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SPATIAL MODELS OF COLLECTIVE CHOICE

Gabrielle Demange*

Ecole Polytechnique, Paris
Paris, France

The majority-rule voting is a common mean of deciding a
collective action but unfortunately a stable issue-called

a Condorcet winner- may not exist. The characterisation of
the individual preferences which ensure the existence of
such an issue has been a widely studied problem in social
choice theory. We gather in this paper the obtained results
when the space of alternatives admits a special structure
(multidimensional space or graph). These very numerous
results can in particular be applied to the usual models of
location theory where they are nicely interpretable.

I. INTRODUCTION

The majority voting is a widely used procedure for taking collective decisions.
This method may however be irrational in the sense that a) the majority relation
is intransitive for some profiles of individual preferences, and b) a majority
winner, namely an issue which is never defeated by another, does not necessarily
exist. The well-known Condorcet paradox illustrates this observation : there are
three individuals, called 1,2,3 and three alternatives a,b,c such that 1 prefers
a to b toc, 2 prefers b to ¢ to a and 3 prefers ¢ to a to b; then no issue is
stable since c defeats a, a defeats b and b defeats c.

A large body of the literature in social choice theory is concerned with formul-
ating conditions on individual preferences which assure one of the two properties
the transitivity of the majority rule and the existence of a majority winmer. Two
different approaches have been followed. In the first one, restrictions on the
family of individual preferences are determined in order to quarantee one of the
properties; more precisely, a family of preferences is said to guarantee a property
if, for any number of voters, this property is satisfied whenever the individual
preferences are in this family. The most well-known result of this type is the
characterisation of Sen (1966) - the so-called value restriction : a family of
strict orders on a finite choice space X guarantees the transitivity of the strict
majority relation if and only if, for every triple of alternatives in X, there is
an alternative which is not best, or not worst, or not medium in the triple for all
the strict orders considered.

The second approach is concerned with conditions on the distribution of the indiv-
iduals over the family of preferences. One looks for the relations between the
preferences of the individuals of a given society which are necessary or sufficient
to ensure the required property. The Plott's conditions (1967) provide an example
of this approach : if the choice set is the Euclidean space R™ and if the indiv-
idual preferences are represented by strictly concave and differentiable utility
functions on R, then the directions of the gradients of the utility functions at
a Plott equilibrium (a notion of majority winner) must be opposite two by two.

* This is part of my doctoral thesis. I would like to express my thanks to Hervé
Moulin and Jacques Thisse for their helpoful suggestions.
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The purpose of this paper is to survey and to discuss the results obtained in the
particular context of location theory. This restriction seems to be interesting
for two reasons. In the first place, within the general formulation, no "a priori"”
structure is given on the choice set nor on the preference family. The consequence
is that the methods used are mostly combinatorial and the results not easily
interpreted. (We except the single peakedness notion which probably explains the
success of the Black's theorem). If, on the contrary, assumptions on the choice
space and on the preferences are introduced, one may apply powerful mathematical
tools as differential calculus, topology or convex analysis, and interpret the
results in terms of the distribution of the individual locations (location is to
be taken in a large sense : this is the most preferred point in the choice space) .
Traditionally, location theory considers two types of models : the discrete and
the continuous models. In the discrete model, the choice space is a subset of a
network; in the continuous model, it is a convex subset of a Euclidean space.
(Incidently, note that the latter can also be used in the study of electoral
competition : see for example the survey by Ordeshook (1974). Both formulations
will be considered.

Secondly, the spatial approach allows to develop a new theory of public facility
location (see Hansen and Thisse (forthcoming) and RBshton, McLafferty and Ghosh
(forthcoming)) . The choice set being included in R, the results obtained enable
us to characterise the location of a public service resulting from a voting process.
This interpretation therefore raises the interest for the particular properties
established in the plane.

The paper is organised as follows. Section 2 gives the basic definitions and
presents the locational models. We provide the results concerning the transitivity
of majority relations in section 3 and those on the existence of a majority winner
in section 4. Section 5 briefly concludes with some remarks on possible extensions
of the notion of majority winner.

In the following tables we sum up the main results. They are arranged according to
the type of results obtained (i.e. transitivity and acyclicity of a majority
relation or existence of a majority winner) and according to the approach used
(restrictions on the individual preferences or distribution conditions).
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2. DEFINITIONS AND MODELS

2.1 Definitions

(a) Binary Relations

A binary relation B on X is said to be

- reflexive : if x B x for every x € X;
- irreflexive : if not x B x for every x € X;
- transitive : if x By and vy B z imply x B z for every x, v, 2 € X;

x, € X such that

- acyclical : if there is no finite sequence ireeo X

1 k-1
- complete : if x B y or vy B x for every x, vy € X, X # y;

x sz, X2BX3""’ and x Bxkandkaxl.

From a binary relation B we may define two new relations I and S called
respectively indifference relation and strict relation : for every x, y € X,

-x]y o x By and y B x.
- xSy <« xByand not y B x.
If B is a complete binary relation, then we have
B transitive = § transitive = § acyclical.
We say that x € X is maximal for B if not y S x for every y B X.
A (preference) order on X, denoted by > , is a reflexive, transitive and complete

relation on X. Let NV be its indifference component and > its strict component which
is a gtrict order (i.e. an irreflexive, transitive and complete relation).

(b} Majority Winners

Let 8 = {1,..., n} be a society, that is a set of n individuals, and X a set of
alternatives (or choice space). Each individual i has a preference order,

denoted > ,, on X. The n-tuple (>), . o is called the profile of the society.

Several notions of majority winner will be useful. An alternative x in X is called
a strong (resp. weak) Condorcet winner for the profile (zi)i es if : .for every
y € X distinct of x,

# (ies ;x> y}> # (ies:y>ix},
(resp. # {ies;x>iy}2 # {ies;y>ix})

where # denotes the cardinality.

An alternative x in X is said to be a stromg (resp. weak) quasi-Condorcet winner
for the profile (>i)i € if : for every y € X,

S
#{ies;y>ix} <%
(resp. # {ies;y>i x} S%).
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Obviously, a strong (resp. weak) Condorcet winner is a strong (resp. weak)
quasi-Condorcet winner.

(c) Majority Relations

We associate with every profile (zi)i € s on X three relations on X. The first one

is the simple majority relation R : for every x, y € X,
x Rye # {i Es;x>iy)z#{i ES;y>ix}.

The second one is the strict component P of R, called the strict simple majority

relation.
The third one is denoted by O and defined as follows : for every x, y € X,

x0ve # lies;x >i v} > %.

Clearly, we have : X Oy == X Py = x Ry ; R is complete ; and

R transitive = P transitive = P acyclical = O acyclical.

