and use cost shares in Panel (b) instead of revenue shares in Panel

(a) to aggregate emission intensities to the industry level.
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Figure A.10. Firm-level SO2 emission intensity decomposition (by industry)

Notes: This figure plots the firm-level decomposition results following Equation (11). I conduct the firm-level

decomposition by sector and then calculate sector averages of each component.

(a) Abatement cost from data (b) Abatement cost from model

Figure A.11. Abatement cost data and model

Notes: These figures compare the abatement cost data in industrial waste gas summed by province according to

the China Environmental Statistical Yearbooks in Panel (a) and the abatement cost implied by the model aod,s

in Panel (b).
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(a) Shares (b) Values

Figure A.12. Correlation between abatement cost and emission reduction

Notes: These figures show the correlation between the emission reduction share and abatement cost share by

industry across time in Panel (a), and the levels of emission reduction (ton) with abatement cost (billion yuan)

in Panel (b). Each point represents industry-year level abatement cost from the model on the horizontal axis

and the emission reduction from the data on the vertical axis.
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(a) SO2 (b) COD

(c) NOx (d) NH3-N

(e) Smoke dust (f) Waste water

Figure A.13. Implicit pollution tax across pollutants

Notes: These figures plot the implicit pollution tax of emissions t̂o,s recovered from Equation (26). The 2-digit

CIC industries are aggregated into dirty and clean industries. Dirty industries have pollution elasticity αs above

average, while clean industries are below average, weighted by the baseline output of each industry. The pollutants

include sulphur dioxide (SO2), nitrogen oxides (NOx) and smoke dust for air pollution, chemical oxygen demand

(COD), ammonia nitrogen (NH3-N) and waste water for water pollution. The data are not available for NOx

before 2006 and for NH3-N before 2001.
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Figure A.14. Implicit pollution tax by province

Notes: This figure plots the implicit pollution tax by high and low regulation provinces. The province pollution

tax is the weighted average of the implicit pollution tax by industry t̂o,s recovered from Equation (26) and taking

industry output share in the initial year as weights. High regulation provinces have above average change in SO2

cap over the change in GDP between 2005 and 2010, while low regulation provinces are below average.

Figure A.15. Chinese wages

Note: This figure plots the Chinese wage implied by the model, from the manufacturing survey and urban

household survey, respectively.

54



Figure A.16. Correlation between firm number and firm mass

Note: This figure plots the correlation between firm number from the annual survey data and the mass of firms

from the model M̂e
o,s. Each point represents an industry-year level observation.

(a) All polluting firms (b) Yearbook pollution

Figure A.17. Additional counterfactuals with alternative pollution data

Notes: This figure plots the counterfactual Chinese manufacturing pollution emissions. Figure (a) uses data on

all polluting firms without matching with firm production. Figure (b) uses pollution data from the yearbooks.

The solid blue line is the data when all channels are included. The dashed red and blue lines are counterfactual

pollution emissions when only one channel follows the historical values while the other variables are at the initial

values in 2000.
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Figure A.18. Counterfactual Chinese manufacturing pollution emissions (single channel)

Notes: This figure plots the counterfactual Chinese manufacturing pollution emissions through a single channel.

The solid blue line is the data when all channels are included. The dashed lines are counterfactual pollution

emissions when keeping one channel at the initial value in 2000, while the other variables follow the historical

values.

Figure A.19. Counterfactual Chinese manufacturing pollution intensities

Notes: This figure plots the counterfactual Chinese manufacturing pollution intensities. The solid blue line is

the data when all channels are included. The dashed lines are counterfactual pollution intensities when only one

channel follows the historical values while the other variables are at the initial values in 2000.
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(a) Pollution regulations (b) Tariffs

(c) Trade and environmental policies

Figure A.20. Counterfactual SO2 emissions of alternative policies

Notes: These figures plot the counterfactual Chinese manufacturing pollution emissions due to pollution regula-

tions and tariffs, respectively. The solid blue line is the data when all channels are included. In Panel (a), the

red dashed lines are counterfactual pollution emissions when only Chinese regulation follows the historical values

while the other variables are at the initial values in 2000. In Panel (b), the blue dashed lines are counterfactual

pollution emissions when only tariffs follow the historical values while the other variables are at the initial values

in 2000. In Panel (c), the pink dashed line is the counterfactual pollution emissions when tariff and Chinese

regulation are combined and follow their historical values while the other variables are at the initial values in

