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1 Introduction

Risk is more than ever an essential concern for economic policies. The renewal of interest for the study

of risk in macroeconomic models is not only the result of the 2008 economic and financial crisis but

also reflects the growing concerns around environmental risks such as climate change and environmental

disasters. The risk of rare catastrophic events bears critical welfare implications not only as disasters

hurt when they strike but also as their anticipation may affect agents decisions. This view has been first

introduced by Rietz (1988) in an attempt to explain the equity premium puzzle (Mehra & Prescott,

1985). Since, his idea that a low subjective probability of a catastrophic event may drive agents invest-

ment decisions has gained momentum with a development of new theoretical frameworks (e.g. Barro,

2006, 2009; Gabaix, 2012) supported by empirical evidences on the history of catastrophic events (e.g.

Barro & Ursua, 2008). More recently, some authors have adopted similar frameworks to analyze the

macroeconomic impacts of environmental disasters in endogenous growth frameworks (Ikefuji & Horii,

2012; Barro, 2015; Müller-Fürstenberger & Schumacher, 2015; Bakkensen & Barrage, 2016; Bretschger

& Vinogradova, 2017; Akao & Sakamoto, 2018). As pointed out by Bakkensen & Barrage (2016), if

these disasters reduce output or production means when they strike, they also affect consumption and

savings decisions in an ambiguous way, resulting in potentially important long-term impacts.

In line with this literature, the objective of the present paper is to better understand the link between

environmental disasters, economic growth, and welfare. To investigate the underlying mechanisms, I pro-

pose an endogenous growth model with endogenous disasters that can be fully solved analytically. The

model builds on the frameworks proposed by Müller-Fürstenberger & Schumacher (2015) and Bretschger

& Vinogradova (2017), and extends these earlier works by allowing for a more general representation of

individuals’ preferences. In particular, the model is solved for the class of utility functions proposed by

Epstein & Zin (1989) and Weil (1990), building on Kreps & Porteus (1978) non-expected utility theory.

As shown by a large literature in finance (see Bansal & Yaron, 2004), by distinguishing risk aversion from

the inter-temporal elasticity of substitution, these utility functions enable to better explain individuals

decision in front of risk. As the objective of the paper is to understand how disasters affect growth and

welfare, allowing for this more general and flexible representation of preferences will prove critical. In

particular, the paper shows analytically that the restrictions imposed by more standard utility functions

— e.g. logarithmic or time-additive power utility — bias our understanding of the mechanisms that
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link disasters to growth, and welfare. In a calibration of the model that matches empirical evidence on

environmental disasters, the paper also shows that these biases matter quantitatively.

In order to start from a simple benchmark, the model is first solved in the case of exogenous disasters.

Several preliminary intuitions are derived in this situation. I then turn to the case of disasters whose

probability can be mitigated through a policy. In the appendix the model is also solved for multiple

types of disasters including catastrophes of endogenous intensity. It follows from the model that the

optimal shares of output consumed, saved, and spent in risk-mitigation are all constant on the optimal

path. The effects of the model’s parameters are studied and in particular the role of the preference

parameters are emphasized. While risk and risk aversion (RRA) drive the decision to mitigate risk, the

inter-temporal elasticity of substitution (IES) plays no role in this decision. However, it appears to be

critical in the risk sensitivity of the consumption/savings decision. When the risk of disasters increases,

current consumption is partly transferred to the future through savings when the IES is below unity.

Interestingly, if the sign of this effect solely depends on the IES, its magnitude depends on the RRA.

While a low IES — i.e. high aversion to fluctuations — unambiguously leads to more precautionary

savings, a high aversion to risk may increase either precautionary savings or precautionary consumption.

This result shows that it is essential to depart from the standard time-additive utility function as aversion

to risk and to fluctuations end up having very different effects on the optimal solution. A second result

of importance is that, when introducing an instrument to mitigate disasters, an increase in risk also

generates a transfer from savings to risk-mitigation spending. As a result, and contrary to what has

been emphasized so far in the literature, an IES below unity is a necessary but insufficient condition to

guarantee a net positive response of savings to risk.

From the law of capital accumulation, one can compute analytically the stochastic growth rate as

well as the average long-run growth rate of the economy. Most interestingly, one can look at the effect of

disasters on the latter. Following the terminology used by Bakkensen & Barrage (2016) I distinguish the

impact of disaster risks from the one of disaster strikes. If damages from catastrophes (i.e. from strikes)

reduce expected growth, their anticipation (i.e. risk) has an ambiguous effect through the sensitivity

of capital accumulation to risk. For realistic parameter values — i.e. unless the crowding out of risk-

mitigation spending over savings is too high — disasters foster average long-run growth if aversion to risk

and to fluctuations are both large enough. Since the existence of disasters necessarily reduces welfare,

there are therefore situations in which growth and welfare are inversely linked. To further examine the
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impact of disasters on welfare, I compute analytically the marginal rate of substitution between disaster

parameters (i.e. frequency and intensity) and output, as well as a measure proposed by Lucas (1987,

2003) to assess the welfare benefits of the policy instrument relative to a business-as-usual scenario.

In order to illustrate quantitatively the analytic findings of the paper, the model is then calibrated

so as to represent the U.S. — a country among the most impacted by environmental disasters (see Shi

et al., 2015) — disaggregated at the county level. Disaster parameters are proxied from the most recent

study on the impact of disasters in U.S. counties over the last 80 years by Boustan et al. (2017). From

this exercise, we reach three important conclusions. First, if a positive impact of disasters on long-

run growth is theoretically possible in this framework, such a positive relationship can occur only for

extremely large disasters and (rather implausibly) high values of aversion towards risk and fluctuations.

Second, the effects of disasters on welfare appear significant, even ignoring their impacts on human

lives. For instance, reducing by only 10% the likelihood of disasters would be equivalent to an increase

by 0.65% of GDP in our main scenario, even though yearly expected damages on GDP are as low as

0.13%. Interestingly, holding expected damages constant but increasing disaster intensity, the welfare

effects become much larger. This result stresses the role of insurance as an adaptation strategy, as the

welfare gains from trading-off disaster intensity against likelihood appear important. Third and last,

the two previous results are sensitive to the calibration of preferences parameters. Thus, the constraints

imposed by logarithmic or power utility functions do not only affect our qualitative understanding of

the effects of disasters, but they also matter quantitatively. In particular, when using high values for

the elasticity of the utility to capture risk aversion, one overestimates the importance of precautionary

savings and may wrongly conclude that disasters positively affect growth. When using lower values to

better match the IES, he instead underestimates the impact of disasters on welfare, and the level of

optimal mitigation policies.

This paper contributes to two strands of the literature. First, it provides a novel framework to

study the effect of environmental disasters on economic growth. Improving our understanding of the

mechanisms underlying this link is critical not only from a theoretical point of view but also as to guide

future empirical research on this issue. Indeed, the empirical literature on the link between disasters and

growth points towards contrasted evidence. Skidmore & Toya (2002) conclude that higher frequencies

of climatic disasters may foster growth, possibly through an effect on human capital accumulation and

technology. While Cavallo et al. (2013) find no significant impact of disasters on short and long-run
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growth, Sawada et al. (2011) find significant negative effects in the short run, but positive effects in the

longer term. Strobl (2011) studies hurricanes in the U.S. coastal counties and finds evidence of negative

effects with very partial recovery, but the macroeconomic impact of these local catastrophes appears to

be negligible. Noy (2009) also finds negative but heterogeneous impacts, with more developed countries

being less exposed. More recently, Hsiang & Jina (2014) found a strong negative long-run effect of

hurricanes on output and long-run growth with no evidence of a rebound effect in the twenty years

following a catastrophe. Some previous theoretical works have recently attempted to understand these

diverging empirical evidence. Ikefuji & Horii (2012) stress the role of human capital as a substitute

for physical capital to sustain growth when physical capital pollutes. Bakkensen & Barrage (2016)

try to reconcile the heterogeneous empirical findings by disentangling hurricanes strikes and hurricanes

risks. They show that while the former may persistently reduce output, the second may foster growth

through more accumulation due to precautionary savings. They argue that the contradictory results

found in empirical studies might partly be explained by different methodologies that either capture

the effect of disaster strikes or disaster risks. Akao & Sakamoto (2018) study exogenous disasters and

discuss the role of human capital and technology. As Bakkensen & Barrage (2016), they emphasize the

key role of the elasticity of the utility function for disaster risks to foster growth through precautionary

savings. Although they do not focus directly on growth, Müller-Fürstenberger & Schumacher (2015) and

Bretschger & Vinogradova (2017) both analyze the effect of risk on capital accumulation in a Ramsey

type of model where risk can be mitigated through abatement activities. Their results also support

the idea that disasters may accelerate capital accumulation depending on the elasticity of the utility

function. By contrast, using a more satisfactory representation of preferences towards risk, calibrated

so as to match empirical evidence of disaster impacts, this paper shows that precautionary savings are

unlikely to be sufficient to generate a positive link between disasters and growth as sometimes found in

the empirical literature. It remains an open question whether this empirical observation is robust, but

if that is, future research will have to determine which other mechanisms could explain it.

Second, this paper adds to the theoretical literature on the optimal mitigation of environmental

risks. In particular, it contributes to recent literature that incorporates recursive preferences into en-

vironmental models where risk matters. Previous studies have analyzed the effect of pollution (Soretz,

2007) or biodiversity losses (Augeraud-Véron et al., 2018) on fluctuations, and shown how optimal poli-

cies depended on preferences parameters. Considering larger shocks, Barro (2015) extends the previous
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disaster model of Barro (2009) to disentangle environmental disasters from other types of catastrophes.

In a different set-up, Bansal & Ochoa (2011), Bansal et al. (2016), and Karydas & Xepapadeas (2019)

examine the effect of temperature-driven disasters on market returns with non-expected utility. van der

Ploeg & de Zeeuw (2017) study precautionary savings as a reaction to an endogenous climate tipping

point. They characterize savings responses to the tipping depending on its impact delay and on the

distance of the economy from its steady-state. However, the model does not provide closed-form so-

lutions and does not enable to study repeated catastrophes. Other papers using numerical methods

have introduced Epstein-Zin-Weil preferences in climate economy models, such as DSGE models (e.g.

van den Bremer & van der Ploeg, 2018) and Integrated Assessment Models (see Crost & Traeger, 2014;

Jensen & Traeger, 2014; Cai & Lontzek, 2018; Olijslagers & van Wijnbergen, 2019). To my knowledge,

this paper is the first to present a framework to study analytically the relationship between endogenous

growth and endogenous disasters in which agents display recursive preferences. Both through analytical

results and a calibration consistent with observed impacts of disasters, the paper shows the importance

of separating aversion towards risk and fluctuations, in order to better understand the effects of disasters

on growth, welfare, and the implications for optimal policies.