A weak Condorcet (resp. quasi-Condorcet) winner is a maximal element for P
(resp. Q) in X ; thus, if X is a finite set the acyclicity of P (resp. of Q)
implies the existence of a weak Condorcet (resp. quasi-Condorcet) winner.

(4) The Notion of Guarantee

A set E of preference orders (or of utility functions) on X guarantees a

R : X . n R .
property if, for every integer n and every profile in E, the property is satis-
fied.

In this paper, we shall consider the following properties : the transitivity of
R or of P, the acyclicity of Q, the existence of a strong or weak Condorcet
winner, the existence of a strong or weak quasi-Condorcet winner.

2.2 Spatial Models

In the context of spatial analysis, the choice space is to be interpreted as the
set of feasible "locations". Two types of models are considered according to the
properties of X.

(a) The Continuous Model

The choice space is a convex subset of R™ with a non empty interior X. The
distance on X may be the same for all individuals in the society, as in model I,
or distinct according to the individuals, as in model II.

Consider, first, model I. We assume a norm, denoted || ||, to be given on the
Euclidean space R®. The preference of an individual i is characterised by his
most preferred point in IR®, say ai, which is called his location : for every
X, ¥ € X,

x2, v el xall< y-all-

i
The profile of a society S is therefore described by the norm || || on R™ and
- by the n-tuple (ai)i € s of the locations of the individuals in §.
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The model is easy to understand in the two-dimensional frame of location theory
but it can also be interpreted in terms of welfare economics. In location theory,
the choice space X represents the set of feasible locations in R~ for a public
good. The society of the n individuals located respectively at points a,,... a

has to choose a place in X for this good. Each individual wishes to havé the n
good as close as possible to his location and ||x—a|| is interpreted as the trans-
portation cost from a to x. The majority voting is then a decentralised, non
manipulable choice procedure for selecting the place where to set up the public
facility (see Hansen and Thisse (forthcoming)).

In welfare economics, the choice space is often assumed to be multidimensional
a point represents the quantities consumed of public and private goods by the
individuals, and or the levels ofmtaxgsl/gsually, the norm used in this context

is the Euclidean one ([ x H2 = (igl x)) ) ;l[x—a|| then expresses the loss of

utility of the individual whose most preferred point is a (see Kramer (1977) and
Tullock (1967)).

Let us now turn to model II. The individual preferences on X are assumed to be
represented by guasi-concave(1), (or pseudo-concave(2), or concave, etc.) and
differentiable utility functions on an open convex set {} which includes X. If
the function Ui represents the order > N of the individual i € S, we have : for
every X, Y € X,

x > 5 v & Ui(x) > Ui(y).
(In the sequel, VUi(x) denotes the gradient of Ui at x, with x € Q).

If each function U. achieves its maximum in X in a unique point (called a peak

or an ideal point &r a location) model II can be interpreted exactly as model I.
The difference is only with the possibility of distinct distance evaluations for
distinct individuals. Conversely, when a norm II “ on IR admits a differentiable
representation ® (i.e. & is a strictly increasing function from IR to R and )

(H xl‘) is differentiable on IR ) model I appears as a special case of model II.
This holds for many norms, for example the 1° norms,

IP) 1/

m
(||x||p = (, g&lxi p) when p > 1.

1

Note that, when the utility functions U, are strictly quasi-concave(3) every strong
(resp.weak) quasi-Condorcet winner is a strong (resp.weak) Condorcet winner (see
McKelvey and Wendell (1976)).

(b) The Discrete Model

The choice space is a subset of a network. A mnetwork is the union of a finite
number of arcs homeomorphic to [0,1]. Formally, a network N is a subset of R
which satisfies the following conditions :
n
(1) N =i91 hi( [0,1]) where n > 1 and hi a continuous injection from [0,1] in
R" i

3 =1l...n ;

(ii) hi(G) # hi' (0') for any i # i', with i, i* € {1...n}, and any O # O',

with 0, @* € [0,1] :
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(iii) is connected.
The set of vertices associated with N is givenby v={veN; 31 i € {1...n}/
v =h,(0) or v="h, (1)}. A subset h, ([O0,1]) of is called an arc and denoted

A(v,v¥); the set of arcs is L. A confiected subset of h, ([0,1]) is called sub-arc.
Finally, a route linking x€ N and y € N is defindd as a smallest connected
subset of N containing x and y. Stated differently, a route is formed by the
union of a finite number of arcs and sub-arcs which is the image of [0,1] by a
continuous injection.

A network N is a tree if, for every x and y in N , there is a single route linking
x and y.

A network may be endowed with a metric structure thanks to a length mapping 1
L+ RY - {0}
A (v,v') > 1(v,v").

where 1(v,v') represents the length of the arc A(v,v').

The length mapping can be extended to the sub-arcs and to the routes : the length
of a sub-arc A(v,x), where x is such that A(v,x) =h, ([0,t]), is equal to t.1
'
(v,v') and the length of a route U A(vi,vi+1) to X1 Vi’vi+1)'
i€{o,...x} i€{o, ...k}

We then define a distance @ on N . d(x,y), for x,y € N, x # ¥y, is the length of
the shortest route connecting x and y ; by convention, d(x,x) is put equal to 0.
It is then easily seen that d is a metric on N.

A discrete model (4) is thus characterised by the choice space X, which is a subset
of a network N , and by the profile of the society on X. When N is endowed with a
distance d, a natural order on N for the individual i located at a, is as follows
for every x, vy € N *

X 2 .y ® d(x,ai) < d(y,ai).

This last model is called model I by comparison with what we did for continuous
models. Similarly, we can consider model II in which the utility Ui defined on
N admits a unique maximiser a; and is such that :

Ui(x) > Ui(y) < X belongs to a shortest route between a, and y.

The difference with model I is that d(ai,x) = d(ai,y) does not imply Ui(x) = Ui(y).

3. TRANSITIVITY AND ACYCLICITY OF THE MAJORITY RELATIONS
3.1 The Guarantee Conditions
(a) The Necessary Conditions of Kramer

Inada (1969) and Sen and Pattanaik (1969) have characterised the sets of preference
relations which guarantee the transitivity of the strict majority relation P (see
Fishburn (1973) for a detailed discussion). From this characterisation, Kramer (1973)
has deduced necessary conditions on the gradients of the utility functions for the
transitivity of P to hold. As the preference orders are assumed to be rerresented

by quasi-concave and differentiable utility functions on a convex subset of the
Euclidean space, the Kramer's approach is of the type "continuous model II".
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THEOREM 1. [Kramer (1973)]

The choice space g a convex subset X of R™, m =z 2. If three quasi-concave and
differentiable utility functions Upr Uy, U satisfy the following condition at

a point x in X ! no gradient belongs” to %he closed convex cone generated by the
two other gradients, that is there exist no Ai z 0, Aj > 0 such that

VU x) = VU o+ Aj v Uj(X> and {i,j,x} = {1,2,3} ,

then, in any neighbourhood of x in X, there arve three points {a,b,c} forming a
Condorcet cycle, i.e.