2000.
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(a) SO2 (b) COD

(c) NOx (d) NH3-N

(e) Smoke dust (f) Waste water

Figure A.21. Counterfactuals of other pollutants

Notes: These figures plot the counterfactual Chinese manufacturing pollution emissions. The solid blue line is

the data when all channels are included. The dashed red and blue lines are counterfactual pollution emissions

when only one channel follows the historical values while the other variables are at the initial values in 2000.

The pollutants include sulphur dioxide (SO2), nitrogen oxides (NOx) and smoke dust for air pollution, chemical

oxygen demand (COD), ammonia nitrogen (NH3-N) and waste water for water pollution. The data are not

available for NOx before 2006 and for NH3-N before 2001.
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B Additional tables

Table B.1. Data coverage

CIC Pollution ASIF Pollution % in Pollution % in ASIF Pollution % in Pollution
Code +ASIF +ASIF +ASIF

+Customs
13 70,693 212,260 36,925 52% 17% 9,190 25%
14 34,448 78,755 19,711 57% 25% 6,099 31%
15 31,354 53,784 16,397 52% 30% 2,764 17%
16 2,123 2,587 1,263 59% 49% 47 4%
17 85,515 287,939 48,231 56% 17% 16,505 34%
18 11,892 159,383 6,730 57% 4% 3,462 51%
19 15,184 78,234 7,760 51% 10% 3,596 46%
20 14,340 81,147 7,953 55% 10% 1,601 20%
21 3,280 44,350 2,177 66% 5% 1,279 59%
22 57,645 92,344 27,421 48% 30% 3,738 14%
23 5,805 61,416 3,688 64% 6% 743 20%
24 3,818 42,513 2,304 60% 5% 1,609 70%
25 12,879 23,054 7,517 58% 33% 564 8%
26 104,791 252,863 66,904 64% 26% 17,849 27%
27 31,393 65,739 22,378 71% 34% 5,699 25%
28 4,016 18,476 2,875 72% 16% 1,269 44%
29 12,012 40,008 5,758 48% 14% 2,512 44%
30 67,953 163,462 8,946 13% 5% 3,346 37%
31 160,239 286,930 78,550 49% 27% 8,350 11%
32 33,860 76,074 21,673 64% 28% 2,992 14%
33 35,685 58,413 14,564 41% 25% 3,099 21%
34 51,241 199,088 21,047 41% 11% 6,588 31%
35 31,109 286,914 23,500 76% 8% 7,531 32%
36 16,423 150,824 10,113 62% 7% 3,384 33%
37 23,582 163,012 18,935 80% 12% 7,644 40%
39 19,861 191,137 12,331 80% 6% 5,048 41%
40 16,762 131,558 15,355 92% 12% 9,300 61%
41 8,513 56,626 4,840 57% 9% 2,288 47%
42 8,050 63,832 6,270 78% 10% 3,365 54%
43 3,265 19,667 1,978 61% 10% 833 42%

Total obs. 977,731 3,442,389 524,094 54% 15% 142,294 27%
No. of firms 245,475 806,324 130,219 53% 16% 38,311 29%

Notes: This table lists the coverage of observations for Chinese manufacturing firms across datasets by industry between

2000 and 2012, after merging the pollution dataset with the ASIF dataset and the Customs dataset.
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Table B.2. Summary statistics of importers/exporters

Variable Obs Mean Std. Dev. Min Max

logSO2 116,813 9.421 2.224 2.485 15.011
logSO2int 85,185 0.357 2.340 -10.523 9.734
logExport 168,758 14.545 2.223 7.746 19.612
logImport 125,847 13.606 2.883 5.375 19.891
labour 82,805 7.348 10.306 0.310 80.190
TFP 64,199 0.216 0.993 -11.497 9.161
FOE 142,415 0.162 0.369 0 1
SOE 142,415 0.113 0.317 0 1

Notes: This table summarizes the statistics of Table 1. logSO2 is log

SO2 emission (kg), logSO2int is log SO2 emission per unit of output

value (kg/1,000 yuan). logExport and logImport are log export and

import values in current US dollars. labour is the number of employ-

ment (in 100). TFP is firm total factor productivity. FOE is the

foreign ownership status dummy. SOE is the state ownership status

dummy.

