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Introduction

What we have seen so far
1 We used potential outcome notations to define causal impacts, and

identification strategies
2 With randomization, assignment to treatment is independent from

potential outcomes hence simple differences identify causal relationships
and we may use regressions (not only OLS) to estimate the parameter of
interests.

3 With panel data or repeated cross sections, we may identify the average
treatment effect on the treated if we assume parallel trend i.e. in the
absence of treatment, treated and untreated units would have followed
the same path.

4 When there is only one group that’s treated, usual models (regressions
with leads and lags in particular) work fine but a strand of recent papers
showed that in the multiple group, multiple period setting, TWFE are
strongly biased.

5 New methods allow either to fix the problem depending on the setting or
estimate different parameters

Now, we stay with this parallel trend intuition and move to macro
data.
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The kind of question we ask

What’s effect of vaccinal mandate on covid ?
• You remember the ”pass vaccinal” ; we would like to know if it works,

right ?
• We wouldn’t be too happy with using past data for forecasting, right ?
• We wouldn’t consider a single country (e.g. Germany) as a counterfactual

because they are different and probably on different paths etc.
• How do we find a counterfactual when the whole country is affected ?
• Cross country variations ? Which countr(y)ies should we choose ?
• What could we do ?

Idea: use weighted average of several countries to construct a
synthetic France : Synthetic controls
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Synthetic controls in brief

What are synthetic controls
• Intuition :

• With more aggregated data, usually no clear comparison “group” to
assess the impact of a policy change, even with DiD.

• Using a weighted mixture of other regions may provide a better
counterfactual than a single one, hence the synthetic control

• Main advantages of the methods compared with
regressions :

• No need for extrapolation – instead use interpolation
• Focus on data before the results are known to define counterfactual

(researcher less incline to harking)
• Weights make explicit what units contribute to the counterfactual

and by how much
• Bridge a gap between qualitative and quantitative data (case study)
• Very practical discussion in Abadie, Diamond, and Hainmueller

(2011) about the Synth package that implement this method in R.
• State of the art nowdays: Alberto Abadie. 2021. “Using Synthetic

Controls: Feasibility, Data Requirements, and Methodological
Aspects.” Journal of Economic Literature 59, no. 2 (June 1, 2021):
391–425
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Synthetic controls in brief

What are synthetic controls
• Define an oucome Yit with I + 1 aggregated units of interest and i = 1 is

the treated region.
• Each region is observed over T periods, treatment occurs at time t0.
• Like in Rubin’s causal model, treatment effect is defined at time t by

Yit(1)− Yit(0)

where, here, the treated unit Y1t is a realisation of the theoretical value
Yit(1) and Yit(0) will be evaluated simply as a weighted average of
(some) other units:

Yit(0) =

I+1∑
i=2

w∗
i Yit

• What’s hard ? Choosing which units to keep and how to weight them.

• Solution: Data-driven procedure. Optimize an algorithm that choose
weights w∗

I that minimize a distance measure.
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Synthetic controls in brief

One step back to gain intuition
• There is one obvious synthetic control estimator: put equal weights 1

I
to

every control units.
• The counterfactual is the simple average of untreated country. But why

the proportional weight ?
• Synthetic control is a data driven (i.e. machine learning) procedure to

find a weighting scheme that minimize an error term over a training data
set (pre-treatment period) and use it over a test set (post-treatment).

• Same ”spirit” as a matching estimator but you do not weight units by the
inverse of their treatment probability.
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Synthetic controls in brief

What are synthetic controls
• Ideally, we would like to construct a synthetic control that resembles the

treated unit in all relevant pre-intervention characteristics.
• Formalizing this idea we define Ui as a (r × 1) vector of observed

covariates for each unit.
• These variables will commonly consist of a set of predictors of the

outcome variable.
• Moreover, we define a (T0 × 1) vector K = (k1, . . . , kT0)

′ that denotes
some linear combination of pre-intervention outcomes:
Ȳ K
i =

∑T0
s=1 ksYis.