Ul(a) > U2(b) > U3(C), UZ(b) > U2(c) > Uz(a)
and

U3(c) > U3(a) > U3(b).

Thus, if a set of quasi-concave and differentiable utility functions on X
guarantees the transitivity of the strict majority, all the gradients VU(x),

for every x in X, must belong to a two dimensional half-space of R™. This

result shows that guarantee conditions in continuous model II are very restrictive.
For instance, if ¢ is a differentiable representation of a norm “ IF of R"

the family (—¢(||x—a||))a ca does not satisfy the Kramer's condition when A is not

an interval. In section 4, we shall see some significative examples for which

the condition of Theorem 1 holds. In those examples, however, the existence of a
majority winner, and not the transitivity of relation P,is guaranteed. Recall,
indeed, that the condition is necessary but not sufficient. For that, an additional
assumption on the convexity of the preferences is required.

(b) The Intermediate Preferences

The notion of intermediate preference provides us with non trivial families of
preference relations for which the transitivity of P is guaranteed. Note that the
orders are not assumed to be represented by utility functions; however, the Kramer's
condition is satisfied when utility functions exist. We first introduce the

concept of intermediate preferences.

DEFINITION 1.

a) Consider three orders defined on X. We say that 2 is

> > >
1! 27 3 3

between = 1 and 22 if, for every x and y in X,

X = 1 Y and x 2 0 Y imply x 2= 3 ¥

and
> > > > i > .
(x 1 Y and x 2 y) or (x 1 Y and x 2y) imply x 3 Y
b) A family of preference orders ( 2 a)a e a on X (or of utility functions
\ P A
(Ua)a a if this one exists) indexed by a convex open set A in IR satisfies

the Zntermediate preferences assumption if the following two conditions hold:



162 G. Demange

- for every x € X and vy € X, the set {a€ a; x 2 v} s closed in a,

- for every a'€ A and a" € A, the order E s between = and Z
whenever a € Ja',a" [.

Some examples will clarify this definition.

Example 1 : The norm induced by a scalar product in IR o,
Let X and A be two convex subset of R ™ and B a symmetric matrix of order m.
The mapping x = || X || = Bx.Bx is a norm on R . Then, the family of utility

functions (—|| x—a|| )a €a satisfies the intermediate preferences assumption.

Indeed, the sets {a €A ; x Za y} are convex and closed in A since

Bx.Bx—By.By}

{ae A ; x zay} = {a€A; Ba. B{x~y) 2 5

Example 2 : The linear preference orders

Let a be a non null vector in R ™. We assign to a the preference order 2= _in

R ™ - called linear order - as follows : for every x, yEIRm

X2

Figure 1

In Fig. 1, the shadsd set indicates the set of the outcomes preferred to x for

i €ER .
2, i.e. {y PY oz, x}.
Note that Za = Z)\a for every positive scalar A. It is easily seen that the
family ( Za)a €a for every convex open set A in r"™ -{0}, is an intermediate

preferences family.
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Nitzan (1976) has directly shown that the family of linear orders guarantees the
transitivity of P when v runs over the set {v; v > 0}. This result will appear in
the sequel as a special case of Theorem 3. Before that, the following character-
isation of the assumption (H1) will be useful.

LEMMA 2. [Grandmont (1978)]
Let A be an open convex subset of R p. The family ( >_) of orders on the

(S
choice set X satisfies the assumption (H1) if, for every % ané vy in X, one of the
following conditions holds :

(1) Either x >a y, for all a, or x ’e\; y, for all a, or x <a y, for all a.
(2) There exists q in IRp - {0} and a real number ¢ such that
{aeA;q.a>c}={a€A;x>ay}, {aEA;q-a=c}={a6A;x’;y}
and {aeA;q.a<c}={aEA;y>aX},

that is to say the sets {a €A ; x >y} and {a€ A ; x <_y} are the inter-
sections of A with the open half-spaces delimited by the same hyperplane of RY,
The next theorem can then be deduced from Lemma 2.

THEOREM 3. [Grandmont (1978) ]

Every family ( >_) of intermediate preference orders on a choice space X
a A . . .
guarantees the transitivity of relation P when A 18 an open interval of TR.

It remains to show how the Nitzan's result can be deduced from Theorem 3 ; that is,
how the family of linear orders ( Za)a e can be indexgd by an open interval.

It is known that A is an open conveX subset of (R -{0})" and that = = 2> for
every A > 0. If we therefore choose a vector g in R" such that q. E) %gr every
a in A (such a vector always exists by a separation theorem in R ')}, then the

family (2 ) o a is equal to the family ( Za) where I is the set

a'a a€ 1

{ qa—a~; a € A} (see ;?ig. 2). Obviously, I is an open interval on the line A =
{x € ]R2; q. x =1}

Figure 2
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(c) The Pseudo-Singlepeakedness Condition

The next result, obtained in discrete model I, extends the property of single-
peakedness on a line. This notion having several meanings in social choice
theory, we introduce another label, that of "pseudo-singlepeakedness" due to
Romero (1978).

DEFINITION 2.
A family of preference orders ( > on X is said to be pseudo-singlepeaked
if, for every triple of distinct al%ernatlves X, Y, Z in X, one of them, say x,
is not worst in the triple for all the orders, i.e. for every a€ A
> > R

x>y or x a z
A pseudo-singlepeaked family of preference orders guarantees the transitivity of P,
since it satisfies the value restriction condition. The proof is very simple.

Let x, ¥, z be three distincts alternatives in X, where x is never worst. Then,

> S
for every profile ( = l)l € g and a; A

vy Rx=y R z, yPx=>yPz, zRx=> 2z Ry and z P x= z Py .

Indeed, y >i x implies x >i z and y >i z by transitivity of >i’ so that

i > C {i; > .
{i;vy ix} {i:vy iz}
Similarly, z >i y implies x >i y since y = i X would imply z 2i X ;
hence, {i ; z > viIC {i : x > vh.
Then the implications easily follow.
Let now a, b, ¢ be three alternatives such that a P b and b P ¢. If a is not the
worst in the triple {a,b,c}, a P ¢ is true since ¢ R a would imply ¢ R b. If b is
not the worst, a P b implies a P c.
Finally, if ¢ is not the worst, b P ¢ would imply b P a which is impossible. Thus,
in all cases, a P ¢ is true and P is transitive. This completes the proof. The
sets of singlepeaked orders on a line are pseudo-singlepeaked.
DEFINITION 3.
A set of preference orders on X is said to be singlepeaked on a line if X can be
ordered in such a way that, when we go from the left to the right on the line,
every preference strictly increases up to a peak and then strictly decreases.
For example, if a distance is given on a line and if the alternatives are finite
and ranged as x, <... < X the set of orders ( Ei) is singlepeaked where Zi

is defined by ’

).

xj 2, % ® d(xi, xj) < d(xi,xk

This example can be generalised by replacing the line by a tree. We then get the
next theorem which is valid in discrete model I.