Table B.3. Summary statistics of trade liberalisation

Variable Obs Mean Std. dev. Min Max

logSO2int 641,278 2.355 2.175 -8.641 11.290
logCODint 579,722 0.670 2.490 -10.118 10.963
logWasteGasint 674,134 0.181 2.100 -9.880 9.707
logWasteWaterint 662,471 2.648 2.092 -7.844 11.628
log sales 861,545 7.300 1.888 2.789 12.448
WTO 14 0.714 0.469 0 1
tariff1998savg.output 420 18.434 10.423 2.590 65
tariff1998wavg.output 420 18.100 11.751 3.700 107.060
tariff1998savg.input 429 10.501 3.627 1.443 29.893
tariff1998wavg.input 429 10.649 3.960 1.468 29.419
tariff1998 IO97

savg.input 429 12.083 3.909 1.692 24.037
tariff1998 IO97

wavg.input 429 12.598 4.846 1.550 24.902

Notes: This table summarizes the statistics of trade liberalisation in Table

2, Table B.4, and Table B.9. logSO2int, logCODint, logWasteGasint, and

logWasteWaterint are log sulphur dioxide (SO2), chemical oxygen demand

(COD), waste gas (WasteGas), and waste water (WasteWater) emission per

unit of output value (kg/10,000 yuan), respectively. log salesit is log firm

sales in 1,000 yuan. WTO is a binary indicator of China’s entry to the WTO,

which is equal to 1 if the year is after 2001 and 0 otherwise. tariff1998
savg.input,

tariff1998
wavg.input, tariff1998

savg.output, tariff1998
wavg.output are simple average input,

weighted average input, simple average output, and weighted average output

tariffs at 4-digit CIC industry level in 1998, respectively. tariff1998 IO97
savg.input,

tariff1998 IO97
wavg.input are simple average input and weighted average input tariffs

calculated using the input-output table of 1997.
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Table B.4. Impact of trade liberalisation on SO2 pollution intensity (1997 input-output table)

logSO2int (1) (2) (3) (4) (5) (6)

tariff1998 IO97
savg.input ×WTO -0.012*** -0.015***

(0.002) (0.002)
tariff1998 IO97

wavg.input ×WTO -0.008*** -0.010***
(0.002) (0.002)

tariff1998savg.output ×WTO -0.003*** -0.000
(0.001) (0.001)

tariff1998wavg.output ×WTO -0.002*** -0.000
(0.001) (0.001)

log sales -0.683*** -0.683*** -0.681*** -0.681*** -0.680*** -0.681***
(0.006) (0.006) (0.007) (0.007) (0.007) (0.007)

Observations 560,858 560,858 518,866 518,866 518,866 518,866
Adj. R-squared 0.846 0.846 0.848 0.848 0.848 0.848
Firm FE ✓ ✓ ✓ ✓ ✓ ✓
4-digit Industry FE ✓ ✓ ✓ ✓ ✓ ✓
City-Year FE ✓ ✓ ✓ ✓ ✓ ✓

Notes: This table reports the impact of trade liberalisation on SO2 pollution intensity following Equation

(2) and using tariffs from the 1997 input-output table. The outcome variable logSO2int is log SO2 pollution

intensity (kg/1,000 yuan). tariff1998 IO97
savg.input, tariff1998 IO97

wavg.input, tariff1998
savg.output, tariff1998

wavg.output are simple

average input, weighted average input, simple average output, and weighted average output tariffs in 1998 at

4-digit CIC industry level, respectively. The input tariffs are calculated using the input-output table of 1997.

WTO is a dummy variable for China’s WTO accession which is equal to 1 after 2001 and 0 otherwise. log

sales is log firm sales in 1,000 yuan. Standard errors in parentheses, clustered at the industry-year level. *

significant at 10%, ** significant at 5% , *** significant at 1%.

