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1 Introduction

It is known that the optimal menu offered to risk averse agents may involve
lotteries in the presence of asymmetric information. In public finance lotteries
take the form of random taxes yielding random after-tax income, such as in
Weiss (1976), Stiglitz (1981), Stiglitz (1982) or Brito, Hamilton, Slutsky, and
Stiglitz (1995). The main economic intuition is straightforward. Suppose
that the government would like to redistribute income to low-skilled in a
population of risk-averse workers. Redistribution is potentially limited if the
government observes neither skill nor the exact amount of labor, as high-
skilled then might reduce labor effort to enjoy higher transfers. Introducing
randomness in the after-tax income designed for low-skilled is detrimental to
their welfare, but this also expands the scope of possible redistribution by
discouraging high-skilled from relaxing effort.

A deterministic optimum obtains if the welfare cost incurred by those
facing noise overcomes the gain from expanded scope of redistribution. This
is more likely to happen if high-skilled do not suffer much from income noise.
Hellwig (2007) indeed shows that a unweighted utilitarian (Benthamite) gov-
ernment should rely on deterministic redistribution if risk aversion decreases
with labor productivity, i.e., risk aversion is higher for low than high skilled.

This paper explores the more general case of a weighted utilitarian gov-
ernment. The impact of relaxing the assumption of equal weighting of every
agent in the social welfare function is a priori ambiguous. On the one hand,
the suffering of the less well-off part of the population that faces random
noise is magnified; one may think for instance of the utility cost of random
allocation in social housing. On the other hand, however, greater redistribu-
tion desires put more pressure on incentives, as bundles designed for the poor
become more desirable. The potential social welfare gains from discouraging
the rich to mimic the poor are therefore magnified.

We analyze the welfare impact of removing lotteries in the redistribu-
tion policy by switching to the menu of certainty equivalents associated with
these lotteries. We find that maintaining incentive compatibility in the menu
of certainty equivalents puts strong limits on the social welfare gains from
switching to the deterministic menu. Eventually the deterministic policy
improves upon the menu of lotteries in the case of weak redistribution mo-
tives, with a social welfare function close enough to the Benthamite pattern.
Sharper redistribution motives instead reduce the likelihood that the cer-
tainty equivalents dominate random redistribution.
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The paper proceeds as follows. Our setup is described in Section 2. Sec-
tion 3 provides conditions for incentive compatibility of menus of lotteries.
Section 4 compares lotteries and the associated certainty equivalents. Incen-
tive compatibility of the menu of certainty equivalents is analyzed in Section
5. Section 6 concludes.

2 General framework

The general setup is as in Gauthier and Laroque (2023). A government
wants to redistribute income between a continuum of agents in a population
of total unit size. Every agent is indexed by her type θ, a real parameter
taking values in Θ. The type has cdf F : Θ → [0, 1] associated with positive
probability density function f : Θ → R++. The preferences of a type θ agent
are represented by the quasilinear utility function

u(c, θ)− y (1)

when she earns before-tax income y and pays y− c as tax. The after-tax in-
come c is also her consumption. Earning y requires providing an effort, hence
the disutility cost. The function u is increasing, differentiable everywhere in
c and θ, and strictly concave in c. It satisfies the Spence-Mirrlees condition
that the cross-derivative u′′

cθ(c, θ) is negative for all (c, θ).

The government offers a menu (c̃(θ), ỹ(θ)) of after and before-tax income
lotteries. The menu is feasible if aggregate consumption falls below aggregate
production, ∫

Θ

E [c̃(θ)− ỹ(θ)] dF (θ) ≤ 0. (2)

If θ is private information to the agent, the government must also ensure that
every agent chooses the income pair designed for her. This is satisfied if the
incentive constraints

E [u(c̃(θ), θ)− ỹ(θ)] ≥ E[u(c̃(τ), θ)− ỹ(τ)] (3)

hold for all (θ, τ) in Θ×Θ.

The social welfare objective is∫
Θ

Ṽ (θ) dG(θ), (4)
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where Ṽ (θ) = E [u(c̃(θ), θ)− ỹ(θ)] is the indirect utility of type θ. The social
weights embodied in G(·) are non-negative and normalized so that they sum
up to 1. Hellwig (2007) considers a unweighted utilitarian government where
every agent is valued equally, F (θ) = G(θ) for all θ. We allow for general
utilitarian preferences where the utility of type θ can be assigned any given
(positive) weight in the objective.