THEOREM 4. [Romero (1978)] (5)

Let N be a tree, the set of vertices of which is v. The family of orders
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(2 Jv €v induced by the distance on N is pseudo-singlepeaked and, therefore,

guarantees the transitivity of p on N .

The existence of a weak Condorcet winner in N for a profile (> i) .with a; €cv,

i€ s
can be easily deduced from this theorem. Indeed, as N is a tree, a point x not

in V and belonging to an arc A(v,v') is a weak Condorcet winner in N if and only
if v and v' are also weak Condorcet winners. Moreover, v and v' are weak Condorcet
winners if N if and only if they have the same property in V. Thus the problem can
be restricted to the finite choice space V and the existence follows from the
transitivity of P. This last proposition has been independently proved by Hansen
and Thisse (forthcoming). Their result is very interesting from another point of
view; they show that the weak Condorcet winners coincide with the points which
minimise the total distance from the locations of the individuals, i.e.

z d(ai,x). Thus when the network is a tree and when the orders are derived
i€s
from the distance on N , the majority rule provides not only a stable issue but
also an optimal one.

These positive results are recent. Recall that the first attempts to generalise
the singlepeakedness notion have taken place in R ™ for m > 2 and have led to
extremely limited results (see Kramer (1976) and Wagstaff (1976).

3.2 The Distribution Conditions

A distribution condition is stated in terms of relations between the preferences
inside a profile which are necessary or sufficient for a property to be satisfied
by that profile. Here, we shall consider the following two properties : the
transitivity of R and the acyclicity of Q. Of course the guranteee conditions may
appear as sufficient distribution conditions. However, in contrast to the former
approach, the latter does not restrict the set of admissible preferences orders

a priort.

Only the result of Grandmont (1978) about the intermediate preference orders is
concerned with such distribution conditions. These ones can be deduced from the
characterisation of the intermediate preferences assumption given by Lemma 2. For
that, we need some notation and definitions.

Let A be an open convex set of R P Given a finite sequence (ai)i € s in A, we
denote by u the probability distribution %~ i é S Ga where Ga is the discrete

probability on r" supported by a,. Let H be an hyéerplane o% n{p; we denote
E Y i

by A' and A" the intersections of A with the two closed half-spaces delimited by H.
Given (ai)i € g-ve say that a point a* in A satisfies the condition (C1) when

(Cl) For every hyperplane H in RP, @y = p@"y <f and only if a* belongs to H.
We can now state :

THEOREM 5. [ Grandmont (1978)]

Let ( z).€ea be an intermediate preference orders family on the choice set X,

where A 1s open and convex tn R P IFf the profile ( 2 )€ gt where a; € a,

s such that there exists a point a* in A which satisfies condition (Cl1), then

and 18

the majority relation associated with ( Z e s 18 the order 2 g%
i

therefore transitive.



166 G. Demange

The following definition will help us to understand condition (c1).
DEFINITION 5.

A bijection T from S = {1,...n} onto S such that T[r(i)] =i, for every

i €8, is called a pairing on S. A point c€ R © is said to be a weak symmetry
center of the sequence (a.)i Egr with a, € IR p, if there exists a pairing on S
such that ¢ belongs to bi, aT(i)] for every i € S.

It can then be shown that :

* jf a* satisfies (Cl) for the sequence (ai)i € g’ there exists i € S such that

a, = a* ;
1

* if a point a* € A is identical to one point a . a* satisfies (Cl) if and only

if a* is a weak symmetry center.

This last property suggests that condition (Cl) is very restrictive. Note that

a similar condition on the individual locations is obtained when the continuous
model I is assumed (see McKelvey and Wendell (1981)). However, when the utility
functions family (- I x-a ||)a € p does not satisfy the intermediate preferences
assumption (H1), the fact that condition (C1) is met for a point implies in
general only the existence of a majority winner. This shows that the intermediate
preferences allow us to pass from the majority winner existence - which is a local
notion when the utility functions are concave - to the transitivity of R - which
is a global notion.

By slightly weakening condition (Cl), we may obtain a result on the acyclicity of
Q :
Given a sequence (ai)i e

, with a, € A, a point a* in A satisfies the condition
(c2) if

S

(C2) For every intersection B of A with an open half-space of RP @) > %—
implies that a* belongs to B.

THEOREM 6.

Let { z,) be a famly of intermediate preference orders on X where A is

a€a

open and convex in RP. 1F the pofile ( 2, ) , with a; €3, is such that

ies
there exists a in A which satisfies (C2) “then the relation Q associated with

(> ai)i cg ' acyelical.

Proof : Suppose that Q is not acyclical. Then there exists a k-typle
(xl...,xj...,xk), xj € X, such that x1 Q x2,..., xk_1 Q xk Q Xy By Lemma 2, the

sets B(xj, b ) = {ai €A ; xj > }, for je {1,..., k-1}, and B(xk, xl)

3+1 a; %541
= {ai € A ; X >a Xl} are either 8qual to A or to the intersection of A with an
1%

open half-space o% R~ or to the empty set. This last case cannot occur since

1
X < i = i
j Q xj+1 u(B(xj,xj+1)) is greater than 5 Therefore, only the first two cases
may arise. Consequently, by condition (C2), a* may be found in
n B(x,, x.,,) NB(x,, x,) .
jelt,... k13 3 3 kot
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> e n >
1 Ta* F2rorFpog Tax X

which contradicts the transitivity of this relation. Q.E.D.

But we arrive at a contradiction since >a* must verify x "

>
and X Zax X

The following two properties characterise the relationships between the weak
symmetry center and condition (C2) :

satisfies (C2) ;

*
a weak symmetry center of (ai)i cs

* conversely, when a* is different form any point a,, a* satisfies (C2) only
if a* 1is a weak symmetry center of (ai)i € s {(which implies that n is
necessarily even).

Let us now illustrate those two theorems with some examples which are pertinent

both under the intermegiate preferences assumption and for the continuous model I.