• Linear combinations of pre-intervention outcomes can be used to control
for unobserved common factors whose effects vary over time. The user
can choose to include as many as M (linearly independent) combinations
of pre-intervention outcomes (with M ≤ T0 ) to control for such
unobserved common factors.

• Careful: adding them all increases the risk of overfitting.
Fougère & Heim
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Synthetic controls in brief

What are synthetic controls
• To implement the synthetic control estimator numerically, we need to

define a distance between the synthetic controls unit and the treated unit.
• To do that, we combine the characteristics of the exposed unit in the

(k × 1) matrix X1 =
(
U ′

1, Ȳ
K1
1 , . . . , Ȳ KM

1

)′
and the values of the same

characteristics of the control units in the (k × J) matrix X0 with the j-th
row

(
U ′

j , Ȳ
K1
j , . . . , Ȳ KM

j

)′
.

• Notice that k = r +M , controls + pre-outcomes.
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Synthetic controls in brief

What are synthetic controls
• To create the most similar synthetic control unit, the synth() function

chooses the vector W ∗ to minimize a distance, ∥X1 −X0W∥, between
X1 and X0W , subject to the weight constraints.

• In particular, following Abadie, Diamond, and Hainmueller (2010), the
synth() function find W ∗ that minimizes

∥X1 −X0W∥V =

√
(X1 −X0W )′ V (X1 −X0W )

• where V is defined as some (k × k) symmetric and positive semidefinite
matrix.

• The V matrix is introduced to allow different weights to the variables in
X0 and X1 depending on their predictive power on the outcome.

• We still need to choose the weights V .
• Any different set of values for V gives another synth estimator.
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Synthetic controls in brief

This distance definition: Intuition ?

∥X1 −X0W∥V =

√
(X1 −X0W )′ V (X1 −X0W )

Remember how to calcu-
late the distance Between
two point in a N=2 dimen-
sion space ?
The ”Norm” from above is
like a generalization of the
Euclidian distance In ma-
trix form and with weights.

Figure 1: Distance between 2
coordinates
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Synthetic controls in brief

Implementation
• Goal: we have two sets of weights to determine:

• W∗ : How much importance do we give to each comparison units ?
• V : How much importance we give characteristics X to predict Y ?

• Solutions in the literature
• Abadie, Diamond, and Hainmueller (2010) propose to choose V

such that the synthetic control W (V ) minimizes the mean squared
prediction error (MSPE) of this synthetic control with respect to
Y N
1t ∑

t∈T0

(Y1t − w2(V )Y2t − · · · − wJ+1(V )YJ+1t)
2 ,

for some set T0 ⊆ {1, 2, . . . , T0} of pre-intervention periods.
• Abadie, Diamond, and Hainmueller (2015) propose to choose the

two sets of weights via out-of-sample validation.
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Synthetic controls in brief

Implementation
• Intuition for both methods

• The question of choosing V = (v1, . . . , vk) boils down to assessing
the relative importance of each of X11, . . . , Xk1 as a predictor of
Y1t(0). That is, the value vh aims to reflect the relative importance
of approximating the value of Xh1 for predicting Y1t(0) in the
post-intervention period, t = T0 + 1, . . . , T .

• Y1t(0) is observed before treatment but not after (where we observe
Y1t(1)).

• Because Y1t(0) is not observed for t = T0 + 1, . . . , T , we cannot
directly evaluate the relative importance of fitting each predictor to
approximate Y1t(0) in the post-intervention period.

• But it is possible to use pre-intervention data to assess the
predictive power on Y1t(0) of the variables X1j , . . . , Xkj .
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Synthetic controls in brief

Algorithm in the Synth package
1 Divide the pre-intervention periods into a initial training period and a

subsequent validation period. For simplicity and concreteness, we will
assume that T0 is even and the training and validation periods span
t = 1, . . . , t0 and t = t0 + 1, . . . , T0, respectively, with t0 = T0/2. In
practice, the lengths of the training and validation periods may depend on
application-specific factors, such as the extent of data availability on
outcomes in the pre-intervention and post-intervention periods, and the
specific times when the predictors are measured in the data.