An optimal redistribution policy is a menu of lotteries that maximizes
the objective (4) subject to the feasibility constraint (2) and the incentive
constraints (3).

A deterministic policy consists of degenerated lotteries (c̃(θ), ỹ(θ)) yield-
ing the sure outcome (c(θ), y(θ)). In view of the quasilinear utility (1), re-
placing the lottery ỹ(θ) with the sure outcome E[ỹ(θ)] affects neither the
constraints (2) and (3) nor the objective (4). Any social gain from a deter-
ministic policy must therefore come from making the after-tax certain.

3 Dealing with incentives

Suppose that the lottery c̃(θ) designed for a type θ agent is such that its
owner receives an after-tax income smaller than c with probability H(c, θ),
c ∈ [cinf , csup], associated with density h(c, θ). We restrict our attention to
menus of lotteries such that H(c, θ) is continuously differentiable in θ, and we
denote by H ′

θ(c, θ) its partial derivative in θ and h′
θ(c, θ) the partial derivative

of the associated density.

Lemma 1. The incentive constraints (3) associated with a menu of lotteries
(c̃(θ), y(θ)) are satisfied only if

Ṽ ′(θ) = E [u′
θ(c̃(τ), θ)] (5)

and
∂

∂τ
E [u′

θ(c̃(τ), θ)] ≥ 0 (6)

for all θ and τ = θ. These conditions are sufficient for incentive compatibility
if (6) holds true for all θ and τ .

Proof. The proof reproduces standard arguments used in the case of
deterministic contracts; see, e.g., Section 2.3 in Salanié (2017). The incentive
constraints (3) can be rewritten as

θ = argmax
τ

E[u(c̃(τ), θ)]− y(τ)
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for all θ. This requires that the truthful report τ = θ is a local extremum of
the utility E[u(c̃(τ), θ)]− y(τ), i.e.,

∂

∂τ
E[u(c̃(τ), θ)]− y(τ) = 0 (7)

at τ = θ. Using the envelope theorem, this is equivalent to (5).
In addition, truthful reporting τ = θ must be a local maximizer of the

utility. This is the case if E[u(c̃(τ), θ)] − y(τ) is locally concave in τ at the
extremum τ = θ. If (7) holds at τ = θ for all θ, we have

∂2

∂τ 2
(E [u(c̃(τ), θ)]− y(τ)) = − ∂2

∂τ∂θ
(E [u(c̃(τ), θ)]− y(τ))

= − ∂

∂τ
E [u′

θ(c̃(τ), θ)]

at τ = θ. Local concavity thus reads as (6).
Conditions (5) and (6) are necessary and sufficient for E[u(c̃(τ), θ)]−y(τ)

to stand below E[u(c̃(θ), θ)] − y(θ) for all τ close to θ. They do not ensure
that truthful reporting is a global maximum. A sufficient condition for a
global maximum obtains by observing that, using (7) with θ = τ ,

∂

∂τ
(E [u(c̃(τ), θ)]− y(τ)) =

θ∫
τ

∂

∂τ
E [u′

θ(c̃(τ), z)] dz.

If (6) holds true for all τ and θ, then the right-hand side of this equality has
the same sign as θ−τ , which implies that E [u(c̃(τ), θ)]−y(τ) is single-peaked
in τ with a global maximum attained at τ = θ. ■

The inequality (6) relates to agents preferences and properties of the
lotteries under scrutiny. This seems at odds with to the familiar case of
deterministic menus, where under the Spence-Mirrlees condition the first-
order approach is valid if and only if consumption is non-increasing with
type θ. Actually Lemma 2 shows that for a special class of menus incentive
compatibility obtains if and only if (3) is met.

Lemma 2. Suppose that c̃(θ1) first-order stochastically dominates c̃(θ2) for
any two types θ1 and θ2, θ1 < θ2. Then inequality (6) holds true for all τ and
θ. Therefore incentive compatibility obtains if and only if (5) is met.
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Proof. For the class of lotteries under scrutiny, we have

∂

∂τ
E [u′

θ (c̃(τ), θ)] =

csup∫
cinf

u′
θ (c, θ) dH

′
θ(c, τ).