The choice set is IR~ and the prefe;sences are induced by the Euclidear norm | -
In Fig. 3, we consider a model ( R || || 97 (al,...a )} ; point a,. satisfies
(Cl), so that R is given by > a and ag is a strong Condorcet winnef¥. Fig. 4 is
5
2
associated with the model ( R 2, || || 9 (ag,...ag)} ; the intersection of
[al, a,] and [a,, a,] , say a, verifi8s (C2). Hence, Q is acyclical and a is2a
weak Condorcet winner and a weak symmetry center. Finally, in the model ( R s

I I ,» ta,,... a,)) corresponding to Fig. 5, (C2) is satisfied by point a,.
This imp%ies %hat Q is acyclical and that a, is a weak Condorcet winner, but here
a, is not a weak symmetry center.

az

as

a4

Figure 3

Figure 4

a4

as

ag
Figure 5
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4. EXISTENCE OF A MAJORITY WINNER

To start with, let us notice that the existence of a weak Condorcet winner (resp.
a weak quasi-Condorcet winner) is in general implied by the acyclicity of P

(resp. the acyclicity of Q) : when X is finite these implications are always
satisfied, and they remain true when X is finite under general topological assump-
tions. For example, we have :

THEOREM 7. [ Bergstrom (1975)]

If X is a compact space and Ban acyclical relation on X and if for every x in X
the set {y€ X ; x B y} is open in X, then there exists x in _X such that x is
a maximal element for B in X, Z.e. for every y in X, no yB x.

In the continuous models, the sets {y€ X ; x P y} and {y€ X ; x 0 y} are open
in X since the preferences are continuous. Moreover, even if X is not a compact set,
the set of Pareto optima is often compact so that Theorem 7 may be applied.

4.1 The Guarantee Conditions

Until now, no general characterisation of the guarantee conditions has been found.
Nevertheless, we can give some interesting examples for each type of model.

(a) Continuous Model II

Again, we use an intermediate preferences assumption, but slightly different from
(H1) .

DEFINITION 4.

Let A be an open convex subset of IR Pand 9 an open convex subset of R m'
A family (Ua)a c  of differentiable functions defined on Q satisfies the local
intermediate preférences assumption if the following two conditions are met : for

every x € X C{ and every v € - {0},
(H2) - the set {a €A ; V U, x).v > 0} s an open convex subset of A,
~ the set {a € A ; VUa (x).v > 0} ©s a closed convex subset of A.

While assumption (H1) implies that the sets {a€a ; x > y} and {aea;

x = y} are convex for every x and y in X (see Lemma 2), assumption (H2) states
a similar condition only for x and y "close" to each other. This explains why the
hypothesis is said to be "local". Furthermore, when the family ( 2 a € is
represented by a family of pseudo-concave utility functions (U ) € ar (Hl? implies
(B2). Indeed, {a€a; VW (x).v>0l=Ylaea: u xiw> @ Pie. the
union of an increasing family of open convex subsets of A. Similarly, {a € a ;

a)

VUa(x).v 2 0} = a€ A ; U (x+Av) 2 U_(x)} is the intersection of a decreasing
family of closed convex subsets of A, On the other hand, (H2) does not imply (H1).
For instance, the family ( - ‘|x—a||p), for p > 1 and p # 2, satisfies (H2) but
not (H1) in  IRZ, P

Note, however, that (H2) is associated with a more restrictive context than (H1) :
it is indeed supposed that the preference orders are represented by differentiable
utility functions. Moreover, these functions are assumed pseudo-concave and the
choice space convex to show that (H1) implies (H2).

LEMMA 8 (6)

Let § be an open subset of IRm and A an open convex set in n‘P. If a family

(Ua)a €a of differentiable functions on 2 satisfies the assumption {H2), then,
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for every a,, a,& A, a € ]al, a2[ and x € Q, the gradient VUa (x) is positively
dependent of the two gradients VUa (x), VUa (x), that is
1 2
> > =
H(Al,Xz) # (0,0), Ai 0, Xz 0, such that VUa(x) Al VUal(x) + AZ VUa2(x).
Proof. Let ale A, a2€ A, x € Q and the two cones
k={) VU_ x)+2, Vo () i A 20, A, =0}
1 2
* .
and K* = {}\, VUal(x) + X, VUaZ(X) i Az 0, 3,20, (A A) £ (0,0 ],

For the proof, we have to show that VUa(x) belongs to K* for any a€E ]al,a2 [.
a) Suppose that O is not in K*. We then have to show that VUa(x) is not equal

to zero and that VUa(x) belongs to K.

First VUa (x}) # 0. The set K is a closed convex pointed cone, that is

K N - K = {0}, since K* does not contain 0. Hence, there exists a vector
vin ®R™ - {0} such that k.v > O for every k in K - {0}. Therefore, we have
VUa (x).v > 0 and VUa (x).v > 0. From the convexity of {ag A ; VUa (x).v > 0},

we éeduce that VUa(x)?; > 0, so that VUa(x) is not null.

Second VUa (x}) € K. Assume, on the contrary, that VUa(x) # K. Then, by the
separation theorem, there exists w in R m such that inf w.k >VUa(x) .k. Since

K&Kk
K is a cone, we have inf w.k = O.

k€

Consequently, VUa (x). w =20, VUa (x).w 2 0 and VUa(x) .w < 0; but this contradicts

the convexity of %a €A ; VUa (x) % > 0}.

B) Suppose now that 0 belongs to K*. Then, K* is equal to K. Assuming that

VUa (x) € K, we can apply a separation argument to the closed convex cone K*

and to VUa(x) , and the result follows by contradiction. 0.E.D.

This result allows us to construct some non trivial examples of utility functions
which satisfy the Kramer's condition. Indeed, if A is an open interval of IR and
if "Ua)a ca is a family of differentiable functions which satisfies (H2), the
gradients VUa(x) , for every x in Q , belong to the same two dimensional half-space

when a varies in A.

THEOREM 9.

Let B be an interval of mand 0 an open convex subset of R™ | A family (U)a€ a
of pseudo-concave utility functions on Q which satisfies (HD guarantees the

existence of a weak quasi-Condorcet winmer on every compact convexr Xin § .
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Proof. Let (> )i be the profile of the society, where =z a is the order
. a,

(S .
i .
represented by U l, a; € A, Since A is an interval, we can order the points
a,

A . i
a, in increasing order : a, £ a, ... <a_.
i 1 2 n

Let ay be a median of the sequence (al,...,an) ; for example
k=p+1ifn=2porn-=2p+1,

By Lemma 8, the gradients VUa (x), i € s, are in the convex cone generated
by VUa (x) and VUa (x). MoreO\jier, for i, j, 1! in S with i < j <1, VUa.(x)
belongé to the conVex cone generated by VUa (x) and VUa (x) . 3

Three cases may then arise (they are illust;ated in Figl. 6). In the first one,

VUa (x) and VU (x) are linearly independent ; in the second one they have the
a,
samtle direction l? in the third one, they have opposite direction or at least one

of them is null.