Table B.5. Impact of trade liberalisation on SO2 pollution intensity (same industry)

logSO2int (1) (2) (3) (4) (5) (6)

tariff1998savg.input ×WTO -0.022*** -0.020***
(0.003) (0.003)

tariff1998wavg.input ×WTO -0.018*** -0.018***
(0.003) (0.003)

tariff1998savg.output ×WTO -0.005*** -0.002
(0.001) (0.001)

tariff1998wavg.output ×WTO -0.003*** -0.001
(0.001) (0.001)

log sales -0.663*** -0.663*** -0.661*** -0.661*** -0.661*** -0.661***
(0.008) (0.008) (0.008) (0.008) (0.008) (0.008)

Observations 378,551 378,551 357,516 357,516 357,516 357,516
Adj. R-squared 0.852 0.852 0.853 0.853 0.853 0.853
Firm FE ✓ ✓ ✓ ✓ ✓ ✓
4-digit Industry FE ✓ ✓ ✓ ✓ ✓ ✓
City-Year FE ✓ ✓ ✓ ✓ ✓ ✓

Notes: This table reports the impact of trade liberalisation on SO2 pollution intensity following Equation

(2), when firms do not change 4-digit industry. The outcome variable logSO2int is log SO2 pollution intensity

(kg/1,000 yuan). tariff1998
savg.input, tariff1998

wavg.input, tariff1998
savg.output, tariff1998

wavg.output are simple average

input, weighted average input, simple average output, and weighted average output tariffs at 4-digit CIC

industry level in 1998, respectively. WTO is a dummy variable for China’s WTO accession which is equal to 1

after 2001 and 0 otherwise. log sales is log firm sales in 1,000 yuan. Standard errors in parentheses, clustered

at the industry-year level. * significant at 10%, ** significant at 5% , *** significant at 1%.
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Table B.6. Impact of trade liberalisation on SO2 pollution intensity
(dirty and clean industries)

All industries Dirty industries Clean industries
logSO2int (1) (2) (3) (4) (5) (6)

tariff1998savg.input ×WTO -0.013*** -0.019*** -0.004*
(0.002) (0.006) (0.003)

tariff1998wavg.input ×WTO -0.011*** -0.023*** -0.001
(0.002) (0.006) (0.002)

tariff1998savg.output ×WTO -0.001 -0.002 0.000
(0.001) (0.002) (0.001)

tariff1998wavg.output ×WTO -0.000 -0.000 -0.001
(0.001) (0.001) (0.001)

log sales -0.680*** -0.680*** -0.608*** -0.608*** -0.754*** -0.754***
(0.007) (0.007) (0.008) (0.008) (0.005) (0.005)

Observations 518,866 518,866 280,190 280,190 235,935 235,935
Adj. R-squared 0.848 0.848 0.816 0.816 0.837 0.837
Firm FE ✓ ✓ ✓ ✓ ✓ ✓
4-digit Industry FE ✓ ✓ ✓ ✓ ✓ ✓
City-Year FE ✓ ✓ ✓ ✓ ✓ ✓

Notes: This table reports the impact of trade liberalisation on SO2 pollution intensity by dirty and clean

industries. Following Shapiro (2020), dirty industries have pollution per unit cost above average, while clean

industries are below average. Dirty industries include industries with 2-digit code 22 (Manufacture of paper

and paper products), 26 (Manufacture of raw chemical materials and chemical products), 28 (Manufacture

of chemical fibres), 30 (Manufacture of non-metallic mineral products), 31 (melting and pressing of ferrous

metals), 32 (Smelting and pressing of non-ferrous metals), consistent with the structural parameters in Ta-

ble 5. The outcome variable logSO2int is log SO2 pollution intensity (kg/1,000 yuan). tariff1998
savg.input,

tariff1998
wavg.input, tariff

1998
savg.output, tariff

1998
wavg.output are simple average input, weighted average input, simple

average output, and weighted average output tariffs at 4-digit CIC industry level in 1998, respectively. WTO

is a dummy variable for China’s WTO accession which is equal to 1 after 2001 and 0 otherwise. log sales is

log firm sales in 1,000 yuan. Standard errors in parentheses, clustered at the industry-year level. * significant

at 10%, ** significant at 5% , *** significant at 1%.