Using the integration by parts formula yields

csup∫
cinf

u′
θ (c, θ) dH

′
θ(c, τ) = [u′

θ (c, θ)H
′
θ(c, τ)]

csup

cinf −
csup∫

cinf

u′′
θc (c, θ)H

′
θ(c, τ) dc.

Since H(cinf , τ) = 0 and H(csup, τ) = 1 for all τ , we have H ′
θ(c

inf , τ) =
H ′

θ(c
sup, τ) = 0 for all τ . It follows that

csup∫
cinf

u′
θ (c, θ) dH

′
θ(c, τ) = −

csup∫
cinf

u′′
θc (c, θ)H

′
θ(c, τ) dc.

The Spence-Mirrlees condition u′′
θc (c, θ) < 0 for all (c, θ) implies that (6)

holds true for all τ and θ if H ′
θ(c, θ) ≥ 0 for all (c, θ), i.e., H(c, θ1) ≤ H(c, θ2)

for all c and θ1 ≤ θ2. This corresponds to the case where H(c, θ1) first-order
stochastically dominates H(c, θ2). ■

Lemma 2 provides us with a natural generalization of the familiar mono-
tonicity condition for incentive compatibility in a deterministic environment.
Under the Spence-Mirrlees condition, the monotonicity of the determinis-
tic consumption with type is replaced with a stochastic dominance ranking
of lotteries. Namely, higher types face higher probabilities of receiving low
amounts of consumption. Note, however, that first-order stochastic domi-
nance is sufficient, but not necessary for local incentive compatibility.

4 Certainty equivalent domination

Suppose that we switch from a feasible and incentive compatible menu of
lotteries (c̃(θ), y(θ)) to the deterministic menu where type θ instead gets
the after-tax income certainty equivalent C(c̃(θ), θ) with probability 1 and
produces y(θ) − δ(θ) for some deterministic before-tax income adjustment
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δ(θ). The certainty equivalent C(c̃, θ) of type θ when facing lottery c̃ is the
sure consumption such that

u (C(c̃, θ), θ) = E [u (c̃, θ)] . (8)

The associated risk premium is π(c̃, θ) = E [c̃]− C(c̃(τ), θ).
In the class of lotteries under scrutiny, the certainty equivalent C(c̃(τ), θ)

is continuously differentiable in τ and θ, for all τ and θ in Θ×Θ. We denote
its first derivatives in τ and θ by C′

τ (c̃(τ), θ) and C′
θ(c̃(τ), θ), respectively.

Our assumptions on u imply that C(c̃(τ), θ) is continuously differentiable in
θ. The behavior of the certainty equivalent with τ is restricted, however, as it
requires that any given after-tax income is received by neighboring types with
neighboring probabilities. This leaves open the possibility that deterministic,
but non-differentiable menus perform better than lotteries, a case that the
present setup does not cover.

For such lotteries, we have:

Proposition 1. Consider a feasible and incentive compatible menu of lot-
teries (c̃(θ), y(θ)). There is a deterministic menu where every type θ gets the
certainty equivalent (C(c̃(θ), θ)) that is feasible, incentive compatible, and
improves upon lotteries if and only if:

1. the inequality

θsup∫
θinf

[
π(c̃(θ), θ)− G(θ)− F (θ)

f(θ)
π′
θ(c̃(θ), θ)u

′
c(C(c̃(θ), θ), θ)

]
dF (θ) > 0

(9)
is met.

2. C(c̃(θ), θ) is non-increasing in θ.

A proof is in Appendix A. An intuition for the inequality (9) obtains
from the simpler reform that removes randomness for just a small part of
the population, i.e., we replace c̃(θ) with C(c̃(θ), θ) for all θ between some
θ and θ = θ + dθ, dθ > 0 small. The after-tax income, random or not, is
unchanged outside the interval [θ, θ].

Within this interval, incentives call for a before-tax income adjustment.
The utility from consumption obtained by θ when mimicking τ ∈

[
θ, θ̄

]
is

E [u(c̃(τ), θ)] = u(C(c̃(τ), θ), θ) before the reform, and u(C(c̃(τ), τ), θ) after
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the reform. The reform contributes to relax the incentive constraint involving
these two types if C(c̃(τ), θ) > C(c̃(τ), τ) ≃ (θ− τ)C′

θ(c̃(τ), τ) > 0 for θ close
to τ . The before-tax income adjustment that compensates for the change in
utility from consumption thus obeys

δ′(θ) = −C′
θ(c̃(θ), θ)u

′
c (C(c̃(θ), θ), θ) .