VUaiix) VUa; (x) = Av, ;>0
i<ig
VUa; (x)
X AV
vUa; (x) V'* vie|in) Ve VUaj(x)-0io<i<io
VUan,(x)
VUa, (x)= Aiv, 4; <0
i jo
first case second case third case
Figure 6

In the three cases, each open half-space of IR " which contains strictly more
n

than 5 gradients VUa (x) must also contain VU (x). As U_ is continuous on

s 1, - .
the compact X, it admits a maximizer x* in X. M]cc)reover, by the differentiability

of U on  , we have :
2
for every x € X, Ua (x).(x=x*) < 0. (*)
k

Let us now show that x* is a weak quasi-Condorcet winner in X for (= ), € s
i

Since every function Ua is pseudo-concave, the set {i€ 8 ; U (x) > o (x*)}
. a, a,

is included in {i € s ;l\7Ua (x*) . (x—=x*)>0} for every x € X. 1 .

1

By (*), we know that the half-space {z & Rm ; z.(x-x*)> 0} does not contain
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VUa (x*). It therefore contains less than %gradients VUa (x*). Consequently,

" .
for every x € X,##* {ie s ; o, (x) > u, (x*) }< % and x* Is a weak quasi-Condorcet

winner. Q.E.D. * *

When the preferen ders a: ented b famil -
p ce order re represente y a family (Ua)ae]oc ,S[Of pseudo

concave utility functions, Theorems 3 and 9 can be grouped in the following table

Intermediate preference assumption = Local intermediate preferences
\U, assumption

The transitivity of P is guaranteed = The existence of a weak quasi-Condorcet
winner on every compact convex X in §
is guaranteed.

(b) Continuous Model I

Wendell and Thorson (1974) have shown that the ll—norm on R 2 (H X || 1= |x1|+!
x2| ) guarantees a weak quasi-Condorcet winner. The following result is a sort of

converse (the proof is given in Appendix).

THEOREM 10.

A nom |1l on ®2 guarantees a weak quasi-Condorcet winner if and only if its
unit ball is a parallelogramm, i.e. there exists a basis (vl’v2) of R 2 such
that || x | = 'x1| + |x2| where x = x,v, + X,v,.

P

For instance, the 1 -nomm ( | 1., = sup (|x x
but not the weighted one-infinity norm ( ”x ﬁ = ocllf X ”1 + 0L2/§ “x ”w; see Ward

|)) satisfies this condition
and Wendell (1980). Note also that in R m, for m » 3, even the I-norm does not
guarantee the existence of a weak quasi-Condorcet winner (see Wendell and Thorson

(1974)) .

(¢} Discrete Model II

when the network is a tree, the notion of singlepeakedness is naturally generalised

as follows :

DEFINITION 5.

Let N be a tree and V the set of vertices. A family of preference orders on N
is said to be singlepeaked if for every x€ V and every order > having x for
top alternative, y EN is strictly preferred to z €N, 2z # vy, whenever y belongs
to the route between x and z, i.e.

if x is a top alternative for> , y # z and d(x,z) = d(x,y) + dly,z) =y > 2.
(Note that this definition does not depend on the distance d).
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When N is a line, we fall back on Definition 3. For a tree N which is not a

line, the set of singlepeaked orders (in the sense of Definition 5) is not
pseudo~-singlepeaked (in the sense of Definition 2). Moreover, the value restriction
conditions may fail to hold. Indeed, if the tree is not a line, there exist four
distinct vertices x, y, z, t such that (x,y) and (x,t) are arcs on N (see e.g.
Fig. 7). Thus, we can find three singlepeaked orders on N say >1, >2, >3, with

the following restriction on {x,y,z,t}:

Figure 7

X2 ¥ > 22 B ox >z 2t >y x5t >y >z

Clearly, the three points y, z and t form a Condorcet cycle for the profile

( [SRSY >3).

THEOREM 11. [Demange (1980)]

A family of singlepeaked preference orders on a tree guarantees the existence of
a weak quasi-Condorcet winner, Furthermore, any set of orders on N which strictly
includes the set of singlepeaked orders does not guarantee the existence of such

a point.

4.2 The Distribution Conditions
(a) The Continuous Model
The basis result is the Plott's theorem (1967).

THEOREM 12, [Plott (1967), Mcxeivey and Wendell (1976)]

m

Let X be an open comvex subset of R " and (Ui)i es @ family of utility func-

tions where U, ig differentiable, concave and has a unique maximiser in X .
If no individual (resp. emactly one) has his top altermative at x,then x 1is a
weak (resp. strong) Condorcet winner if an only if there exists a pairing T on S

such that YU, (x) and VUT (x)  have opposite directions for any i € s.

(i)
When applied to the continuous model I, these conditions can be expressed on the
individual locations. We then find similar conditions to (Cl) and (C2) (see Theo-
rems 5 and 6).
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THEOREM 13. [McKelvey and Wendell (1976)]

Let || || be a strictly convex norm on & " adnitting a differentiable repres—
entation. If x €ER" is the location of no (resp. only ome) individual, x is a
weak (resp. strong) Condorcet winner for the profile (- |22, || 5 € if and

only 1f x 18 a weak symmetry center.

In the appendix, we show that the hypothesis on the differentiable representation
may be dropped in R ~. The proof of Theorem 9 can be adapted to yield the altern-
ative result

THEOREM 14.

n

Let A be an open convex subset of 1R P Q  an open comvex subset of R and
(Ua)a ca a family of pseudo-concave utility functions on § which satisfies
(H2) . If, for a given n—tuple (ai)i €g in A , there exists a* € A which

satisfies (c2), then the profile (U_ ) admits a weak quasi-Condorcet

a,’ie€ s
winner on every compact convex subset X of .

Proof. Let x* be a maximizer of Ua* (x) on X. We then have
VUa* (x*). (y-x*) 0 for every v € X. (*)

If x* 1is not a weak quasi-Condorcet winner in X for (U_ ), , there exists
a,'ie s
y € X such that : i

u{a€ n ; U, x*) < Ua(x)} ) > 15

U being defined as in 3.2, and, therefore, by the pseudo-concavity of the functions
Ua:

pHa € & 5 VU_te*) . emx*) >0} ) > L.
Furthemore, {a € A ; VUa (x*) . (x-x*) > 0}) is the intersection of A with an open
half-space of R m (see Demange (forthcoming) or the whole set A. Its J-measure
being strictly greater than %, condition (C2) implies that VUa* (x*) . (x—=x*) >0
which contradicts (*). Q.E.D.
Note that Theorem 14 implies Theorem 10 since there exists always a point a*

which satisfies (C2) when the points a; belong to an interval : a* is a median
of @)se g

Interestingly, Theorems 6 and 14 can be compared in the following way. In short,
Theorem 6 says that :

Intermediate preference orders (H1)
+ distribution condition (C2) = Acyclicity of Q.

while Theorem 14 states :
Local intermediate utility functions

(H2) = Existence of a weak quasi-Condorcet
+ distribution condition (C2) on every compact convex.
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(b) The Discrete Model

Let N be a network on which a metric d is defined. Consider the case when the
choice space is N and when the individual i € 8 is located at vertex ai and
endowed with the preference order

x, YEN, x > ;¥ d(ai,x) < d(ai,y).
We have :
THEOREM 15. [Wendell and McKelvey (1981)]

If there exists a pairing Ton S and a point x in N such that x belongs to

a shortest route between a; and for every i e s, then x is a weak

3r(4)
Condorcet winner.