The rest of the paper is organized as follows. Section 2 presents the general framework. Section 3

considers the case of exogenous disasters as a benchmark to highlight the first intuitions of the model.

Section 4 turns to endogenous disasters whose probability can be reduced through a risk-mitigation

policy. Section 5 provides a calibration of the model and a quantitative assessment of the link between

disasters, growth and welfare, and the importance of using non-expected utility over more restrictive

representations of preferences. Section 6 concludes. Computations are reported to the appendix, where

the model is also extended to multiple types of disasters including of endogenous intensity.

2 General framework

The model features essentially two ingredients. One is the stochastic process driving catastrophes. The

other is the representation of preferences. We assume utility is derived from the consumption of a

unique good C. The central planner’s preferences are defined recursively as first proposed by Epstein &

Zin (1989) and Weil (1990), and extended to continuous time by Svensson (1989) and Duffie & Epstein
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(1992). These preferences can be represented by the following utility function:

(1− γ)Ut =

[
C
ε−1
ε

t dt+ e−ρdt ((1− γ)EU(t+ dt))
ε−1

ε(1−γ)

] ε(1−γ)
ε−1

(1)

where ρ is the pure rate of time preferences, γ the coefficient of relative risk aversion (RRA), and ε the

inter-temporal elasticity of substitution (IES), so that 1/ε can be understood as aversion towards inter-

temporal fluctuations. In the specific case where γ = 1/ε we obtain the standard time-additive power

utility function widely used in the literature. In the even more special case where this parameter tends

to one, the power utility converges towards a logarithmic utility. The recursive form of the function

defined in equation (1) yields the following Hamilton Jacobi Bellman (HJB) equation:

(1− γ)V (Kt) = max
[
C
ε−1
ε

t dt+ e−ρdt ((1− γ)EV (Kt+dt))
ε−1

ε(1−γ)

] ε(1−γ)
ε−1

(2)

Now, let’s consider an economy facing disasters, i.e. catastrophic events that may happen with small

probability and destroy part of the capital stock. As Martin & Pindyck (2015), we consider multiple

types of catastrophes and keep the specification general enough so that these events may include but

are not limited to environmental disasters. Although they are rare events, their effect is long lasting:

once capital is destroyed, it takes time to re-build. These disasters are assumed endogenous to some

risk-mitigation activities, and are taken to be uninsurable. We denote τ the share of output spent to

mitigate disasters. The central planner must therefore allocate production (Y ) between consumption

(C), risk-mitigation activities (τY ) and savings (S). Assuming there are n types of disasters and m

types of risk-mitigation technologies, the law of capital accumulation is defined as:

dKt = [Yt −
m∑
j=1

τj,tYt − Ct]dt+ σw,tdz −
n∑
i=1

σp,i,tdqi,t (3)

where dz is a Wiener process scaled by σw,t, and dqi,t a Poisson process scaled by σp,i,t. The Wiener

process models small fluctuations around the trend, while the Poisson process models rare catastrophic

events. The use of the Poisson process in the modelling of agents’ optimal consumption and savings

decisions has been introduced by Wälde (1999) and later used in the study of natural disasters by Müller-

Fürstenberger & Schumacher (2015) and Bretschger & Vinogradova (2017), and in a slightly different

set-up by Ikefuji & Horii (2012). As Müller-Fürstenberger & Schumacher (2015), we will assume the
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Poisson process to be endogenous possibly both through its intensity and its probability, and to depend

on risk-mitigation spending. The probability of a shock is assumed to be of the form Edqi,t = λifidt

with λi a constant and fi a function of abatement activities τj , j = 1, ...,m to be defined. We also

denote K̃i the stock of capital after a shock of the ith process occurred, with ∀i, 0 < K̃i,t < Kt, so that

the size of a shock for the process i at time t is σp,i,t = Kt− K̃i,t. Bretschger & Vinogradova (2017) also

consider the case of an endogenous variance for the Wiener process. Although possible in this model,

for the sake of simplicity we keep the Wiener process independent of risk-mitigation spending as this

feature does not bear critical implications.

The objective of the central planner is to maximize its utility (1) subject to the stochastic law of

capital accumulation (3). The solution method is detailed in the appendix. It makes use of useful

contributions in the resolution of stochastic problems in continuous time (e.g. Merton, 1971; Wälde,

1999; Sennewald & Wälde, 2006) and how it applies to Epstein-Zin-Weil preferences in an endogenous

growth model (see Epaulard & Pommeret, 2003). It is shown in the appendix that if we define:

X(K,C, τ) = Vk[(1−
m∑
j=1

τj,t)Y − C] +
1

2
Vkkσ

2
w +

n∑
i=1

λifi

(
V (K̃i)− V (K)

)
(4)

with Vk = ∂V (K)/∂K and Vkk = ∂2V (K)/∂K2, then the Hamilton-Jacobi-Bellman equation of this

problem can be expressed as:

ρ
ε(1− γ)

ε− 1
V (Kt) = max

 ε

ε− 1

C
ε−1
ε

t

[(1− γ)V (Kt)]
ε−1

ε(1−γ)−1
+X(K,C, τ)

 (5)

and the associated first order conditions with respect to C and τj are:

C
− 1
ε

t

[(1− γ)V (Kt)]
ε−1

ε(1−γ)−1
+XC = 0

Xτj = 0 ∀j

with XC and Xτj the derivatives of X with respect to C and τj , hence:

C
− 1
ε

t = Vk [(1− γ)V (Kt)]
ε−1

ε(1−γ)−1 (6)
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and:

for j = 1, ...,m : Y Vk =
n∑
i=1

λi

[
fi
∂V (K̃i)

∂K̃i

∂K̃i

∂τj
+
∂fi
∂τj

(
V (K̃i)− V (K)

)]
(7)

The previous equations highlight the trade-off between the different uses of resources. Equation (6)

gives the optimal arbitrage between the benefits and the opportunity cost of consumption. Equation

(7) simply states that at the optimum the marginal cost of risk-mitigation spending (on the left hand

side) should be equal to the marginal benefits from reducing disaster frequency and intensity (on the

right hand side). This framework remains flexible and enables to study a large variety of risks in

different economic settings. In the next section, I start with the benchmark case of exogenous disasters

(i.e. no risk-mitigation activity) to present in the simplest way the mechanisms driving the link between

disasters and growth and how they depend on preferences. Then, I turn to the case of disasters of

endogenous probability. A more comprehensive set-up with both disasters of endogenous probability

and intensity is presented in the appendix.

3 Benchmark: exogenous disasters

3.1 Specification

In this section, we consider the simple case of a unique process (n = 1), and take the probability of a

disaster as fixed (m = 0, i.e. no risk-mitigation instrument available), and their intensity as a constant

fraction of the capital stock. Specifically, we take f = 1 + δ, i.e. E(dqt) = λ(1 + δ)dt, and K̃ = ωK

with ω ∈ [0; 1] a constant. The variance of the Wiener process is assumed to linearly depend on the

level of the capital stock, with σw = σK, so that fluctuations remain proportional to the size of the

economy. Finally, we assume production follows from an AK technology. This last assumption is made

for two reasons. First, it is technically convenient as it will prove to provide sufficient linearity to the

problem to obtain closed-form solutions. Second, the AK specification is relevant in our setting as it

captures the “no-rebound” effect observed empirically for natural disasters. As shown by Hsiang & Jina

(2014) using the example of hurricanes, natural disasters cause permanent output losses that are not

compensated by higher growth rates in the aftermath, nor in two following decades. These evidences

therefore suggest that the AK specification is best fitted to model the effect of disasters on long-run
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growth.

3.2 Optimal resources allocation

The shape of the problem leads to the following guess for the value function (Weil, 1990; Epaulard &

Pommeret, 2003):

V (K) = ψ
1−γ
1−ε

K1−γ

1− γ
(8)

with ψ a constant to be determined. Substituting the guess (8) into the first order condition with

respect to C (6) derived in the previous section gives:

C∗ = ψK (9)

and going back to the HJB equation (5) we can solve for ψ, the optimal share of capital consumed:

ψ = ρε+ (1− ε)
(
A− γσ2

2
− λ(1 + δ)

(1− ω1−γ)

1− γ

)
(10)

and from the law of capital accumulation defined by equation (3) we can determine the optimal saving

rate s∗ = S∗/Y :

s∗ =
1

A

[
ε(A− ρ) + (1− ε)

(
γσ2

2
+ λ(1 + δ)

(1− ω1−γ)

1− γ

)]
(11)

Consumption and savings are therefore constant fractions of capital and output on the optimal path.

Interestingly, the consumption share is decreasing with risk — i.e. higher σ or λ, lower ω — and risk

aversion — higher γ — if and only if ε < 1. Symmetrically, when ε < 1 the saving rate is increasing with

risk and risk aversion. This situation can be interpreted as precautionary savings, while the opposite one

(ε > 1) can be interpreted as precautionary consumption. The arbitrage between precautionary savings

and consumption depends on the relative importance of an income and a substitution effect caused by

an increase in risk. When the IES (ε) takes a low-value, aversion to inter-temporal fluctuations (1/ε) is

high, in which case a higher risk of a catastrophe (and therefore a higher risk of being poorer) in the

future incentivizes some transfers from current to future consumption. This income effect can be more

than compensated by a substitution effect when agents are little averse to fluctuations. In this second

situation, when capital is more at risk, the incentives to consume rather than accumulate are higher and
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an increase in risk leads to more consumption in the present at the expense of savings. The role of the

inter-temporal elasticity of substitution in determining the link between risk and consumption/savings

decisions has been early emphasized by Leland (1968) and Sandmo (1970), and more recently in the

case of natural disasters by Müller-Fürstenberger & Schumacher (2015), Bakkensen & Barrage (2016),

Bretschger & Vinogradova (2017) and Akao & Sakamoto (2018). However, because they use a time-

additive power utility function, these papers cannot disentangle the effect of risk aversion from aversion

to fluctuations. The use of non-expected utility enables to clarify these previous results and better

identify the role of each parameter. As illustrated by the following comparative statics, we see that the

sign of the effect of risk on consumption and savings only depends on the value of ε relative to 1:

∂ψ

∂λ
= −A∂s

∗

∂λ
= −(1− ε)(1 + δ)

(1− ω1−γ)

1− γ


< 0, if ε < 1.