Table B.7. First-stage regressions of tariffs (2SLS)

(1) (2) (3) (4)

tariff lagsavg.input tariff lagwavg.input tariff lagsavg.output tariff lagwavg.output

×WTO ×WTO ×WTO ×WTO

tariff1998savg.input 0.615***
×WTO (0.002)
tariff1998wavg.input 0.611***
×WTO (0.002)
tariff1998savg.output 0.563***
×WTO (0.002)
tariff1998wavg.output 0.502***
×WTO (0.003)
K-P F-stat. 143,443 133,235 68,408 28,386

Notes: This table reports the first-stage regressions using tariffs before the WTO accession in 1998

as instruments for the actual tariff changes from 1998. In practice, the tariffs interact with the WTO

dummy in the first stage. tariff lag
savg.input, tariff

lag
wavg.input, tariff

lag
savg.output, tariff

lag
wavg.output are one-

year lag simple average input, weighted average input, simple average output, and weighted average

output tariff at 4-digit CIC industry level, respectively. log sales is log firm sales in 1,000 yuan.

Standard errors in parentheses, clustered at the industry-year level. Standard errors in parentheses. *

significant at 10%, ** significant at 5% , *** significant at 1%.
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Table B.8. Impact of trade liberalisation on SO2 pollution intensity (2SLS)

logSO2int (1) (2) (3) (4) (5) (6)

t̂ariff
lag

savg.input ×WTO -0.022*** -0.022***
(0.002) (0.002)

t̂ariff
lag

wavg.input ×WTO -0.018*** -0.019***
(0.002) (0.002)

t̂ariff
lag

savg.output ×WTO -0.006*** -0.001*
(0.001) (0.001)

t̂ariff
lag

wavg.output ×WTO -0.004*** -0.001
(0.001) (0.001)

log sales -0.683*** -0.683*** -0.681*** -0.681*** -0.680*** -0.681***
(0.003) (0.003) (0.003) (0.003) (0.003) (0.003)

Observations 560,858 560,858 518,866 518,866 518,866 518,866
Firm FE ✓ ✓ ✓ ✓ ✓ ✓
4-digit Industry FE ✓ ✓ ✓ ✓ ✓ ✓
City-Year FE ✓ ✓ ✓ ✓ ✓ ✓

Notes: This table reports the impact of trade liberalisation on SO2 pollution intensity following Equation (2)

and using tariffs before the WTO accession in 1998 as instruments for the tariff changes. The outcome variable

logSO2int is log SO2 pollution intensity (kg/1,000 yuan). ̂tariff
lag

savg.input, ̂tariff
lag

wavg.input, ̂tariff
lag

savg.output,

̂tariff
lag

wavg.output are predicted one-year lag simple average input, weighted average input, simple average

output, and weighted average output tariff at 4-digit CIC industry level, respectively. WTO is a dummy

variable for China’s WTO accession which is equal to 1 after 2001 and 0 otherwise. log sales is log firm sales

in 1,000 yuan. Standard errors in parentheses, clustered at the industry-year level. * significant at 10%, **

significant at 5% , *** significant at 1%.
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Table B.9. Impact of trade liberalisation on pollution intensity (other pollutants)

(1) (2) (3) (4) (5) (6)

logCODint logWasteGasint logWasteWaterint

tariff1998savg.input ×WTO -0.000 -0.011*** -0.005**
(0.002) (0.002) (0.003)

tariff1998wavg.input ×WTO -0.003 -0.008*** 0.002
(0.002) (0.002) (0.002)

tariff1998savg.output ×WTO -0.001 -0.000 0.005***
(0.001) (0.001) (0.001)

tariff1998wavg.output ×WTO -0.001 -0.000 0.002***
(0.001) (0.001) (0.001)

log sales -0.726*** -0.726*** -0.650*** -0.650*** -0.699*** -0.700***
(0.006) (0.006) (0.008) (0.008) (0.006) (0.006)