Since only the before-tax income can change for types outside [θ, θ], incentive
compatibility requires that δ(θ) is some uniform amount δ for all θ ≤ θ, and
δ for all θ ≥ θ. Relying on the approximation δ̄ ≃ δ + δ′(θ) dθ, we have

δ̄ − δ ≃ −C′
θ(c̃(θ), θ)u

′
c (C(c̃(θ), θ), θ) dθ. (10)

The adjustments δ and δ̄ follow from (10) and the feasibility constraint that
total resources

θsup∫
θinf

[y(θ)− δ(θ)] dF (θ)

must finance consumption

θ∫
θinf

E [c̃(θ)] dF (θ) +

θ+dθ∫
θ

C(c̃(θ), θ) dF (θ) +

θsup∫
θ+dθ

E [c̃(θ)] dF (θ).

Replacing C(c̃(θ), θ) with E [c̃(θ)] − π(c̃(θ), θ) and using (2) at equality, we
get

θsup∫
θinf

δ(θ) dF (θ) =

θ+dθ∫
θ

π(c̃(θ), θ) dF (θ). (11)

Hence the total amount of before-tax income resources created by the reform
equals the aggregate risk premium of agents who no longer face income risk.
For dθ close to 0, we have

δF (θ) + δ̄ (1− F (θ)) ≃ π(c̃(θ), θ)f(θ) dθ, (12)

where the left-hand side uses F (θ̄) ≃ F (θ)+ f(θ)dθ and neglects the second-
order term (δ̄ − δ)f(θ) dθ.
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The system formed by (10) and (12) gives the δ and δ̄ adjustments con-
sistent with feasibility and incentive compatibility at the outcome of the
reform,

δ ≃ [π(c̃(θ), θ)f(θ) + (1− F (θ))C′
θ(c̃(θ), θ)u

′
c (C(c̃(θ), θ), θ)] dθ,

and
δ̄ ≃ [π(c̃(θ), θ)f(θ)− F (θ)C′

θ(c̃(θ), θ)u
′
c (C(c̃(θ), θ), θ)] dθ.

The total change in before-tax income resources π(c̃(θ), θ)f(θ) dθ in (12)
is positive. Therefore the deterministic menu always improves upon the menu
of lotteries in the absence of redistributive concerns.

If redistributive concerns matter, the reform improves social welfare if
δG(θ) + δ̄ (1−G(θ)) > 0, which is

π(c̃(θ), θ)f(θ) + (G(θ)− F (θ))C′
θ(c̃(θ), θ)u

′
c (C(c̃(θ), θ), θ) > 0.

Using C′
θ(c̃(θ), θ) = −π′

θ(c̃(θ), θ), this is the expression that appears in (9).

The inequality (9) validates the intuitive idea that an economy consisting
of agents who display high risk aversions (π(c̃(θ), θ) is high) tends to be
immune from socially beneficial income tax randomizations.

However the shape of the distribution of risk aversion in the population
matter as well. Indeed (9) is always satisfied if the risk premium is iden-
tical across agents, π′

θ(c̃, θ) = 0 for all c̃ and θ. This happens if taxpayers
have the same preferences, u(c, θ) does not depend on θ. This can also
accommodate preference heterogeneity. For instance, in the multiplicative
formulation u(c, θ) = θv(c), the certainty equivalent of a lottery c̃ is defined
by v(C(c̃, θ)) = E [v(c̃)], and so it does not depend on type θ.

To address the role played by redistribution social tastes, observe first
that (9) is satisfied independently of risk aversions for unweighted utilitarian
social preferences (G(θ) = F (θ) for all θ). Weak redistribution motives thus
tend to favor deterministic taxation tools. It also holds for weighted utili-
tarian social preferences if [G(θ)− F (θ)] π′

θ(c̃, θ) is non-positive for all types,
i.e., if the socially favored agents display a higher risk aversion (captured
by a higher risk premium). In this configuration, the optimal determinis-
tic redistribution policy dominates random policies that have the optimal
deterministic menu as certainty equivalent, a property in line with Hellwig
(2007). Equivalently, the optimal redistribution policy, if involving random
taxes while (9) is satisfied, must be associated with a certainty equivalent
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menu which fails to meet the monotonicity conditions for incentive compat-
ibility; otherwise there would exist a feasible incentive compatible determin-
istic menu improving upon the optimal deterministic policy, a contradiction.