≥ 0, otherwise.

∂ψ

∂ω
= −A∂s

∗

∂ω
= (1− ε)λ(1 + δ)ω−γ


> 0, if ε < 1.

≤ 0, otherwise.

while the magnitude of this effect positively depends on the risk aversion coefficient γ since (see proof

# 1 in the appendix):

∀γ 6= 1,
∂ 1−ω1−γ

1−γ
∂γ

=
ln(ω)ω1−γ(1− γ) + (1− ω1−γ)

(1− γ)2
> 0

∂ω−γ

∂γ
= −ln(ω)ω−γ > 0

Thus, if a low IES implies that precautionary savings dominate over precautionary consumption, a high

value of the RRA simply magnifies this effect but does not play on its sign. The restriction imposed

by the time-additive expected utility that γ = 1/ε therefore leads to a mis-interpretation of the effect

of preferences on the relationship between risk and consumption/savings decisions. In the even more

special case where both of these parameters converge to 1, (i.e. when utility is logarithmic as in e.g.

Golosov et al., 2014) the results further simplify and disasters do not have any effect on agents savings

decisions. Thus, even in this simple benchmark, the generalization to Epstein-Zin-Weil preferences

already appears useful as it offers a richer characterization of the effects of risk on individuals’ decisions.
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3.3 Optimal growth and the effects of disasters

The previous results suggest that the effect of disaster risks on growth is ambiguous. In some situations,

higher risk can foster capital accumulation, and thus economic growth. However, even in this case it

remains unclear what is the long-run aggregate impact of disaster risks and strikes on growth. To

examine this issue, we first compute the stochastic growth rate of the economy from the law of capital

accumulation as stated by equation (3):

dC

C

∗
= (A− ψ)dt+ σdz − (1− ω)dqt

=

[
ε(A− ρ) + (1− ε)γσ

2

2
+

1− ε
1− γ

λ(1 + δ)(1− ω1−γ)

]
dt+ σdz − (1− ω)dqt

(12)

The first term in dt is the trend growth rate, and σdz represents the fluctuations around this trend.

When the economy is hit by a shock, consumption decreases by (1 − ω). Note that in a deterministic

model without shocks, we obtain the standard Keynes-Ramsey formula where A is the marginal return

on capital : (dC/C)∗det = ε [A− ρ] dt. Finally, because E(dz) = 0 and E(dqt) = λ(1+δ)dt, the expected

growth rate of this economy, which is also the average long-run growth rate g∗ is :

g∗ = E
(
dC

C

∗)
=

[
ε(A− ρ) + (1− ε)γσ

2

2
+

1− ε
1− γ

λ(1 + δ)(1− ω1−γ)− λ(1 + δ)(1− ω)

]
dt (13)

The previous formula enables to disentangle the effect on growth of disaster risks, i.e. the mechanisms

through which the anticipation of disasters may affect economic decisions, from the effect of disaster

strikes captured by the last term of the right-hand side of equation (13). The sensitivity of the expected

growth rate to disasters can be analyzed by looking at the following comparative statics:

∂g∗

∂λ
= (1 + δ)

[
(1− ε)1− ω1−γ

1− γ
− (1− ω)

]
dt (14)

∂g∗

∂ω
= λ(1 + δ)

[
1− (1− ε)ω−γ

]
dt (15)

From these results, the effects of disaster risks and strikes on growth appear clear. Disaster strikes

have an obvious negative effect on average long-run growth: when the probability or the intensity of

disasters increases — higher λ, lower ω — the expected drop in output due to shocks is larger and
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so expected growth declines. However, this effect must be weighted against the ambiguous impact of

disaster risks on growth. This effect is driven by precautionary savings or consumption, and is therefore

positive when ε < 1 and negative otherwise. In both cases, it is magnified for higher values of risk

aversion γ. When ε < 1, since precautionary savings need to compensate for the losses caused by

disaster strikes, our results show that disasters and growth can be positively linked in the long-run if

and only if ε is sufficiently small and γ is sufficiently large, i.e. if the economy displays both high risk

aversion and high aversion to inter-temporal fluctuations. These results give theoretical support to the

empirical findings of Sawada et al. (2011) who found negative effects of disasters on short-run growth, but

positive effects in the long-run as was found by Skidmore & Toya (2002) from a cross-sectional analysis.

Indeed, when precautionary savings dominate, despite their negative immediate impact disasters may

encourage capital accumulation and thus promote growth in the long-run. As noted by Bakkensen &

Barrage (2016), whether cross-sectional or panel analysis are used to assess empirically the impact of

disasters may affect the results as these methods will essentially capture different effects. While cross-

sectional studies identify the potentially positive effect of disaster risks on growth, studies using panel

data with fixed effect identify the negative effect of disaster strikes.

Two last comments deserve attention. First, it should be noted that disasters generate large transfers

between generations. These transfers are due both to the impact of disaster risks — that either favor

consumption or savings — on the deterministic pattern of growth and to the stochastic realization of

disasters. Second, although higher risk may in some situations be growth enhancing, it unambiguously

reduces welfare. This result holds even ignoring the impact of disasters on human lives, and considering

only their effect on the stock of capital. Thus, and as pointed out by Akao & Sakamoto (2018) and

Bakkensen & Barrage (2016), there are cases in which growth and welfare vary with opposite signs as a

response to risk. This last result is important to stress as a positive link between disasters and growth

should not be interpreted as disasters being welfare-improving.

4 Disasters of endogenous probability

4.1 Specification

In this section we turn to the situation in which resources can be allocated to reduce the risk of disasters

through a unique instrument τ (i.e. m = 1). In particular, we assume risk-mitigation spending can
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reduce the probability of disasters. The specification is the same as in the previous section, except

for f that we now assume to be a function of τ such that f = 1 + δ − τα with 0 < α < 1 the

inverse of the efficiency of risk-mitigation spending1. This specification therefore assumes that the

probability of a catastrophe depends on the share of output spent in risk-mitigation. If the entire

output was spent to mitigate risk, the probability of a shock would fall to λδ, the probability to face

a non-avoidable catastrophe. Absent any abatement activity, the probability would go up to λ(1 + δ).

If the model remains general with respect to the type of disasters considered, one can understand

λ(1 − τα) as the probability of an environmental disaster, while λδ corresponds to the probability

of non-environmental disasters such as a stock market collapse, a pandemic or a war. Disasters of

endogenous probability have been extensively used in the literature, including in several papers by

Barro (2009, 2015) and Ikefuji & Horii (2012). As in the previous section, damages will be assumed to

be a constant fraction of the capital stock. I show in the appendix that the model can alternatively

be solved for disasters of endogenous intensity as done by Müller-Fürstenberger & Schumacher (2015)

and Bretschger & Vinogradova (2017), as well as for multiple disasters and multiple instruments. Since

these specifications yield similar intuitions, I focus here on the simplest scenario.

4.2 Optimal resource allocation

Applying the new specification, the two first order conditions (6) and (7) together with the HJB equation

(5) yield:

C∗ = ψK (16)

and:

τ∗ =

(
(1− ω1−γ)λα

A(1− γ)

) 1
1−α

(17)

with:

ψ = ρε+ (1− ε)
(

(1− τ∗)A− γσ2

2
− λf∗ (1− ω1−γ)

1− γ

)
(18)

1Since 0 < τ < 1, a lower value of α means more mitigation can be performed with less resources.
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and consequently the saving rate s∗ = S∗/Y is:

s∗ = 1− τ∗ − 1

A

[
ρε+ (1− ε)

(
(1− τ∗)A− γσ2

2
− λf∗ (1− ω1−γ)

1− γ

)]
(19)

As in the previous section, the IES appears to be the critical determinant in the arbitrage between

precautionary savings and consumption. Aversion to risk again plays on the magnitude of these effects,

but the link now also depends on the effect of risk on risk-mitigation spending. With respect to

risk-mitigation, total spending are found to be a constant share of output on the optimal path. The

comparative statics below (equations 20-23) show that the share τ∗ is strictly increasing with disaster

risk (higher λ, lower ω) and risk aversion (γ), but aversion to fluctuations plays no role:

∂τ∗

∂λ
=
λ

α
1−α

1− α

(
(1− ω1−γ)α

A(1− γ)

) 1
1−α

> 0 (20)

∂τ∗

∂ω
=
−ω−γ

1− α

(
λα

A

) 1
1−α

(
1− ω1−γ

1− γ

) α
1−α

< 0 (21)

∂τ∗

∂γ
=

1

1− α

(
λα

A

) 1
1−α

(
1− ω1−γ

1− γ

) α
1−α

(
ln(ω)ω1−γ(1− γ) + (1− ω1−γ)

(1− γ)2

)
> 0 (22)

∂τ∗

∂α
=

(
(1− ω1−γ)λα

A(1− γ)

) 1
1−α 1

(1− α)2

[
ln

(
(1− ω1−γ)λ

A(1− γ)

)
+

1− α
α

]
(23)

Proof # 1 in the appendix shows that the sign of 22 is always positive. The only ambiguous effect is

the one of the risk-mitigation efficiency parameter α. As shown in the appendix (see proof # 2) for low

values α has a positive effect on τ∗, but above a certain threshold ᾱ its effect becomes negative. This

non-monotonic relationship can be interpreted as a trade-off between more incentives to spend resources

in mitigation when it is more efficient (substitution effect) against the possibility to mitigate more with

less resources as the efficiency increases (level effect).
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4.3 Optimal growth and the effects of disasters

The law of capital accumulation in equation (3) enables again to compute the stochastic growth rate:

dC

C

∗
= [(1− τ∗)A− ψ]dt+ σdz − (1− ω)dqt (24)

and thus the expected growth rate (which is also the average long-run growth rate) of this economy:

g∗ = E
(
dC

C

∗)
= [(1− τ∗)A− ψ − λf∗(1− ω)]dt (25)

This formula provides some novel intuitions relative to the one of the previous section. To better

understand the new mechanisms at play, one can decompose the effect of disasters on the average

long-run growth rate. Differentiating the expected growth rate with respect to λ, we have:

1

dt

∂g∗

∂λ
= −A∂τ

∗

∂λ
− ∂ψ

∂λ
− f∗(1− ω)− λ(1− ω)

∂f∗

∂λ
(26)

︸ ︷︷ ︸
<0

︸ ︷︷ ︸
?