Observations 446,216 446,216 546,037 546,037 511,956 511,956
Adj. R-squared 0.798 0.798 0.861 0.861 0.814 0.814
Firm FE ✓ ✓ ✓ ✓ ✓ ✓
4-digit Industry FE ✓ ✓ ✓ ✓ ✓ ✓
City-Year FE ✓ ✓ ✓ ✓ ✓ ✓

Notes: This table reports the impact of trade liberalisation on pollution intensity of other pollutants. The

outcome variables are log pollution intensity (kg/1,000 yuan) of chemical oxygen demand (COD), waste gas

(WasteGas), and waste water (WasteWater). The data are not available for nitrogen oxides (NOx) before

2006 and for ammonia nitrogen (NH3-N) before 2001, so they are not included in the table. tariff1998
savg.input,

tariff1998
wavg.input, tariff

1998
savg.output, tariff

1998
wavg.output are simple average input, weighted average input, simple

average output, and weighted average output tariffs at 4-digit CIC industry level in 1998, respectively. WTO

is a dummy variable for China’s WTO accession which is equal to 1 after 2001 and 0 otherwise. log sales is

log firm sales in 1,000 yuan. Standard errors in parentheses, clustered at the industry-year level. * significant

at 10%, ** significant at 5% , *** significant at 1%.

Table B.10. Summary statistics of environmental regulation

Variable Obs Mean Std. dev. Min Max

logSO2int 641,278 2.355 2.175 -8.641 11.290
logCODint 579,722 0.670 2.490 -10.118 10.963
logNH3Nint 278,156 -2.033 2.542 -12.526 8.093
log sales 861,545 7.300 1.888 2.789 12.448
FY P 14 0.429 0.514 0 1
logTarget 31 12.210 0.882 10.594 14.747
logTargetalt 31 0.104 0.077 0 0.300
logCODTarget 31 12.664 0.526 11.531 14.170
logNH3NTarget 31 14.593 0.429 13.870 15.968

Notes: This table summarizes the statistics of environmental regulation

in Table 3, Table B.13, and Table B.11. logSO2int, logCODint, and

logNH3Nint are log sulphur dioxide (SO2), chemical oxygen demand (COD),

and ammonia nitrogen (NH3-N) emission per unit of output value (kg/10,000

yuan), respectively. FY P is an indicator variable of the 11th Five-Year Plan

which is equal to 1 if the year is 2006 and afterwards, and 0 otherwise.

logTarget, logCODTarget, and logNH3NTarget are the log emission tar-

gets of sulphur dioxide (SO2), chemical oxygen demand (COD), and ammo-

nia nitrogen (NH3-N) measured by the ratio of the province GDP (yuan) to

the emission target level (kg) in 2010, respectively. logTargetalt is the log

of the ratio between the SO2 emission target during the 10th Five-Year Plan

and the 11th Five-Year Plan. log salesit is log firm sales in 1,000 yuan.
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Table B.11. Impact of environmental regulation on SO2 emission intensity
(alternative regulation measure)

logSO2int (1) (2) (3) (4)

logTargetalt × FY P -1.712*** -1.716*** -1.653*** -1.682***
(0.215) (0.214) (0.209) (0.211)

log sales -0.676*** -0.676*** -0.673*** -0.674***
(0.006) (0.006) (0.006) (0.006)

Observations 588,157 588,157 588,157 587,870
Adj. R-squared 0.832 0.832 0.833 0.835
Firm FE ✓ ✓ ✓ ✓
Year FE ✓ ✓
Province FE ✓ ✓ ✓ ✓
2-digit Industry FE ✓
4-digit Industry FE ✓
2-digit Industry-Year FE ✓
4-digit Industry-Year FE ✓

Notes: This table presents the impact of environmental regulation on SO2 emis-

sion intensity following Equation (4). The outcome variable logSO2int is log SO2

pollution intensity (kg/1,000 yuan). logTargetalt is the log of the ratio between the

SO2 emission target during the 10th Five-Year Plan and the 11th Five-Year Plan. A

higher emission target indicates more strict regulation. FY P is a dummy variable

of the 11th Five-Year Plan which is equal to 1 after 2005 and 0 otherwise. log sales

is log firm sales in 1,000 yuan. Standard errors in parentheses, clustered at the

province-year level. * significant at 10%, ** significant at 5% , *** significant at

1%.