Our Spence-Mirrlees assumption makes the marginal utility of consump-
tion decreasing with θ. This suggests to interpret low types as more likely
poor, since they put a high value on consumption. It is usually argued that
the poor display higher risk aversions than the rich. If redistribution favors
the poor, G(θ) ≥ F (θ) for all θ and π′

θ(c̃, θ) ≤ 0, and so (9) is met. The de-
terministic menu, if incentive compatible, performs better than the lotteries
and all redistribution should be made deterministically.

As will be shown in Section 5, however, the most relevant case for (9) in-
stead is the one where [G(θ)− F (θ)]π′

θ(c̃, θ) is positive. Incentive considera-
tions indeed point to π′

θ(c̃, θ) ≥ 0. Then (9) is no longer necessarily satisfied.
The conflict between redistribution to the poor, captured by G(θ)−F (θ) > 0,
and incentives weakens the case for deterministic redistribution.

CARA-Gaussian example. In the CARA-Gaussian case, (9) is satisfied
for a high enough level of risk aversion independently of the shape of G(θ)−
F (θ), i.e., whatever the social desires for redistribution. Type θ agents have
CARA preferences

u(c, θ) = −1

θ
exp(−θc),

with θ her absolute risk aversion coefficient. They face Gaussian after-tax
income lotteries (c̃(θ)) with mean m(c̃(θ)) and variance v(c̃(θ)) > 0. Since

E [u(c̃(τ), θ)] = −1

θ
exp

[
−θ

(
m(c̃(τ))− θ

2
v(c̃(τ))

)]
,

the certainty equivalent of lottery c̃(τ) for a type θ agent is

C(c̃(τ), θ) = m(c̃(τ))− θ

2
v(c̃(τ)),

which is assumed to be positive, and the risk premium

π(c̃(τ), θ) =
θ

2
v(c̃(τ)).

Hence inequality (9) is equivalent to

θsup∫
θinf

v(θ) [θ − (G(θ)− F (θ)) exp (−θC(c̃(θ), θ))] dθ > 0.
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Since both G(θ)−F (θ) ≤ 1 and exp (−θC(c̃(θ), θ)) ≤ 1 for all θ (the after-tax
income C(c̃(θ), θ) is non-negative), we have (G(θ)− F (θ)) exp (−θC(c̃(θ), θ)) ≤
1 for all θ. Hence, for θinf ≥ 1, every term in the sum in (9) is non-negative,
and so (9) is met. □

Although (9) suggests that the certainty equivalent menu performs better
than the lottery, we must be careful when drawing such a conclusion. Indeed
Condition 2 in Proposition 1 requires that the lotteries are associated with
lower certainty equivalents for higher types. It is not clear whether this
requirement is consistent with incentive compatibility of the initial menu of
lotteries. This is what we study in the next Section.

5 Monotone certainty equivalents

If c̃(θ1) first-order stochastically dominates c̃(θ2), then any given risk averse
agent θ prefers c̃(θ1), so C(c̃(θ1), θ) ≥ C(c̃(θ2), θ) for all θ. This ranking of
lotteries in terms of stochastic dominance does not imply monotonicity of the
certainty equivalents, which instead requires a more demanding comparison
between C(c̃(θ1), θ1) and C(c̃(θ2), θ2), i.e., how different types of agents value
these two lotteries. Lemma 2 thus is not directly useful to assess Condition 2
in Proposition 1: incentive compatibility of the lotteries does not guarantee
incentive compatibility of the certainty equivalents.

To delineate the more demanding circumstances where the menu of cer-
tainty equivalents meets the incentive constraints, observe that differentiation
of (8) in θ yields

dC(c̃(θ), θ)
dθ

≤ 0

⇔ E [u′
θ (c̃(θ), θ)]− u′

θ(C(c̃(θ), θ), θ) +
∫ csup

cinf
u(c, θ)h′

θ(c, θ) dc ≤ 0. (13)

Recall that C(c̃(θ), θ) = E [c̃(θ)]−π(c̃(θ), θ) with π(c̃(θ), θ) a positive risk
premium. The Spence-Mirrlees condition u′′

cθ(c, θ) < 0 yields

u′
θ(C(c̃(θ), θ), θ) > u′

θ(E [c̃(θ)] , θ).