2 For every value V , let w̃2(V ), . . . , w̃J+1(V ) be the synthetic control
weights computed with training period data on the predictors. The mean
squared prediction error of this synthetic control with respect to Y1t(0) in
the validation period is:

T0∑
t=t0+1

(Y1t − w̃2(V )Y2t − · · · − w̃J+1(V )YJ+1t)
2 ,

3 Minimize the mean squared prediction error in the previous equation with
respect to V .

4 Use the resulting V ∗ and data on the predictors for the last t0 periods
before in the intervention, t = T0 − t0 + 1, . . . , T0, to calculate
W ∗ = W (V ∗) .7
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Synthetic controls in brief

Implementation
• The synth() function allows for flexibility in the choice of V.
• The default behaviour follows Abadie, Diamond, and Hainmueller (2010)

and V ∗ is chosen among all positive definite and diagonal matrices such
that the mean squared prediction error (MSPE) of the outcome variable
is minimized over some set of pre-intervention periods.

• The pre-period is a ”training set”, the post period serves as a ”validation
set”.

• This is where it’s a form of machine learning : use an algorithm to find
the V matrix that minimize the root-mean square error on the validation
set.

• Typical “overfitting/bias” trade-off in this setting :
• You can add a lot of variable in the X matrix and find weights that predict

very well the pre-treatment period but perform very poorly outside of if.
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First application: Basque terrorism from Abadie and Gardeazabal
(2003)

Context
• Abadie and Gardeazabal (2003) estimates the impact of terrorism in the

Basque country on growth.
• Terrorism started in 1970
• They cannot use a standard DiD method because none of the other

Spanish regions followed the same time trend as the Basque Country
• They therefore take a weighted average of other Spanish regions as a

synthetic control group
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First step: preparing data

# Load the dataset from the Synth package
data(basque)
# Take a look at the DB We'll use gdpcap as dependent and use share of
# each level of education in the population and investments as predictor
# We also use some specific sector shares for special years dataprep:
# prepare data for synth
dataprep.out <- dataprep(foo = basque, predictors = c("school.illit", "school.prim",

"school.med", "school.high", "school.post.high", "invest"), predictors.op = c("mean"),
dependent = c("gdpcap"), unit.variable = c("regionno"), time.variable = c("year"),
special.predictors = list(list("gdpcap", 1960:1969, c("mean")), list("sec.agriculture",

seq(1961, 1969, 2), c("mean")), list("sec.energy", seq(1961, 1969, 2),
c("mean")), list("sec.industry", seq(1961, 1969, 2), c("mean")), list("sec.construction",
seq(1961, 1969, 2), c("mean")), list("sec.services.venta", seq(1961,
1969, 2), c("mean")), list("sec.services.nonventa", seq(1961, 1969,
2), c("mean")), list("popdens", 1969, c("mean"))), treatment.identifier = 17,

controls.identifier = c(2:16, 18), time.predictors.prior = c(1964:1969),
time.optimize.ssr = c(1960:1969), unit.names.variable = c("regionname"),
time.plot = c(1955:1997))
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Second step: adjustments and estimation

### In the paper, they make a few adjustements to the source data: I
### replicate them here. 1. combine highest and second highest schooling
### category and eliminate highest category
dataprep.out$X1["school.high", ] <- dataprep.out$X1["school.high", ] + dataprep.out$X1["school.post.high",

]
dataprep.out$X1 <- as.matrix(dataprep.out$X1[-which(rownames(dataprep.out$X1) ==

"school.post.high"), ])
dataprep.out$X0["school.high", ] <- dataprep.out$X0["school.high", ] + dataprep.out$X0["school.post.high",

]
dataprep.out$X0 <- dataprep.out$X0[-which(rownames(dataprep.out$X0) == "school.post.high"),

]