︸ ︷︷ ︸
<0

︸ ︷︷ ︸
>0

and similarly with respect to ω:

1

dt

∂g∗

∂ω
= −A∂τ

∗

∂ω
− ∂ψ

∂ω
+ λf∗ − λ(1− ω)

∂f∗

∂ω
(27)

︸ ︷︷ ︸
>0

︸ ︷︷ ︸
?

︸︷︷︸
>0

︸ ︷︷ ︸
<0

What do we learn from these comparative statics? All terms in equations (26) and (27) are detailed in

the appendix. For both equations, the first two terms can be associated with the effect of disaster risks,

while the last two correspond to the effect of disaster strikes. In the following we focus on the second

equation, the derivative of expected growth with respect to ω, the share of capital remaining after a

catastrophe. This derivative therefore captures the effect on expected growth of a reduction in disaster

intensity. Similar intuitions can alternatively be derived from the comparative static with respect to λ.

First, when ω increases, disaster strikes become less harmful to the economy as a smaller share of

capital 1−ω is destroyed. This effect is captured by the term λf∗ > 0 in equation (27). How much this

effect matters solely depends on the frequency of catastrophes. For more frequent disasters, a reduction

of their intensity has larger positive effects on expected growth through this damages term. However,

the reduction of disaster intensity has a second, indirect effect on expected growth through expected
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damages. Indeed, as ω increases, less efforts are performed to mitigate risks. As a result, the equilibrium

frequency of disasters λf∗ increases and so do expected damages. This second effect is captured by the

last term in equation (27), −λ(1− ω)∂f
∗

∂ω < 0. A higher value of ω has therefore an ambiguous impact

on expected damages since less intense catastrophes also lead to less stringent mitigation policies and

thus to more frequent disasters. In particular, an increase in ω will reduce expected damages from

disaster strikes if and only if f∗ > (1 − ω)∂f∗/∂ω. Contrary to the previous section with exogenous

disasters, allowing for the possibility to mitigate catastrophes therefore leads to less obvious results as

more intense disasters will drive more careful policies and could in fine, for some parameter values,

reduce expected damages.

Turning to disaster risks, we first see — as in the previous section — that disaster intensity may

either favor or dampen growth through the consumption savings decision. This effect is captured by the

term −∂ψ/∂ω that, for realistic parameter values, is positive if and only if ε > 1. This result again says

that when the IES is above unity, aversion to fluctuations is low and agents are willing to increase their

savings when risk is lowered (and alternatively increase current consumption when risk increases). But

in addition to the consumption-savings effect, disaster risks now also affect expected growth through the

trade-off between risk-mitigation and savings, given by the term −A∂τ∗

∂ω > 0. Indeed, as τ∗ is strictly

decreasing in ω, for less intense catastrophes less resources are spent to reduce their probability, which

leaves more for savings. Thus, while in the case of exogenous disasters risk was fostering growth if and

only if ε < 1, this condition is not sufficient anymore when mitigation is possible. Since higher risk now

also leads to a transfer from savings to risk-mitigation, a net increase in savings due to risk becomes

possible under slightly more restrictive conditions over ε. Thus, the standard result of the disaster

literature that takes ε < 1 as a sufficient condition for disasters to foster capital accumulation is not

robust to the introduction of endogenous risk-mitigation policies.

Overall, the introduction of an instrument to reduce disaster probability has an ambiguous effect

on growth. If some resources are shifted from capital accumulation to risk-mitigation, in the long run

this negative effect might be compensated by the reduction of expected damages from disasters. In

a different set-up, Ikefuji & Horii (2012) also found an ambiguous effect on growth of introducing a

pollution tax to reduce disaster probability. The underlying mechanisms in this model are different

than theirs, but these results bring new evidences that the impact of risk-mitigation policies on growth

is ambiguous, even though they positively impact welfare.
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4.4 Disasters and welfare

From the solution obtained for ψ, we can study the marginal effect of disaster parameters on welfare. As

Barro (2009), I compute the marginal rate of substitution between proportionate changes in production

(Y ) and in disaster probability (λ):

−∂V (K)

∂λ

∂Y

∂V

1

Y
=

1

ψ

[
(1 + δ)

(1− ω1−γ)

1− γ
− λ

α
1−α

(α
α

1−α − α
1

1−α )

1− α

(
1− ω1−γ

Aα(1− γ)

) 1
1−α
]

(28)

This expression thus corresponds to the share of production society is willing to give up for a reduction

in disaster frequency. Similarly, for disaster intensity we have:

−∂V (K)

∂ω

∂Y

∂V

1

Y
= −ω

−γ

ψ

[
λ(1 + δ)− λ

1
1−α

(α
α

1−α − α
1

1−α )

1− α

(
1− ω1−γ

A(1− γ)

) α
1−α
]

(29)

In both cases, comparative statics do not provide straightforward results as their sign depends on

parameters’ value. In the next section, the calibration will enable to discuss further these results.

Beyond the marginal effect of disasters, one can also be interested in the welfare benefits of the policy

instrument. Following the method proposed by Lucas (1987, 2003), I denote Γ the permanent increase

in consumption (in percentages) that would be necessary in the scenario without policy instrument to

make the agent indifferent with the scenario where the instrument is available. Formally, Γ solves:

V (K)|τ=τ∗ = V ((1 + Γ)K)|τ=0 (30)

As shown in the appendix, taking the expression of the value function we can characterize Γ analytically.

If we denote the consumption share of capital on the optimal path with and without policy instrument

respectively ψ∗ = ψ|τ=τ∗ and ψ0 = ψ|τ=0, then we have:

Γ =

(
ψ∗
ψ0

) 1
1−ε
− 1

=

1 +
(1− ε)(α

α
1−α − α

1
1−α )

(
λ(1−ω1−γ)
Aα(1−γ)

) 1
1−α

ρε+ (1− ε)
(
A− γσ2

2 − λ(1 + δ) (1−ω
1−γ)

1−γ

)


1
1−ε

− 1

(31)

As α ∈]0; 1[, one can easily show that Γ is increasing with risk (higher λ and σ, lower ω) and risk
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aversion (γ) and decreasing with the degree of impatience (ρ). The effect of the IES (ε) however is

ambiguous and is further discussed in the next section where parameters are calibrated.

5 Quantitative assessment

The previous sections have presented the model and shown its numerous implications. The objective of

this section is to illustrate these results quantitatively. The calibration of the model should essentially

answer three questions. First, if analytic findings have shown that both a positive and a negative effect

of disasters on expected growth were possible, one can wonder how plausible are each of these two

scenarios. In particular, we will try to assess to what extent individuals should have a strong distaste

for risk and fluctuations to perform enough precautionary savings to cover the expected output losses

from disaster strikes. Second, while disasters have an unambiguous negative impact on welfare, it is

important to assess how large these effects are. Third, this calibration should evaluate to what extent

using the more restrictive log-utility and time-additive power utility functions affect our understanding

of the link between disasters, economic growth, optimal policies and welfare.

5.1 Set-up

5.1.1 A country/region extension

The main challenge when calibrating a disaster model is to account for both the low probability but large

magnitude of these events on the people impacted, and their rather high frequency but small impact at

the aggregate level (see for instance Strobl, 2011). Although powerful to explain the equity premium,

the extreme environmental disasters of Barro (2015) — that realize on average once every 100 years

and destroy 21% of the capital stock — do not match with observed aggregate damages at a country

level. The same can be said of the estimates of future global disasters that Pindyck & Wang (2013) infer

from market data. In order to reconcile these low probability and large impact events with aggregate

data, I therefore slightly extend the model presented in section 4. I consider a country composed of H

distinct regions. Each region has its own capital stock kh, so that the country’s aggregate capital stock

is K =
∑H

h=1 k
h. I assume all regions share the same characteristics, i.e. all parameters are identical,

but are subject to local shocks following independent Poisson processes dqht that they mitigate with their
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own instrument τh.2 All communities therefore solve the same problem, and on the optimal path they

differ only by their level of capital kh and by the timing of the shocks they face. The law of aggregate

capital accumulation on the optimal path is thus:

dK

K

∗
=

H∑
h=1

dkh

K

∗

=

H∑
h=1

(yh − τhyh − ch)∗

K
dt+

H∑
h=1

σh,∗w
K

dz −
H∑
h=1

σh,∗p
K

dqh

= [A(1− τ∗)− ψ]dt+ σdz −
H∑
h=1

(1− ω)kh

K
dqh

(32)

since σh,∗w = σkh,∗ and (yh− τhyh− ch)∗ = [A(1− τ∗)−ψ]kh,∗. As in the previous section, the aggregate

capital stock grows deterministically at the rate A(1 − τ∗) − ψ, and follows fluctuations of size σ.

However, it is now subject to shocks of size (1 − ω)kh/K with a probability E(
∑H

h=1 dq
h
t )/dt = Hλf∗

per unit of time. If there are many regions, then at the aggregate level the probability of a shock is

high, but its average magnitude (1− ω)/H is low.

5.1.2 Calibration

The model is calibrated so as to represent the United States, disaggregated at the county level (H =

3, 142). The U.S. is an interesting case study as it is one of the countries most impacted by natural

disasters (Shi et al., 2015). In particular, the U.S. is by far the country most prone to material damages

from cyclones: between 1990 and 2016 it has been hit by only 4% of storms worldwide, but accounts

for 60% of global tropical cyclones damages (Bakkensen & Mendelsohn, 2016).

The baseline values of the parameters used in the calibration are given in Table I. Following Barro

(2009) — and consistent with U.S. data — I assume that the marginal return from capital is 6.9%, and

the standard deviation of normal shocks 2%. In the main specification I also assume that the coefficient

of relative risk aversion is γ = 3, and the inter-temporal elasticity of substitution is ε = 1. The value

of these two parameters is discussed below, and the implications of alternative choices examined, in

particular for values of ε above or below unity. The efficiency of the risk-mitigation technology is taken

to be α = 1/4 such that cutting by two the risk of a disaster would cost around 6% of GDP. As we know

relatively little about this parameter, this is of course subject to debate but it should serve as a starting
2In this country/region context, these instruments can be thought of as local measures to reduce the risks of envi-

ronmental disasters, such as investments to build dikes to prevent floods, stricter norms for more resilient buildings, etc.
Considering small areas, we can assume that efforts to tackle the sources of climate change have a negligible impact.
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point for our analysis. Finally, as Barro (2009) I set the rate of time preferences in order to match

the expected growth rate. I target a rate of 1.75% that will imply a consumption-income ratio of 70%.