The existence of a point which satisfies the condition of Theorem 15 is not
necessary for the existence of a Condorcet winner : this is a first difference
with continuous model I. Moreover, the existence of T is more likely than in the
continuous model. Some problems in which such a mapping exists are considered in
Hansen, Thisse and Wendell (1981).

5. CONCLUSIONS

Despite some interesting properties, most of the available results appear to be
negative. This suggests that the majority winner is a too restrictive solution
concept. Two questions then arise : What does occur when a majority winner fails
to exist? Which concepts do generalise(7) that of majority winner? We shall here
mention only scme of the attempts made to deal with these two problems.

The first question is solved by the very netative results of McKelvey (1979), Cohen
(1979) and Schofield (1978) : for example, if a model ( R m’ || |2, (ai)ie S)
does not admit a weak Condorcet winner, then for every pair x, in” g®

there exists a finite sequence xl,... xk in R such that

x P x1, x1 P Xorees Xy Py.

In other words, by suitably choosing the agenda of the binary votes, a clever
organiser can obtain as a final result his most preferred alternative, this one
being Pareto optimal or not.

This result is directly related to our second question. Indeed, one of the most
studied generalisations of the majority winner is the "top cycle", that is : the
set of the alternatives x which are such that for every other y there exists a
finite sequence x,,..., %, in X with x P x ;s X, P Koreen Xy P y. But then, the
McKelvey-Cohen result implies that, in mos% moéels, the top cycle is the entire
choice space when a majority winner does not exist. Needless to say, the top cycle
does not therefore seem to be useful for our purpose.

Among the many other generalisations (see for example Young (1977)), let us mention
the Copeland winners and the minmax set., The former are defined for finite choice
set X in the following way : to every alternative x in X we assign its "score"

s(x) as the number of alternatives defeated by x : s(x) = ## {yex, xgv}. a
Copeland winner is then defined as an alternative which maximises s on X. This
concept has not been extended to the case of an infinite choice set. On the contr-
ary the minmax set, introduceg by Kramer (1977), applies to infinite spaces : for
every ordered pair (x,y) in X“, n(x,y) is defined as the number of individuals who
strictly prefer y to x and O(x) as the maximum of n(x,y) when y runs over X(0(x))
is always well defined since n(x,y) < n, V¥ %X,¥ € X). The minmax set is then the
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set of alternatives minimising © on X. It generalises the Condorcet winners ; it
is never empty ; it is included in the set of Pareto alternatives if this one is
nonempty and it enjoys good axiomatic features (see Blair (1979)). Furthermore,
it appears as a natural concept in a political dynamical model (see Kramer (1977))
and it tends to a unique point when the size of the society increases, the pref-
erences being spread smoothly enough under an assumption of local intermediate
preferences (see Demange (forthcoming)).

Another interesting concept, that of local Condorcet winner, has been introduced
by Wendell and McKelvey (1981), in the case of discrete model I :

a point x € N is a local Condorcet winner if there exists a neighbourhood of

x whose points do not beat x. As shown by the above-mentioned authors, there
always exists a local Condorcet winner whatever the network is. Moreover, Hansen,
Thisse and Wendell (1981) have established that the set of local Condorcet winners
is identical to the set of local minimisers of the function

z d(ai, X).

i c S
To sum-up : The spatial structure has proved to be very useful for social choice
theory. Nevertheless, the exploitation of this structure is far from being achieved;
in particular, the analysis of the extensions of the Condorcet winner concept is
still to be performed.
APPENDIX
Our purpose is to prove the following two results

. . 2
(1) Theorem 13 is valid for each strictly conmvex norm on R .

(2) A normin 1R 2 guarantees the existence of a weak quasi-Condorcet
winner if and only if its unit ball is a parallelogran.

For that, we need Lemmas A.l1 ; A.2 3nd A.3 which characterises the weak quasi-
Condorcet winners in the model ( R, || || » (ai)i c S) . Before stating these lemmas,
we introduce some notation.

Given x € IR 2 and p > 0, B(x,p) denotes the ball with center x and radiusp :

Bx, p) = {a er?

illaxfl<o ¥,
and 9B(x,Q) its boundary :
B, = fa€mr?; | a=x | =p}.

When x is the origin, we use B(p) and 3B(p) instead of B(0,p) and 3B (0, p)
respectively.

If A and B are two subsets of R 2,A—B is the set {a-b ; a € A, b € B}.
LEMMA A.l
A point x in IR 2 is a weak quasi~Condorcet winner in the model ( R -, I |

(ai)i e S)) if and only if :

2 1
(*) for every v € ]R2 - {0}, vHa€ER™ ; vE 'f‘(x,a) o< 5

where T(x,a) denotes the tangent cone at a to B(x, H a-x H Y.
Proof. 2A point x in R 2 is a weak quasi-Condorcet winner Eor the model
( ® <, | P e e g)) if and only if for every ve& R ~ - {0},
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[N Ll
~

ui{a e " ; Spatex | <) ax|| b o<

or

2 1
uifa €R 3 vEB x, || ax || ) - &} < 3.
By a classical result of convex enalysis, the tangent cone T(x,a) to B(%k, " a-x || )
is the closed cone generated by B(x, || a-x )y -~ {a}land T(x,a) is the cone
generated by Bx, || a-x ”) - {a}. Thus condition (*) is sufficient for x to be a
weak quasi-Condorcet winner.

Conversely, suppose that v € IR2 -~ {0} exists such that

udaem?; v erwa h > .
Since T(x,a) is the union U M(B(x, || a—x”) - {ah, v e Tix,a) implies that
A>0
there exists }\a > 0 such that v € )x(ﬁ(x, ” a-x ||) - {a}l ) for every X » Aa'

The support of U being finite, there exists )\o > 0 for which

2 — —
w{fa€mwm ;v 6'%(x,a)}) = u({a € ]R2 i vV E XO(B(x, Il a-x| ) - #hh

ufa € ®? ; Ja—x - % f<laxl D
[o]

and x is not a weak quasi~-Condorcet winner. Q.E.D.

LEMMA A.2.

The set {a € ]R2 ;v E'E‘(x,a)} is the get {a .6 m2 ; vE '?[‘(o,a)} translated
by x. If H(v) denotes the set {a € B Ve T(o,a)} , H(v) is an open cone
with O for vertex, H(v) N H(-v) = @ and H(-v) = -H(v).