Therefore,

E [u′
θ (c̃(θ), θ)]− u′

θ(C(c̃(θ), θ), θ) < E [u′
θ (c̃(θ), θ)]− u′

θ(E [c̃(θ)] , θ).
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It follows that E [u′
θ (c̃(θ), θ)]− u′

θ(C(c̃(θ), θ), θ) ≤ 0 if

E [u′
θ (c̃(θ), θ)] ≤ u′

θ(E [c̃(θ)] , θ),

a condition that is satisfied if u′
θ(c, θ) is concave in c. In this case the differ-

ence between the first two terms in (13) is negative.
Following the insights in Lemma 2, we now account for stochastic domi-

nance properties. Suppose that the initial menu of lotteries is such that the
lotteries designed for lower types first-order stochastically dominate those
designed for higher types, H(c, θ+dθ) ≤ H(c, θ) for all c, θ and dθ < 0. For
neighboring types, dθ ≃ 0, this inequality reads

H ′
θ(c, θ) ≥ 0.

To exploit this property, we use the integration by parts formula to rewrite∫ csup

cinf
u(c, θ)h′

θ(c, θ) dc = −
∫ csup

cinf
u′
c(c, θ)H

′
θ(c, θ) dc,

Utility is increasing with consumption, so that this sum is negative. It follows
that:

Lemma 3. Let C(c̃, θ) be the type θ certainty equivalent consumption asso-
ciated with lottery c̃. The certainty equivalent C(c̃(θ), θ) is non-increasing in
θ if

1. c̃(θ1) first-order stochastically dominates c̃(θ2) for any two types θ1 and
θ2, with θ1 < θ2.

2. u′
θ(c, θ) is concave in c.

Condition 1 relates to the initial menu of lotteries. Lotteries designed for
low types dominate those designed for high types: any given agent prefers
the lotteries designed for low types to those designed for high types. In view
of Lemma 2, circumstances for incentive compatibility of the initial menu of
lotteries are in line with those for incentive compatibility of the associated
menu of certainty equivalents. Keeping with the interpretation of low types
as being the poor, incentives tend to be preserved if the preferred bundles
are designed for the less well-off part of the population.

Condition 2 instead is on individual preferences. It allows us to get a
better understanding of the status of the inequality (9) in Proposition 1.
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If one refers to concavity of the utility function u in c as a measure of risk
aversion, then the monotonicity properties of the certainty equivalent needed
for implementing this deterministic menu obtain if higher types display a
higher risk aversion. That is, u′′

cc(c, θ), which takes negative values in the
presence of risk aversion, is decreasing with θ. Condition 2 thus fails to be
satisfied in the empirically plausible case where the poor, rather than the rich,
display the greatest risk aversions. This suggests that incentive compatibility
of the menu of lotteries tends to be inconsistent with incentive compatibility
of the menu of the certainty equivalents. In practice, the menu of certainty
equivalents likely violates second-order monotonicity condition for incentive
compatibility.

6 Conclusion

We have provided necessary and sufficient conditions for incentive compati-
bility of a menu of consumption or after-tax income lotteries. If the marginal
utility of consumption is decreasing with type, the first-order approach can
be applied if the lotteries designed for low types first-order stochastically
dominate those designed for high types. In our setup low types give more
importance to consumption than high types. Low types may accordingly be
considered as the less well-off part of the population. When one switches
to the deterministic menu where every consumption lottery is replaced with
the associated certainty equivalent consumption, incentive compatibility is
compromised if the poor display the greatest risk aversions, a case that is
usually considered as the most relevant in practice. Redistributing consump-
tion in a deterministic way is costly as this makes incentive requirements
more difficult to meet, but this also yields more tax resources coming from
the confiscated risk premia. As a result of this conflict, deterministic redis-
tribution through certainty equivalents dominates random redistribution for
weak enough redistribution motives in high enough risk-averse populations.