Thus, the value of ρ should not represent the ethical discount rate discussed in the climate literature,

but rather the value that best explains the data. Table VII in the appendix reports the corresponding

values for various levels of risk and preferences.

In order to calibrate the risk of environmental disasters, I need to infer the probability (λ) and

expected intensity (1−ω) of these events at the county level. Based on observations from 1930 to 2010,

Boustan et al. (2017) find that severe disasters have occurred on average 0.307 times every decade in

each U.S. county.3 Although some parts of the U.S. are more impacted than others, they stress that

disasters are geographically widespread within the country. Based on this evidence, I assume that the ex

ante probability of an environmental disaster for a given county each year is λ = 3.07%. With respect

to the magnitude of these disasters, Boustan et al. (2017) show that these events result in a decline

by 5.2% of housing prices in the counties impacted. Although this number does not perfectly reflect

productive capital destruction, it can serve as a useful proxy to calibrate disaster impacts at the county

level. Other recent studies have assessed the impact of environmental disasters. Looking at the long-run

impact through a reduction of the growth rate, Hsiang & Jina (2014) found that the probability of a

cyclone reducing 7.4% of income was 5.8% in countries prone to these events. In China, Elliott et al.

(2015) estimate that an average damaging typhoon destroys 1.9% of property values where it strikes,

but they report destruction up to 64% for the most extreme events. As explained in FEMA (2010),

disaster-related damages largely depend on building types and may therefore differ from a country to

another. In addition, the actual losses critically depend on insurance coverage. In order to investigate

a larger spectrum of situations, I therefore calibrate two additional scenarios. From the expected

damages proxied from Boustan et al. (2017), I consider situations where the probability of a disaster

is lower, but their intensity on the people impacted is larger. I will refer to the main calibration as a

“Moderate disasters” scenario (λM = 3.07%, 1−ωM = 5.2%), and alternatively consider a second “Large

disasters” scenario with λL = 1.064% and 1− ωL = 15%, and a third “Extreme disasters” scenario with

λE = 0.3991% and 1−ωE = 40%. All three scenarios therefore display identical expected damages, that

are more or less spread over time and between agents. Considering these three scenarios enables me to
3These are defined as disasters leading to 25 or more deaths in total. Their dataset includes all types of environmental

disasters, and are based on the FEMA roster compeleted with other sources for events that occurred prior 1964.
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draw the link between the model and both the rather moderate disasters of the empirical literature, and

the more catastrophic events often considered in climate models. From the point of view of empirical

research, the later scenarios can also be thought of as more disaggregated cases where we focus on the

smaller population of the most impacted people with scarce insurance.

Finally, I set the ratio of non-environmental over environmental disaster probability (δ) to 1 in all

three scenarios. This parameter does not bear critical implications here, but this simple benchmark

yields a probability of non-environmental disasters (δλ = 3.07% in the main scenario) that is consistent

with the likelihood that Barro & Ursua (2008) report for such events.

Table I: Parameters used in the calibration (main specification).

Parameter Notation Value
Risk aversion coefficient γ 3
Intertemporal elast. of subst. ε 1
Gross return from capital A 0.069
Damages from moderate disasters 1− ωM 5.2%
Damages from large disasters 1− ωL 15%
Damages from extreme disasters 1− ωE 40%
Ex ante probability of a moderate env. dis. λM 3.07%
Ex ante probability of a large env. dis. λL 1.064%
Ex ante probability of an extreme env. dis. λE 0.3991%
Ratio non-enviromental / environmental disasters δ 1
St. dev. of normal shocks per year σ 2%
Inverse of technology efficiency α 0.25
Number of regions H 3,142

Taking the parameters’ values in Table I, one can compute the main variables of interest. The results

are reported in Table II. For the main specification (“Moderate disasters”), we obtain that about 70% of

production should be consumed at each period on the optimal path, and 0.12% spent in risk-mitigation.

The effect of such investment is to decrease the probability of an environmental disaster by around a

fifth, from 3.07% to 2.51%. Although disasters destroy 5.2% of the capital stock in the counties they

hit, on average they represent only 0.0017% of U.S. capital stock and occur in 79 counties each year.

The expected yearly aggregate damage — and GDP loss — of environmental disasters is thus 0.13%.
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Table II: Variables computed at parameters’ baseline value.

Variable Notation Moderate dis. Large dis. Extreme dis.
Share of production consumed ψ/A 70.32% 70.32% 70.25%
Share of production in risk-mitigation τ∗ 0.12% 0.14% 0.30%
Reduction in prob. of an env. disaster (τ∗)α 18.4% 19.5% 23.4%
Expected aggregate damages (1− ω)λ[1− (τ∗)α] 0.130% 0.128% 0.122%

from env. disaster (per year)

5.2 How likely is it that disasters foster economic growth?

The literature has not reached a clear consensus over the true value of the RRA (γ) and the IES (ε).

In an attempt to explain the equity premium puzzle, Mehra & Prescott (1985) argue that a reasonable

upper bound for the relative risk aversion coefficient is 10. Barro (2009) shows that within a model

displaying rare catastrophic events, a value between 3 and 4 is enough to explain the equity premium,

and closer to micro evidences. With respect to the IES, the value is even more debated and there exists

contrasted evidences on whether it should be taken as above or below unity. It has been shown by

Bansal & Yaron (2004) that in order to explain numerous properties of asset pricing one needs to have

simultaneously γ > 1 and ε > 1, which is at odds with expected utility, and in our case suggests that

precautionary consumption should be favored in front of higher risks on capital. Yet, most studies on

micro data argue that a value of ε lower than unity better represents people’s preferences (see Attanasio

& Weber, 2010; Havránek, 2015). The choice of high values for both γ and ε is also problematic as it

implies an implausibly high timing premium, i.e. individuals’ willingness to pay for an earlier resolution

of risk becomes too large (see Epstein et al., 2014).

This paper does not intend to settle this debate. The objective is rather to highlight the implications

of the values of these parameters when studying rare catastrophic events within an endogenous growth

framework. To do so, Figure 1 plots for the three scenarios and for different values of aversion to risk

(γ) and inter-temporal elasticity of substitution (ε) the effect on growth of introducing disasters to the

model. That is, it computes the difference between the expected growth rate of the model as calibrated

in Table I, and the one of the same model with λ = 0 (or ω = 1). On each figure, the red area is

associated with a net positive impact of disasters on expected growth, while the blue area signals a

negative impact. When disasters are “moderate”, it clearly appears that the values of γ and ε leading
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to a positive effect of disasters on growth are far beyond what is commonly admitted as plausible in the

literature. For “large” disasters, we see that precautionary savings over-compensate the negative impact

of disaster strikes for high values of aversion towards risk and fluctuations. For instance, assuming γ = 4,

one could expect disasters to foster growth for ε < 0.27. Although such a value is small compared to

standard estimates of the IES, a calibration of a power utility with RRA=1/IES=4 would thus predict a

positive impact of “large” disasters on growth. Such a positive effect is obtained for even lower coefficients

in the case of “extreme” disasters: assuming again γ = 4, ε < 0.64 is sufficient to get a positive effect

of disasters on expected growth. Interestingly, these results are barely sensitive to the calibration of

disaster frequency, although the difference in growth rates is exacerbated in both directions for more

frequent events. Expected growth being linear in λ, this parameter affects the relative importance of risk

for growth, but quantitatively it has no remarkable effect on the link between preferences and expected

growth. However, the results critically depend on the value assigned to disaster intensity. Intuitively,

this effect of ω is due to the concavity of the value function which exacerbates the response to disaster

risks relative to the impact of disaster strikes for high expected damages.4

Figure 1: Difference between long-run growth in a disaster vs. disaster free economy.

Moderate dis. Large dis. Extreme dis.

Note: When all parameters are calibrated following Table I except for γ and ε, the expected long-run growth rate
is higher in the disaster than in the disaster free economy if and only if γ and ε lie in the red area.

Thus, while in theory extremely intense–low probability events could be associated with higher growth

rates through precautionary savings, more frequent and less intense disasters should lead to lower growth

in this framework. Based on stylized facts derived from the empirical literature, the combination of
4The effects of λ and ω can be most easily understood in the case of exogenous disasters by looking at the comparative

statics in equations (14) and (15). In particular, if the derivative of expected growth with respect to ω will always be
relatively close to zero because of the term λ factoring the expression, its sign is very sensitive to the value of risk and
risk aversion, hence the highly non-linear effect of disaster intensity on precautionary savings.
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such extreme risks and high distaste for fluctuations and risk appears unlikely. Although derived in a

specific framework, this evidence suggests that precautionary savings may not be sufficient to explain the

positive link between disasters and growth sometimes found in cross-sectional analysis (e.g. Skidmore

& Toya, 2002). If this empirical relationship is robust — i.e. not driven by omitted variable bias —

future theoretical research should focus on identifying other mechanisms to explain it, such as the role

human capital, endogenous technical progress (as studied in Akao & Sakamoto, 2018), or a potential

substitution towards more productive capital.

5.3 How much do disasters impact welfare?

From equations 28 and 29, we can calculate the marginal rate of substitution between proportionate

changes in production and in disaster probability (λ) and intensity (ω). The results are presented in

Table III and IV, that report the values obtained for each of the three scenarios, and different levels of risk

aversion. In our baseline calibration (γ = 3) of the “moderate scenario”, the coefficient of 2.11 in Table III

indicates that to keep welfare constant, an increase by 10% of disaster probability (from 3.07% to 3.377%)

would need to be compensated by a permanent increase by 0.65% in production (Y ). Considering the

“large” disasters and “extreme” disasters scenarios, such 10% increase in disaster probability would need

to be compensated by an increase in production by respectively 0.76% and 1.29%. Although expected

damages are identical in all three scenarios, the concavity of the utility function implies larger welfare

effects for less frequent but more intense events. This difference exacerbates for large values of risk

aversion. Thus, while the estimation of the welfare effect of disasters is little sensitive to the choice of

the risk aversion parameter for “moderate” events, the calibration of this parameter becomes critical

when larger events are considered. For instance, the increase in production necessary to compensate a

10% increase in “extreme” disaster probability is 0.76% assuming log-utility (i.e. γ → 1), against 1.29%

with a standard calibration of γ = 3, and 14.69% using an upper bound value of γ = 10. Interestingly,

although the expressions from equations 28 and 29 depend on ε, as long as the expected growth rate

is fixed by adjusting time impatience (ρ) their value is insensitive to the choice of ε. While critical to

understand the link between disasters and growth, in this model the IES is therefore irrelevant when it

comes to their impact on welfare.