# 2. make total and compute shares for the schooling catgeories
lowest <- which(rownames(dataprep.out$X0) == "school.illit")
highest <- which(rownames(dataprep.out$X0) == "school.high")

dataprep.out$X1[lowest:highest, ] <- (100 * dataprep.out$X1[lowest:highest,
])/sum(dataprep.out$X1[lowest:highest, ])

dataprep.out$X0[lowest:highest, ] <- 100 * scale(dataprep.out$X0[lowest:highest,
], center = FALSE, scale = colSums(dataprep.out$X0[lowest:highest, ]))

# run synth
synth.out <- synth(data.prep.obj = dataprep.out)
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Second step: adjustments and estimation
What happened inside the function
Let’s get the W matrix
# Get result tables
synth.tables <- synth.tab(dataprep.res = dataprep.out, synth.res = synth.out)
# look at the W matrix
synth.tables$tab.w %>%

kbl()

w.weights unit.names unit.numbers
2 0.000 Andalucia 2
3 0.000 Aragon 3
4 0.000 Principado De Asturias 4
5 0.000 Baleares (Islas) 5
6 0.000 Canarias 6
7 0.000 Cantabria 7
8 0.000 Castilla Y Leon 8
9 0.000 Castilla-La Mancha 9
10 0.851 Cataluna 10
11 0.000 Comunidad Valenciana 11
12 0.000 Extremadura 12
13 0.000 Galicia 13
14 0.149 Madrid (Comunidad De) 14
15 0.000 Murcia (Region de) 15
16 0.000 Navarra (Comunidad Foral De) 16
18 0.000 Rioja (La) 18
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Second step: adjustments and estimation

What happened inside the function
• Only 2 Spanish regions were picked by the algorithm to be used in the

synthetic Basque country: Cataluna, Madrid (Comunidad De).
• Let’s plot the weights given to the predictor and see what was picked and

how much importance was given:
Vs <- cbind(v.weights = unlist(synth.tables$tab.v), keyName = unlist(labels(synth.tables[["tab.v"]])[1])) %>%

as.data.frame(.) %>%
mutate(v.weights = as.numeric(v.weights), keyName = as.factor(keyName))

# plot weights
plotweights <- ggplot(Vs) + geom_col(aes(x = keyName, y = v.weights, fill = v.weights)) +

coord_flip() + theme(legend.position = "none") + xlab("Predictors")
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Second step: adjustments and estimation
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Figure 2: Weights of the predictors
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Estimated dopplegänger for Basque region
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Figure 3: Observed and doppelgänger Basque region using Synthetic
control replicating Abadie and Gardezabal (2003)

Fougère & Heim
Sciences Po 24 / 54



Introduction Synthetic controls in brief First application: Basque terrorism from Abadie and Gardeazabal (2003) Cool implementations of Synth controls Application: Prison and black male incarceration References

Estimated dopplegänger for Basque region
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Figure 4: Effect of terorism on Basque GDP estimated using Synthetic
control replicating Abadie and Gardezabal (2003)
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First application: Basque terrorism from Abadie and Gardeazabal
(2003)

Interpretations
• The algorithm uses data before 1970 to choose two sets of weights for

regions and predictors from a pool of control regions to compute an
average of GDP per capita that is ”as close as” possible as the observed
Basque region before 1970.

• This model is then used to predict counterfactual for Basque country in
the absence of terrorism.

• This prediction is out of sample, we use parameters obtained from past
data to predict post 1970 Y0.

• As with Dif-in-Dif, the causal interpretation relies on the parallel trend
assumption.

• Here, the argument is that it is not plausible that factors that produce a
tight fit before would diverge afterwards

• Now, how do we know if it’s this particular curve (sets of weights) ?
How do we test significance ?
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Inference

Conventional statistical inference is difficult because we
typically have two time series

• 2T observations
• strong serial correlation and too few clusters

Alternative: permutation tests
• run placebo SC on all units in the donor pool
• compute the treatment effect for each placebo
• compare placebos to the estimated treatment effect
• compute empirical p-value
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Inference
• You need to load

library("SCtools")

to use the function generate.placebos
###### Inference on synthetic control relies on the estimation of the same
###### model on placebo states and compare the ratio between pre/post MSPE
###### (for instance)
placebos <- generate.placebos(dataprep.out, synth.out, Sigf.ipop = 5, strategy = "multicore")
placeboplots <- plot_placebos(placebos)
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Inference
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Figure 5: Placebo estimates of the synth model on other control units
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Inference