Although the menu of certainty equivalents provides us with a natural
benchmark, other deterministic menus could improve upon the menu of lot-
teries. Hence it may be that redistribution should be made deterministically
while the certainty equivalents are dominated or fail to meet incentive com-
patibility. The role played by bunching in the deterministic optimum is
examined in Gauthier and Laroque (2023). On the other hand, incentive
compatibility of menus of lotteries may obtain even though they fail to meet
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the ranking of first-order stochastic dominance. It is not clear how such
menus can then be consistent with preservation of incentives in certainty
equivalents. This opens new room for optimal random menus.
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A Proof of Proposition 1

The switch to the menu of certainty equivalent incomes leads to a change in
social welfare (4) equal to

θsup∫
θinf

[u(C(c̃(θ), θ), θ) + δ(θ))] dG(θ)−
θsup∫

θinf

E [u(c̃(θ), θ)] dG(θ).

Using (8), this change reduces to

θsup∫
θinf

δ(θ) dG(θ). (14)

Social welfare improves if agents with high social valuations enjoy a reduction
in their before-tax income.

The before-tax income adjustments (δ(θ)) must meet feasibility (2) and
incentive compatibility (3). The incentive constraints associated with the
final deterministic schedule are

θ = argmax
τ

u(C(c̃(τ), τ), θ)− y(τ) + δ(τ) (15)

for all θ. The differentiability assumption made on C(c̃(τ), θ) and the fact
that type τ = θ solves the maximization program in (15) imply that the
before-tax income y(τ)+δ(τ) is also continuously differentiable (see Guesnerie
and Laffont (1984), Theorem 1). Incentive compatibility thus requires

[C′
τ (c̃(τ), τ) + C′

θ(c̃(τ), τ)]u
′
c(C(c̃(τ), τ), θ)− y′(τ) + δ′(τ) = 0 (16)

for all θ and τ , τ = θ. The incentive constraints for the initial random menu
(c̃(θ), y(θ)),

θ = argmax
τ

E [u(c̃(τ), θ)]− y(τ) = argmax
τ

u(C(c̃(τ), θ), θ)− y(τ)

for all θ, require C′
τ (c̃(τ), θ)u

′
c(C(c̃(τ), θ), θ)−y′(τ) = 0 for all θ and τ , τ = θ.

Hence (16) simplifies to

δ′(θ) = −C′
θ(c̃(θ), θ)u

′
c(C(c̃(θ), θ), θ) (17)
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for all θ. By summation over types we obtain

δ(θ) = δ(θinf)−
θ∫

θinf

C′
θ(c̃(z), z)u

′
c(C(c̃(z), z), z) dz (18)

for all θ.
The feasibility constraint (2) at equality gives the value of δ(θinf). The

derivation is as follows. After replacing in (2) the sure income C(c̃(θ), θ) with
the difference E[c̃(θ)]− π(c̃(θ), θ), the feasibility constraint takes the form

θsup∫
θinf

[y(θ)− δ(θ)− E[c̃(θ)] + π(c̃(θ), θ)] dF (θ) = 0.

Since the initial random menu (c̃(θ), y(θ)) also meets (2), this equality sim-
plifies to

θsup∫
θinf

[π(c̃(θ), θ)− δ(θ)] dF (θ) = 0.

The change in before-tax income resources equals the total risk premium that
the government can extract from the risk-averse agents when it removes risk.
Using (18) to relate δ(θ) to δ(θinf), and the identity C′

θ(c̃(θ), θ) = −π′
θ(c̃(θ), θ)

finally gives

δ(θinf) =

θsup∫
θinf

[
π(c̃(θ), θ)− 1− F (θ)

f(θ)
π′
θ(c̃(θ), θ)u

′
c(C(c̃(θ), θ), θ)

]
dF (θ).

We are now in a position to write the change in social welfare from a
reform replacing lotteries with certainty equivalent incomes. Reintroducing
the expression of δ(θ) found in (18) into (14) and using the integration by
parts formula, the change in social welfare rewrites

δ(θinf)−
θsup∫

θinf

1−G(θ)

f(θ)
C′

θ(c̃(θ), θ)u
′
c(C(c̃(θ), θ), θ) dF (θ). (19)

The expression of δ(θinf) derived above yields the inequality stated in Condi-
tion 1. Indeed replacing the random menu with the deterministic one yields
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a social welfare improvement if and only if (14) is positive. The inequality in
Proposition 1 obtains after using the expression of δ(θ) and δ(θinf) in (19).

To prove the statement in Condition 2, observe that the monotonicity
condition on C(c̃(θ), θ) is necessary for incentive compatibility. Under the
Spence-Mirrlees condition, it also ensures that the incentive constraints hold
for every type θ and every report τ . This concludes the proof.
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