The calibration of τ∗ shows how these marginal effects of disasters on welfare translate into the

optimal value of the policy instrument. The values for each of the three scenarios and different levels of
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Table III: Marginal rate of substitution between proportionate changes in GDP (Y )
and in disaster probability (λ).

γ → 1 γ = 3 γ = 5 γ = 10

Moderate disasters 2.00 2.11 2.22 2.55
Large disasters 6.08 7.14 8.46 13.37
Extreme disasters 19.01 32.38 59.48 368.04

Table IV: Marginal rate of substitution between proportionate changes in GDP (Y )
and in disaster intensity (ω).

γ → 1 γ = 3 γ = 5 γ = 10

Moderate disasters -1.21 -1.35 -1.50 -1.95
Large disasters -0.47 -0.64 -0.89 -1.96
Extreme disasters -0.25 -0.67 -1.82 -22.26

risk aversion are reported in Table V, while Table VI reports Lucas’ measure Γ (expressed by equation

31) of the total welfare benefits of the policy. Consistent with our previous findings, both τ∗ and Γ

appear to be larger and more sensitive to the parameterization of risk aversion for disasters of higher

magnitude. While a standard calibration γ = 3 does not make a large difference compared to a logarith-

mic specification γ → 1 for “moderate” disasters, considering “large” and “extreme” events, the benefits

of the instrument appear respectively 1.3 and 2.1 times bigger.

Table V: Optimal share of income spent in policy instrument (τ∗).

γ → 1 γ = 3 γ = 5 γ = 10

Moderate disasters 0.11% 0.12% 0.12% 0.15%
Large disasters 0.12% 0.14% 0.18% 0.34%
Extreme disasters 0.14% 0.30% 0.70% 8.53%

Table VI: Welfare benefits of the policy (Γ).

γ → 1 γ = 3 γ = 5 γ = 10

Moderate disasters 0.46% 0.49% 0.53% 0.64%
Large disasters 0.49% 0.62% 0.78% 1.48%
Extreme disasters 0.62% 1.29% 3.06% 50.36%

In contrast with Lucas (2003) conclusion of low welfare costs from fluctuations, our findings indicate
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that the benefits from mitigating environmental disasters in the U.S. can be high even ignoring their

impact on human lives, although most likely (i.e taking the “moderate disaster” scenario) lower than

what Barro (2009) estimates for macroeconomic disasters. These results should raise concerns over the

risk of environmental disasters, even more so as Hsiang et al. (2017) predict disaster related damages in

the U.S. to be increasing with climate change. Besides the need to mitigate disasters, these results also

stress the importance of insurance coverage. Comparing the welfare impact of disasters across scenarios,

it clearly appears that spreading the damages would lead to large welfare gains relative to a situation

where fewer people are more impacted. As shown by Swiss Re Institute5, the natural catastrophe

protection gap of the U.S. amounted to 45% between 2009-2018, leaving almost half of disaster losses

uninsured. As part of an adaptation strategy, the improvement of the insurance coverage could thus be

very powerful.

5.4 Does using Epstein-Zin-Weil preferences matters quantitatively?

The previous results show that using the restrictive class of time-additive power utility in dynamic

stochastic models of disasters may lead not only to qualitative mis-interpretations, but also to potentially

large quantitative errors. As it imposes that RRA=1/IES, and because the associated parameters

have empirically different values, this constraint implies two potential problems. On the one hand, if

one calibrates a power utility assuming RRA=1/IES is in the range of 3–4 to correctly capture risk

aversion, he will overestimate the importance of precautionary savings. As shown above, for relatively

large disasters, this could lead to wrongly conclude that disasters foster long-run growth. On the other

hand, when taking lower values to better match evidences regarding the IES, it leads to underestimate

the effect of disasters on welfare and the optimal effort that should be performed to mitigate them.

These results confirm that our analytic evidences matter quantitatively. They also bring support to

previous studies that introduced Epstein-Zin-Weil utility in Integrated Assessment Models (IAMs) of

the climate literature (see Crost & Traeger, 2014; Jensen & Traeger, 2014; Cai & Lontzek, 2018), and

showed numerically that it implied a higher carbon price. Although the use of non-expected utility may

require intensive computations in these models, the present results suggest that the choice of the utility

function should be taken cautiously. As the risks embedded in these models are usually large, the effect

on the model’s output may be quite important.
5http://files.swissre.com/natcat-protection-gap-map/index.html
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6 Conclusion

This paper proposed a stylized model of endogenous growth with endogenous disasters in a framework

where individuals exhibit recursive preferences. The model was fully solved analytically, and the numer-

ous mechanisms through which disasters affect growth and welfare were highlighted with an emphasis

on how they each depend on preferences for risk on the one side, and inter-temporal fluctuations on the

other. The ability to disentangle these two concepts appeared critical as they each play very distinct

roles. In a calibration of the model based on empirical evidence about disaster impacts in the U.S.,

the paper has shown that the use of non-expected utility also matters quantitatively. While a proper

calibration of the model leads to rejecting the hypothesis that precautionary savings may overcompen-

sate losses from disaster strikes, a calibration of a more restrictive power utility with high risk aversion

and large disasters would induce the opposite conclusion. In addition, disasters are found to have large

welfare impacts, but these effects are also sensitive to the calibration of risk aversion, hence the need to

use a flexible framework to correctly calibrate this parameter.

This analysis should be taken as a first step towards a better understanding of the effect of preferences

on the link between disasters, growth, and welfare. To keep the model tractable and as intuitive as

possible, a certain number of potentially relevant mechanisms have been left aside. In particular, the

literature has shown that when facing disasters, the possibility to switch from physical to human capital

could have important implications (see Ikefuji & Horii, 2012; Bakkensen & Barrage, 2016; Akao &

Sakamoto, 2018). Disasters could also positively impact productivity through a “build back better”

effect (Hallegate & Dumas, 2009). The model is also silent about the role of trade as an adaptation

mechanism. Finally, if our calibration exercise has shown that insurance could play an important role

in mitigating the welfare cost of disasters, deeper modeling of the insurance market (as investigated by

Ikefuji & Horii, 2012; Müller-Fürstenberger & Schumacher, 2015) could also provide novel insights. All

these fascinating elements should be seen as avenues for future research. Given the important welfare

implications of disasters, I believe a lot of efforts are needed to improve our understanding of their link

with the economy.
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Appendices

A General framework

We assume preferences from consumption can be represented by the following utility function:

(1− γ)Ut =

[
C
ε−1
ε

t dt+ e−ρdt ((1− γ)EU(t+ dt))
ε−1

ε(1−γ)

] ε(1−γ)
ε−1

(33)

where ρ is the pure rate of time preferences, γ the coefficient of relative risk aversion, and ε the inter-

temporal elasticity of substitution. The recursive form of the utility yields the following Hamilton Jacobi

Bellman (HJB) equation:

(1− γ)V (Kt) = max
[
C
ε−1
ε

t dt+ e−ρdt ((1− γ)EV (Kt+dt))
ε−1

ε(1−γ)

] ε(1−γ)
ε−1

(34)

The law of capital accumulation is defined as:

dKt = [Yt −
m∑
j=1

τj,tYt − Ct]dt+ σw,tdz −
n∑
i=1

σp,i,tdqi,t (35)

where dz is a Wiener process with scaling term σw, and dqi,t a Poisson process with endogenous pa-

rameter, i.e. Edqi,t = λifidt with λi a constant and fi a function of abatement activities to be defined.

Shocks are also supposed to be of endogenous size, and we denote K̃i the stock of capital after a shock

from the ith Poisson process occurred. From the stochastic law of capital accumulation, one can sub-

stitute for the expectation term in equation (34) using the change of variable formula and Îto’s lemma,

which yields:

EV (Kt+dt) = V (Kt)+EdV (Kt) = V (Kt)+Vk[(1−
m∑
j=1

τj,t)Yt−Ct]+
1

2
Vkk(σwdz)

2+
n∑
i=1

E
(
V (K̃i,t)− V (Kt)

)
dqi,t

= V (Kt) + Vk[(1−
m∑
j=1

τj,t)Yt − Ct]dt+
1

2
Vkkσ

2
wdt+

n∑
i=1

λifi

(
V (K̃i,t)− V (Kt)

)
dt
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Substituting back into the HJB equation (34) gives:

(1− γ)V (Kt) = max

C ε−1
ε

t dt+ e−ρdt

(1− γ)V (Kt) + (1− γ)Vk[(1−
m∑
j=1

τj,t)Y − C]dt+ (1− γ)
1

2
Vkkσ

2
wdt

+ (1− γ)

n∑
i=1

λifi

(
V (K̃i,t)− V (Kt)

)
dt

) ε−1
ε(1−γ)


ε(1−γ)
ε−1

(36)

Then, following the strategy used by Epaulard & Pommeret (2003), we denote :

X(K,C, τ) = Vk[(1−
m∑
j=1

τj,t)Y − C] +
1

2
Vkkσ

2
w +

n∑
i=1

λifi

(
V (K̃i,t)− V (Kt)

)

where τ is the vector of all τj , j = 1, ...,m. Making use of two approximations when dt is small enough,

e−ρdt ' 1− ρdt and (1 + xdt)a ' 1 + axdt, we have:

(1− γ)V (Kt) = max

[
C
ε−1
ε

t dt+ (1− ρdt)
(

(1− γ)V (Kt)

[
1 +

X(K,C, τ)dt

V (Kt)

]) ε−1
ε(1−γ)

] ε(1−γ)
ε−1

⇔ (1−γ)V (Kt) = max
[
C
ε−1
ε

t dt+ (1− ρdt) ((1− γ)V (Kt))
ε−1

ε(1−γ)

([
1 +

ε− 1

ε(1− γ)

X(K,C, τ)dt

V (Kt)

])] ε(1−γ)
ε−1

⇔ (1− γ)V (Kt) = max
[
C
ε−1
ε

t dt+ (1− ρdt) [(1− γ)V (Kt)]
ε−1

ε(1−γ)