Table B.12. Impact of environmental regulation on SO2 emission intensity (same city)

logSO2int (1) (2) (3) (4)

logTarget× FY P -0.077*** -0.079*** -0.064*** -0.073***
(0.025) (0.025) (0.024) (0.024)

log sales -0.677*** -0.677*** -0.674*** -0.674***
(0.006) (0.006) (0.006) (0.006)

Observations 569,953 569,953 569,953 569,661
Adj. R-squared 0.833 0.834 0.835 0.836
Firm FE ✓ ✓ ✓ ✓
Year FE ✓ ✓
Province FE ✓ ✓ ✓ ✓
2-digit Industry FE ✓
4-digit Industry FE ✓
2-digit Industry-Year FE ✓
4-digit Industry-Year FE ✓

Notes: This table presents the impact of environmental regulation on SO2 emission

intensity following Equation (4), when firms do not change prefecture city. The out-

come variable logSO2int is log SO2 pollution intensity (kg/1,000 yuan). logTarget

is the log SO2 emission target measured by the ratio of the province GDP (yuan)

to SO2 target level (kg) in 2010. A higher emission target indicates more strict

regulation. FY P is a dummy variable of the 11th Five-Year Plan which is equal to

1 after 2005 and 0 otherwise. log sales is log firm sales in 1,000 yuan. Standard

errors in parentheses, clustered at the province-year level. * significant at 10%, **

significant at 5% , *** significant at 1%. The number of observations is smaller in

Column (4) than in the previous columns because more singleton observations are

dropped when controlling for 4-digit Industry-Year FE.
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Table B.13. Impact of environmental regulation on emission intensity (other pollutants)

(1) (2) (3) (4) (5) (6) (7) (8)

logCODint logNH3Nint

logCODTarget× FY P -0.153*** -0.155*** -0.196*** -0.225***
(0.040) (0.040) (0.038) (0.037)

logNH3NTarget× FY P -0.277*** -0.278*** -0.267*** -0.303***
(0.078) (0.078) (0.076) (0.077)

log sales -0.711*** -0.712*** -0.712*** -0.713*** -0.731*** -0.732*** -0.732*** -0.733***
(0.007) (0.007) (0.007) (0.007) (0.010) (0.009) (0.009) (0.009)

Observations 531,667 531,666 531,667 531,466 246,441 246,439 246,439 246,109
Adj. R-squared 0.784 0.785 0.786 0.788 0.761 0.762 0.762 0.765
Firm FE ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Province FE ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Year FE ✓ ✓ ✓ ✓
2-digit Industry FE ✓ ✓
4-digit Industry FE ✓ ✓
2-digit Industry-Year FE ✓ ✓
4-digit Industry-Year FE ✓ ✓

Notes: This table presents the impact of environmental regulation on emission intensity other pollutants. The outcome variables are log

pollution intensity (kg/1,000 yuan) of chemical oxygen demand (COD) and ammonia nitrogen (NH3-N). The COD targets are province

total quotas similar to SO2, and the NH3-N targets cover only industrial and household. logCODTarget and logNH3NTarget are the

log emission targets measured by the ratio of the province GDP (yuan) to the emission target level (kg) in 2010. There were no emission

targets on nitrogen oxides (NOx), waste gas (WasteGas), and waste water (WasteWater) during the 11th Five-Year Plan, so they are

not included in the table. A higher emission target indicates more strict regulation. FY P is a dummy variable of the 11th Five-Year

Plan which is equal to 1 after 2005 and 0 otherwise. log sales is log firm sales in 1,000 yuan. Standard errors in parentheses, clustered

at the province-year level. * significant at 10%, ** significant at 5% , *** significant at 1%.

Table B.14. Average pollution elasticity by pollutant

Pollutant SO2 NOx Smoke dust COD NH3-N Waste water

Mean pollution elasticity α 0.019 0.035 0.013 0.010 0.009 0.017

Notes: This table reports the average pollution elasticity at 2-digit CIC industry level by pollutant.