Proof : We want to show that

{a € mz i vETx,a)} =1{a€ m2 i vE T(o,a)} + {x} = H(v) + {x}.

Now, B(x, | a-x || ) - {a} =B(0, |a=| ) - {a-x}
so that T(x,a) = U A(B(x, la=x|) - {ah = U A@BoO, flax||) -~ {a=x)
A>0 A>0
= °T(O,a-x).

Thus_point a is such that v € T(x,a) if and only if (a-x) is such that v T(o, a-x),
that is :

{a em2 ;ve;‘(x,a)} {a =bix ; ve Tlo,b)}

=H(v) + {x}. - 9Q.E.D.
Note that H(v) is a cone and that H(-v) = -H(v) since the cones tangent at a to B
( lally ana at Aa to B( ” Aa il ) are identical if A > 0 and symmetric around

0if A < ©. Moreover, as 0 does not belong to H(v), the intersection H(v) N
H(-v) is empty. Finally, H(v) is open since we know that a belongs to H(v) if and
only if there is A > 0 such that || a+)\v” < " a ]| . (Recall that every norm
in R~ is continuous).
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LEMMA A.,3

The set H(v) is a convex cone. If OB(l) contains no segments parallel to v, then
H(v) is an open half-space.

If not, there are two symmetric segments [ao, bo] and [—ao, —bo], with a, # b
parallel to v such that H(v) and H(-v) are the two convex cones

{Albo - Xa s A > 0and A, > 0} and {—Albo + a5 A >0 and Ay > 0}.

case a

Figure A1

Proof : As H(v) is a cone with vertex 0, for the proof, it is sufficient to study
its intersection, denoted K(v), with ©0B(1).
From above, we have :

a € K(v) U K(-v)
° ZER, | arv =z flall

’

a € 3B(1)

which means that the line through a with direction v is a supporting line to B(1)
at a. This implies that 9B(l) is the disjoint union of K(v), K(-v) and of the set
of points which admit a line parallel to v as a supporting line. This set is
formed by

a) two symmetric points a_ and -a_if 9B(1) does not contain any segment
parallel to v (see Fig. A.l.a) or by

b) the segments [a , bo] and [—ao, —bo] parallel to v if these ones exist
(see Fig. A.l.b).

In the plane, 9B(l) is in both cases the union of the following disjoint sets :
bo’ bo], the arc (bo, - ao), [-ao, —bo] and the arc (—bo, ao) (take a_ = b for
the first case). Thus, K(v) 0N (b, -a_) and K{-v) F\(bo, -a) is a partition

in two open sets of the connected set (bo, —ao). Therefore, one of these sets,

say K(-v) N (bo, —ao), is empty and the other, say K(v) N (bo' —ao) and
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K(v) = (—bo, ao)-

Consequently, H(v) and H(-v) are defined by the two open half-spaces delimited
by the line joining ao to ~a in case a and by the two convex cones

{Albo = dag s A > 0%, > 0} and {—AlloO *hag s A >0, h, > o}

in case b. Q.E.D.

Proof of (1)

If the norm is strictly convex, B(l) contains no linear segment. It then follows

. H 2 i i -
from Lemma A.3 that ( (v))V € R? - {o} is the family of all the open half-spaces
whose boundary contains 0. Hence, by Lemmas A.l and A.2, we know that a point x is

a weak quasi-Condorcet if and only if

u(E(v) + {x}) < %7 for every v € H{Z - {03},
that is
2 1 2
pi{fae IR ; (a-x). v > 0}) <« = for every v € ®R- - {0}.

2

As this last characterisation is independent of the norm chosen, the statement
follows. Q.E.D.

Proof of (2)

We first note that, if the family (H(v))vegnzZ_{O} contains three half-spaces H(v1),

H(v2), H(v3) whose boundaries are parallel to distinct u u, and Uy, the norm does

1!
not guarantee a weak quasi~Condorcet winner.

To see it, consider three lines D D, with an empty intersection and five

10 P D3
individuals located as in Fig. A.2.

Figure A2
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Every point x which satisfies p(H(v,) + {x}hH < —é—and WH (V) + {x}) < 15

must be on Di' A weak quasi-Condorcet winner should therefore belong to the inter-
section D1 N D2 N D3, which is impossible. We now prove that if the family

(H(v)) contains only two half-spaces having distinct boundaries

v € ’*- {0}
9B(1) is a parallelogramm.

First, 9B(l) is necessarily a polygon since otherwise the family (H(v)v e ]Rz—{O}
would contain an infinity of half-space by Lemma A.3.

Second, if a is a vertex of this polygon, any half-space orthogonal to a is a set
of the form H(v). Indeed, it suffices to choose v outside of the closed convex

cone of vertex a generated by the polygon (see Fig. A.3).

Figure A3

Consequently, H(v))V e 132—{0} contains no more than two-half spaces with distinct

boundaries if and only if 3B(l) has four vertices, i.e. B(l) is a parallelogram.

Furthermore, in that case, the norm guarantees a weak quasi-Condorcet winner since
2 A . .
every cone H(v), vE€ | - {0}, is included in a set H, or - H,, ief,2}

a -a,, —-a, are the vertices of

2
= S ; >
where H, {a R ; a.b; 0}, where a o 1 5

1’

B(1) and where bi is orthogonal to a; .

Thus, from Lemma A.l1, the set of weak quasi~Condorcet winners is given by
2 1 1 .

x e m suE, +&x}) < 5, ueH + &) o< 5, 1eft,2)

2 2
which is a parallelogram whose sides are parallel to a, and ay.
In the basis (al, az) of R 2, the norm which has the parallelogram of vertices

a,, a,, -a;, -a, as unit ball is I = ;= ! X, | + |x2| . 0.E.D.
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Figure A4
FOOTNOTES
[1] A function U on a convex set X is quasi-concave if, for every o & R the
set {xe X ; U(x) > al is convex.

[2] A function U on an open convex set § is pseudo-concave if U is
differentiable and if, for every x and y in §, U(x) > U(y) implies V U(y). (x-y)
> 0 where V U(y) is the gradient of U at y.

[3] A function U on a convex set X is strictly quasi—concave if for every x, y
in X U(x) > U(y) implies U(z) > U(y) for each z in Jx,y [ . Note that : pseudo-
concave = strictly quasi-concave = quasi=-concave.,

[4] This is because the set of points can often be reduced to the set of
vertices in many optimisation problems (see, e.g. Wendell and Hurter (1973). This
reduction is also possible in model I when the number of individuals is odd (see
Hansen and Thisse (forthcoming)).

5] Romero has in fact proved a slightly weaker result in which the strict orders
are defined on V and not on N .,

[6] The lemma is proved in Demange (forthcoming) under more restrictive assump-
tions.

[7] A solution concept generalises that of majority winner if this solution
coincides with the majority winners when these ones exist.
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