+(1− ρdt) [(1− γ)V (Kt)]
ε−1

ε(1−γ)
ε− 1

ε(1− γ)

X(K,C, τ)dt

V (Kt)

] ε(1−γ)
ε−1

and because dt2 = 0, we can simplify the expression:

(1− γ)V (Kt) = max
[
[(1− γ)V (Kt)]

ε−1
ε(1−γ)

+

(
C
ε−1
ε

t − ρ [(1− γ)V (Kt)]
ε−1

ε(1−γ) +
ε− 1

ε(1− γ)
[(1− γ)V (Kt)]

ε−1
ε(1−γ)

X(K,C, τ)

V (Kt)

)
dt

] ε(1−γ)
ε−1

⇔ (1− γ)V (Kt) = max(1− γ)V (Kt)

×

1 +

(
C
ε−1
ε

t − ρ [(1− γ)V (Kt)]
ε−1

ε(1−γ) + ε−1
ε(1−γ) [(1− γ)V (Kt)]

ε−1
ε(1−γ) X(K,C,τ)

V (Kt)

)
dt

[(1− γ)V (Kt)]
ε−1

ε(1−γ)


ε(1−γ)
ε−1
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⇔ 0 = max
ε(1− γ)

ε− 1

(
C
ε−1
ε

t − ρ [(1− γ)V (Kt)]
ε−1

ε(1−γ) + ε−1
ε(1−γ) [(1− γ)V (Kt)]

ε−1
ε(1−γ) X(K,C,τ)

V (Kt)

)
[(1− γ)V (Kt)]

ε−1
ε(1−γ)

⇔ ρ
ε(1− γ)

ε− 1
V (Kt) = max

 ε

ε− 1

C
ε−1
ε

t

[(1− γ)V (Kt)]
ε−1

ε(1−γ)−1
+X(K,C, τ)

 (37)

From the previous equation we obtain the following first order conditions with respect to C and τj :

C
− 1
ε

t

[(1− γ)V (Kt)]
ε−1

ε(1−γ)−1
+XC = 0 (38)

Xτj = 0 ∀j (39)

with XC and Xτj the derivatives of X with respect to C and τj , hence:

C
− 1
ε

t = Vk [(1− γ)V (Kt)]
ε−1

ε(1−γ)−1

and:

Y Vk =
n∑
i=1

λi

[
fi
∂V (K̃i)

∂K̃i

∂K̃i

∂τj
+
∂fi
∂τ j

(
V (K̃i)− V (K)

)]

B Exogenous disasters

In this section we assume n = 1 and m = 0, K̃ = ωK with ω constant, and f = (1+ δ). We also assume

σw = σK and Y = AK. The shape of the problem leads to the following guess for the value function:

V (K) = ψ
1−γ
1−ε

K1−γ

1− γ

with ψ a constant to be determined. Substituting the guess into the first order condition derived in the

previous section gives:

C−
1
ε = ψ

1−γ
1−εK−γ(1− γ)

ε−1
ε(1−γ)−1(ψ

1−γ
1−ε )

ε−1
ε(1−γ)−1(K1−γ)

ε−1
ε(1−γ)−1(1− γ)

− ε−1
ε(1−γ)+1

= (ψK)−
1
ε

⇔ C∗ = ψK
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In order to check our guess for the value function is correct, we substitute it into the HJB equation and

determine the value of ψ that enables to solve the problem. Recall equation (37):

ρ
ε(1− γ)

ε− 1
V (Kt) = max

 ε

ε− 1

C
ε−1
ε

t

[(1− γ)V (Kt)]
ε−1

ε(1−γ)−1
+X(K,C)


with X(K,C) = Vk[AK − C] + 1

2Vkkσ
2
w + λ(1 + δ)

(
V (K̃)− V (K)

)
and V (K) = ψ

1−γ
1−ε K

1−γ

1−γ , so that:

X(K,C) = ψ
1−γ
1−εK−γ [AK − ψK]− γσ2

2
ψ

1−γ
1−ε

K1−γ

1− γ
− λ(1 + δ)(1− ω1−γ)ψ

1−γ
1−ε

K1−γ

1− γ

= ψ
1−γ
1−εK1−γ

[
A− ψ − γσ2

2
− λ(1 + δ)

(1− ω1−γ)

1− γ

]
and:

C
ε−1
ε

t

[(1− γ)V (Kt)]
ε−1

ε(1−γ)−1
=

(ψK)
ε−1
ε[

ψ
1−γ
1−εK1−γ

] ε−1
ε(1−γ)−1

= ψψ
1−γ
1−εK1−γ

Hence, going back to the HJB:

ρ
ε(1− γ)

ε− 1
ψ

1−γ
1−ε

K1−γ

1− γ
= max

[
ε

ε− 1
ψψ

1−γ
1−εK1−γ + ψ

1−γ
1−εK1−γ

[
A− ψ − γσ2

2
− λ(1 + δ)

(1− ω1−γ)

1− γ

]]

⇔ ρε+ (1− ε)A− (1− ε)γσ
2

2
− (1− ε)λ(1 + δ)

(1− ω1−γ)

1− γ
= εψ + (1− ε)ψ = ψ

So the only remaining unknown, that is the consumption share of capital on the optimal path, is:

ψ = ρε+ (1− ε)
(
A− γσ2

2
− λ(1 + δ)

(1− ω1−γ)

1− γ

)
(40)

One can then use the law of capital accumulation defined by equation (35) to compute both the optimal

saving rate s∗ = S∗/Y and the stochastic growth rate of the economy:

s∗ =
Y − C∗

Y
= 1− ψ

A
=

1

A

[
ε(A− ρ) + (1− ε)

(
γσ2

2
+ λ(1 + δ)

(1− ω1−γ)

1− γ

)]
and:

dK

K

∗
=
dC

C

∗
= (A− ψ)dt+ σdz − (1− ω)dqt

=

[
ε(A− ρ) + (1− ε)γσ

2

2
+

1− ε
1− γ

λ(1 + δ)(1− ω1−γ)

]
dt+ σdz − (1− ω)dqt
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Finally, using the fact that E(dz) = 0 and E(dqt) = λ(1 + δ)dt, one can easily recover the expected

growth rate and the associated comparative statics with respect to risk and risk aversion. The sign of

these expression can easily be determined except for the effect of risk aversion. Indeed, the overall effect

of risk aversion on expected growth g∗ = E (dC∗/C) may be positive or negative depending on the value

of the IES:

∂g∗

∂γ
= (1− ε)

(
1

2
+ λ(1 + δ)

ln(ω)ω1−γ(1− γ) + (1− ω1−γ)

(1− γ)2

)
dt


> 0, if ε < 1.

≤ 0, otherwise.

Proof #1 : To show this, let’s define g(γ) = ln(ω)ω1−γ(1− γ) + (1−ω1−γ). First, notice that g(1) = 0.

Then, if we take the derivative of this function, we have:

g′(γ) = ln(ω)
[
−ln(ω)ω1−γ(1− γ)− ω1−γ]+ ln(ω)ω1−γ

= −[ln(ω)]2ω1−γ(1− γ)

Thus, for ω > 0, g′(γ) < 0 for γ < 1 and g′(γ) > 0 for γ > 1, hence g(1) is a global minimum and

g(γ) > 0 for ω > 0 and γ 6= 1. �

C Catastrophes of endogenous probability

In this section we turn to disasters of endogenous probability. We keep the assumption that ω is fixed,

but we now take m = 1 (i.e. there exist one risk-mitigation instrument) and f = 1 + δ − τα with

0 < α < 1. Production still comes from an AK technology and the Wiener process is still scaled by

a standard deviation σw = σK. The general form of the problem being the same as in the previous

section, we again make the following guess:

V (K) = ψ
1−γ
1−ε

K1−γ

1− γ

Substituting the guess into the two first order conditions, and applying our new specification, we obtain:

C∗ = ψK
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and:

AKVk = λατα−1V (K)(1− ω1−γ)

⇔ τ∗ =

(
(1− ω1−γ)λα

A(1− γ)

) 1
1−α

It is straightforward to show that τ∗ is increasing with λ and γ (see proof #1 above) and decreasing

with ω. The effect of α is less obvious, but one can show that τ∗ is an increasing function of α if and

only if α is below some threshold value ᾱ, and decreasing otherwise.

Proof #2 : Differentiating τ∗ with respect to α we get:

∂τ∗

∂α
=

(
(1− ω1−γ)λα

A(1− γ)

) 1
1−α 1

(1− α)2

[
ln

(
(1− ω1−γ)λ

A(1− γ)

)
+

1− α
α

]

we can see that this derivative is negative if and only if 1−α
α < −ln

(
(1−ω1−γ)λ
A(1−γ)

)
, the right hand side

being a positive constant since for credible parameters values the term contained in the log will be below

1. Then, as 0 < α < 1 it is obvious that for α close to 0 the derivative will be negative, while for α

close to 1 it will be positive. Hence, we have a threshold ᾱ such that:

∂τ∗

∂α


> 0 for α < ᾱ

< 0 otherwise
�

We can then solve for ψ. The problem is the same as in the case of exogenous shocks except that now:

X(K,C, τ) = ψ
1−γ
1−εK1−γ

[
(1− τ)A− ψ − γσ2

2
− λ(1 + δ − τα)

(1− ω1−γ)

1− γ

]

Hence, going back to the HJB:

ρ
ε(1− γ)

ε− 1
ψ

1−γ
1−ε

K1−γ

1− γ
=

ε

ε− 1
ψψ

1−γ
1−εK1−γ + ψ

1−γ
1−εK1−γ

[
(1− τ∗)A− ψ − γσ

2
− λf∗ (1− ω1−γ)

1− γ

]

⇔ ψ = ρε+ (1− ε)
(

(1− τ∗)A− γσ2

2
− λ(1 + δ − τ∗α)

(1− ω1−γ)

1− γ

)
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and finally, substituting for τ∗ we get:

ψ = ρε+ (1− ε)

[
A− γσ2

2
− λ(1 + δ)

(1− ω1−γ)

1− γ
+ (α

α
1−α − α

1
1−α )

(
λ(1− ω1−γ)

Aα(1− γ)

) 1
1−α
]

Lastly, we can compute the optimal saving rate and optimal growth rate of this economy starting from

the stochastic law of capital accumulation defined by equation (35):

s∗ =
Y (1− τ∗)− C∗

Y
= 1− τ∗ − ψ

A
= 1− τ∗ − 1

A

[
ρε+ (1− ε)

(
(1− τ∗)A− γσ2

2
− λf∗ (1− ω1−γ)

1− γ

)]

dK

K

∗
=
dC

C

∗
= [(1− τ∗)A− ψ]dt+ σdz − (1− ω)dqt

and so the expected growth rate is:

g∗ = E
(
dC

C

∗)
= [(1− τ∗)A− ψ − λf∗(1− ω)]dt (41)

We can then compute comparative statics to analyze the incidence of disasters. Differentiating with

respect to λ yields:

1

dt

∂g∗

∂λ
= −A∂τ

∗

∂λ
− ∂ψ

∂λ
− f∗(1− ω)− λ(1− ω)

∂f∗

∂λ
(42)

with:

−A∂τ
∗

∂λ
= −A λ

α
1−α

1− α

(
(1− ω1−γ)α

A(1− γ)

) 1
1−α

< 0

−∂ψ
∂λ

= (1− ε)

[
(1 + δ)

(1− ω1−γ)

1− γ
− λ

α
1−α

(α
α

1−α − α
1

1−α )

1− α

(
1− ω1−γ

Aα(1− γ)

) 1
1−α
] 

> 0, if ε < 1.