The pollutants include sulphur dioxide (SO2), nitrogen oxides (NOx) and smoke dust for air pollution,

chemical oxygen demand (COD), ammonia nitrogen (NH3-N) and waste water for water pollution.
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Table B.15. Policy effect on pollution intensity

SO2int (1) (2) (3) (4)

Tariff 1.917*** 1.351***
(0.369) (0.321)

Pollution tax -0.163*** -0.134***
(0.018) (0.020)

Observations 364 364 364 364
Adj. R-squared 0.067 0.312 0.175 0.193
Year FE ✓ ✓

Notes: This table reports the effects of trade and environmental poli-

cies on SO2 pollution intensity from the model. Columns (1) and (2)

regress the industry-specific counterfactual pollution intensity from the

model on average industry export tariff. Columns (3) and (4) regress

the industry-specific counterfactual pollution intensity on the average

pollution tax from the model. Standard errors in parentheses. * signif-

icant at 10%, ** significant at 5% , *** significant at 1%.

C Trade liberalisation and environmental regulation

I run joint regressions of the WTO accession and the 11th Five-Year Plan following equation
(C.1). I control for the year, 4-digit CIC industry, province, and firm fixed effects γt, ηs, δp, and
µi, respectively. The standard errors are clustered at the 4-digit industry-year and province-
year levels. The results are shown in Table C.1. Reassuringly, the coefficients are very close to
the results of the WTO in Table 2 and the 11th Five-Year Plan in Table 3 separately.

logSO2intit = β0+β1 tariffs×WTOt++β2 logTargetp×FY Pt+log salesit+γt+ηs+δp+µi+ϵit (C.1)
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Table C.1. Impact of trade liberalisation and environmental regulation on SO2 pollution intensity

logSO2int (1) (2) (3) (4) (5) (6)

tariffsavg.input ×WTO -0.017*** -0.019***
(0.004) (0.004)

tariffwavg.input ×WTO -0.014*** -0.016***
(0.003) (0.003)

tariffsavg.output ×WTO -0.004*** -0.000
(0.001) (0.001)

tariffwavg.output ×WTO -0.002** 0.000
(0.001) (0.001)

logTarget× FY P -0.092*** -0.093*** -0.101*** -0.101*** -0.097*** -0.098***
(0.024) (0.024) (0.024) (0.024) (0.023) (0.023)

log sales -0.672*** -0.673*** -0.671*** -0.671*** -0.671*** -0.671***
(0.008) (0.008) (0.008) (0.008) (0.008) (0.008)

Observations 560,894 560,894 518,901 518,901 518,901 518,901
Adj. R-squared 0.832 0.832 0.835 0.835 0.835 0.835
Firm FE ✓ ✓ ✓ ✓ ✓ ✓
Year FE ✓ ✓ ✓ ✓ ✓ ✓
4-digit Industry FE ✓ ✓ ✓ ✓ ✓ ✓
Province FE ✓ ✓ ✓ ✓ ✓ ✓

Notes: This table reports the impact of trade liberalisation and environmental regulation on SO2 pollu-

tion intensity following Equation (C.1). The outcome variable logSO2int is log SO2 pollution intensity

(kg/1,000 yuan). tariff1998
savg.input, tariff1998

wavg.input, tariff1998
savg.output, tariff1998

wavg.output are simple average

input, weighted average input, simple average output, and weighted average output tariffs at 4-digit CIC in-

dustry level in 1998, respectively. WTO is a dummy variable for China’s WTO accession which is equal to 1

after 2001 and 0 otherwise. logTarget is the log SO2 emission target measured by the ratio of the province

GDP (yuan) to SO2 target level (kg) in 2010. A higher emission target indicates more strict regulation. FY P

is a dummy variable of the 11th Five-Year Plan which is equal to 1 after 2005 and 0 otherwise. log sales is

log firm sales in 1,000 yuan. Standard errors in parentheses, clustered at the industry-year and province-year

levels. * significant at 10%, ** significant at 5% , *** significant at 1%.
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