≤ 0, otherwise.

−f∗(1− ω) = −(1− ω)

[
1 + δ −

(
(1− ω1−γ)λα

A(1− γ)

) α
1−α
]
< 0

−λ(1− ω)
∂f∗

∂λ
=

(1− ω)α

1− α

(
(1− ω1−γ)λα

A(1− γ)

) α
1−α

> 0
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and similarly with respect to ω:

1

dt

∂g∗

∂ω
= −A∂τ

∗

∂ω
− ∂ψ

∂ω
+ λf∗ − λ(1− ω)

∂f∗

∂ω
(43)

with:

−∂τ
∗

∂ω
A = A

(
λα

A

) 1
1−α ω−γ

1− α

(
1− ω1−γ

1− γ

) α
1−α

> 0

−∂ψ
∂ω

= −(1− ε)ω−γ
[
λ(1 + δ)− λ

1
1−α

(α
α

1−α − α
1

1−α )

1− α

(
1− ω1−γ

A(1− γ)

) α
1−α
] 

< 0, if ε < 1.

≥ 0, otherwise.

λf∗ = −λ(1 + δ) + λ

(
(1− ω1−γ)λα

A(1− γ)

) α
1−α

> 0

−λ(1− ω)
∂f∗

∂ω
= −1− ω

1− α

(
(1− ω1−γ)λα

A(1− γ)

) α
1−α−1 λ2α2

A
ω−γ < 0

Finally with respect to welfare, one can start from the expression of the value function: V (K) =

ψ
1−γ
1−ε K

1−γ

1−γ . Then differentiating with respect to λ, ω and Y , one obtains:

−∂V (K)

∂λ

∂Y

∂V

1

Y
= −∂ψ

∂λ

ψ
1−γ
1−ε−1

1− ε
K1−γ 1

ψ
1−γ
1−ε

A1−γ

Y 1−γ = −∂ψ
∂λ

1

(1− ε)ψ

=
1

ψ

[
(1 + δ)

(1− ω1−γ)

1− γ
− λ

α
1−α

(α
α

1−α − α
1

1−α )

1− α

(
1− ω1−γ

Aα(1− γ)

) 1
1−α
]

and:

−∂V (K)

∂ω

∂Y

∂V

1

Y
= −∂ψ

∂ω

ψ
1−γ
1−ε−1

1− ε
K1−γ 1

ψ
1−γ
1−ε

A1−γ

Y 1−γ = −∂ψ
∂ω

1

(1− ε)ψ

= −ω
−γ

ψ

[
λ(1 + δ)− λ

1
1−α

(α
α

1−α − α
1

1−α )

1− α

(
1− ω1−γ

A(1− γ)

) α
1−α
]

In order to obtain Lucas’ measure (Lucas, 1987, 2003) of the welfare benefits from the policy instrument,

we again start from the expression of the value function:

V (K)|τ=τ∗ = V ((1 + Γ)K)|τ=0

⇔ ψ
1−γ
1−ε
∗

K1−γ

1− γ
= ψ

1−γ
1−ε
0

[(1 + Γ)K]1−γ

1− γ
⇔ Γ =

(
ψ∗
ψ0

) 1
1−ε
− 1
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and since:

ψ∗ = ψ0 + (1− ε)(α
α

1−α − α
1

1−α )

(
λ(1− ω1−γ)

Aα(1− γ)

) 1
1−α

we have:

Γ =

1 +
(1− ε)(α

α
1−α − α

1
1−α )

(
λ(1−ω1−γ)
Aα(1−γ)

) 1
1−α

ρε+ (1− ε)
(
A− γσ2

2 − λ(1 + δ) (1−ω
1−γ)

1−γ

)


1
1−ε

− 1 (44)

D With multiple catastrophes of endogenous probability and endoge-

nous magnitude

We now turn to the case where the capital stock is subject to shocks coming from two independent

Poisson processes (i.e. n = 2) with different frequencies and intensities. As in section 4, the probability

of a shock of type 1 is assumed endogenous to risk-mitigation activities τ1, and Edq1t = λ1f1dt with

f1 = 1 + δ − τα1
1 . Its intensity is again supposed to be a fixed proportion of the capital stock and

K̃1 = ω1K1. However, we now have an additional process whose probability will be assumed exogenous

and simply equal to Edq2t = λ2dt, but whose intensity will be endogenized. The specification of this

second process roughly follows the one proposed by Bretschger & Vinogradova (2017). For simplicity, we

abstract from the modelling of pollution as can be found in their paper, and simply assume shocks depend

on some adaptation efforts τ2 such that K̃2 = K−(ν−α2τ2)K. We consider τ2 as the share of production

spent in adaptation policies as it enables to reduce the negative impact of disasters but does not reduce

their likelihood. The share of capital that remains after a shock is denoted ω2(τ2) = 1− ν + α2τ2, and

ν is therefore the share of capital destroyed by disasters absent any adaptation activity. For simplicity

we consider the case without Brownian motion so that σw = 0. As in the previous section, production

is derived from an AK technology. Making a similar guess as before, we have:

C∗ = ψK (45)
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AKVk = λ1α1τ
α1−1
1 V (K)(1− ω1−γ

1 )

⇔ τ∗1 =

(
(1− ω1−γ

1 )λ1α1

A(1− γ)

) 1
1−α1 (46)

and:

AKVk = λ2
∂V (K̃2)

∂K̃2

∂K̃2

∂τ2
= λ2ω

−γ
2 Vkα2K

⇔ ω∗2 = ω2(τ
∗
2 ) =

(
λ2α2

A

) 1
γ

(47)

hence:

τ∗2 =
ω∗2 − (1− ν)

α2
(48)

The expression of τ∗1 remains the same as in section 4. Interestingly, the adaptation policy τ∗2 solely

depends on the efficiency of the technology α2, and on the difference between the share of capital

remaining after catastrophes at equilibrium, ω∗2, relative to the case absent adaptation policies, 1 − ν.

The share of capital preserved at equilibrium depends positively on the probability of an adverse event

λ2, on the efficiency of adaptation technology α2, and negatively on the interest rate A. Given that

0 < (λ2α2)/A < 1, risk aversion γ also plays positively on ω∗2. Thus, as for the first instrument τ∗1 , risk

and risk aversion positively affect the optimal instrument τ∗2 , but the efficiency of the instrument α2

has an ambiguous effect.

Given the independence of the two catastrophes and of the two instruments, the share of output that

should optimally be spent to mitigate each catastrophe is not affected by the existence of the other.

Contrary to Martin & Pindyck (2015) who investigate the binary decision to undertake a project to avert

or not a catastrophe when facing multiple types of disasters, standard cost-benefit analysis holds in this

framework. For each catastrophe, the marginal cost of mitigation efforts should equate the marginal

benefits of reducing this specific catastrophe. However, because each catastrophe impacts the trajectory

of output, the amounts of resources spent in each instrument τ∗1Yt and τ∗2Yt depend on the existence and

realization of other catastrophes as well. The full trajectory of output Yt can be determined applying
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similar methods than the ones used in the previous specifications. With:

X(K,C, τ) = ψ
1−γ
1−εK1−γ

[
(1− τ1 − τ2)A− ψ − λ1(1 + δ − τα1

1 )
(1− ω1−γ

1 )

1− γ
− λ2

(1− (ω∗2)1−γ)

1− γ

]

we find:

ψ = ρε+ (1− ε)
(

(1− τ∗1 − τ∗2 )A− λ(1 + δ − (τ∗1 )α)
(1− ω1−γ)

1− γ
− λ2

(1− (ω∗2)1−γ)

1− γ

)

Once ψ is obtained, one can easily plug this result into the stochastic law of motion of capital and

compute the stochastic and expected growth rate of this economy. The results provide similar intuitions

to the ones discussed in section 4.

E Calibration

Table VII: Calibration of time impatience (ρ) to match a 1.75% expected growth rate
(g∗).

Moderate dis. Large dis. Extreme dis.
ε γ

1/3 → 1 0.014 0.014 0.016
1/3 3 0.015 0.016 0.022
1/3 5 0.016 0.019 0.033
1/3 10 0.019 0.026 0.135
→ 1 → 1 0.049 0.049 0.049
→ 1 3 0.049 0.049 0.048
→ 1 5 0.049 0.049 0.048
→ 1 10 0.049 0.048 0.043
1.5 → 1 0.054 0.054 0.054
1.5 3 0.054 0.054 0.053
1.5 5 0.054 0.054 0.051
1.5 10 0.053 0.052 0.028

44


	Introduction
	General framework
	Benchmark: exogenous disasters
	Specification
	Optimal resources allocation
	Optimal growth and the effects of disasters

	Disasters of endogenous probability
	Specification
	Optimal resource allocation
	Optimal growth and the effects of disasters
	Disasters and welfare

	Quantitative assessment
	Set-up
	A country/region extension
	Calibration

	How likely is it that disasters foster economic growth?
	How much do disasters impact welfare?
	Does using Epstein-Zin-Weil preferences matters quantitatively?

	Conclusion
	Appendices
	General framework
	Exogenous disasters
	Catastrophes of endogenous probability
	With multiple catastrophes of endogenous probability and endogenous magnitude
	Calibration