Permutation test: how to:
• Iteratively apply the synthetic control method to each country/state in

the donor pool and obtain a distribution of placebo effects.
• Calculate the RMSPE for each placebo for the pre-treatment period:

RMSPE =

 1

T − T0

T∑
t=T0+t

(
Y1t −

J+1∑
j=2

w∗
jYjt

)2
 1

2

• Calculate the RMSPE for each placebo for the post-treatment period
(similar equation but for the post-treatment period).

• Compute the ratio of the post- to pre-treatment RMSPE.
• Sort this ratio in descending order from greatest to highest.
• Calculate the treatment unit’s ratio in the distribution as

p=RANK/TOTAL
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Inference

Exact p-value
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Figure 6: Bar chart of the Post/Pre MSE ratio

The placebo tests tell us the synthetic estimation is not clearly an
outlier compared with placebo estimates so actually, we can’t say
that the effect is different from alternative permutations.
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Application: Prison and black male incarceration

All data and context come from (Cunningham 2018, chapter 10.) and
researches he made a while ago.

Context and motivations
In 1980, the Texas Department of Corrections (TDC) lost a major
civil action lawsuit, Ruiz v. Estelle; Ruiz was the prisoner who
brought the case, and Estelle was the warden. The case argued
that TDC was engaging in unconstitutional practices related to
overcrowding and other prison conditions. Texas lost the case, and
as a result, was forced to enter into a series of settlements. To
amend the issue of overcrowding, the courts placed constraints on
the number of inmates who could be placed in cells. To ensure
compliance, TDC was put under court supervision until 2003.
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Application: Prison and black male incarceration

Context and motivations
Given these constraints, the construction of new prisons was the
only way that Texas could keep arresting as many people as its
police departments wanted to without having to release those
whom the TDC had already imprisoned. If it didn’t build more
prisons, the state would be forced to increase the number of people
to whom it granted parole. That is precisely what happened;
following Ruiz v. Estelle, Texas used parole more intensively.
But then, in the late 1980s, Texas Governor Bill Clements began
building prisons. Later, in 1993, Texas Governor Ann Richards
began building even more prisons. Under Richards, state legislators
approved $1 billion for prison construction, which would double the
state’s ability to imprison people within three years.
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Context and motivations

How much more inmates ?
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Figure 7: Prison capacity in Texas, from Cunningham (2018)
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Application: Prison and black male incarceration

What should happen ?
• Just because you have more prisons does not mean the

incarceration rate should increase, right ?
• But because the state was using parole to comply with the

regulation following the Ruiz vs Estelle case, this is what
happened.

• Research question : How did the construction of new
prisons affected the black male rate of incarceration ?
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Application: Prison and black male incarceration

Context and motivations
1 Try and get a sense of what is happening by plotting black

male population incarcerated in texas vs the rest of the USA
(variable bmp)

2 Use synthetic control to estimate counterfatual texas bmprate
and see whether building more prison increases black male
incarceration rate.

3 Use the Main_code_TA3.R file to guide your work
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What I expect in the end

Evolution of the dependent variable
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Figure 8: Black male incaraceration rate per 100 000 indiidual in Texas
and in the rest of the US
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What I expect in the end

Prepare synth data

texas <- read_data("texas.dta") %>%
as.data.frame(.)

dataprep_out <- dataprep(
foo = texas, #database texas
predictors = c("poverty", "income"), #main predictor are poverty and income
predictors.op = "mean", # operator we want to use is the mean
time.predictors.prior = 1985:1993, #We predict from 1985 to 1993, and
#Following Cuningham and other, we add special predictor in a list : bmprison from 1988, 1990:1992)
special.predictors = list(

list("bmprison", c(1988, 1990:1992), "mean"),
list("alcohol", 1990, "mean"),
list("aidscapita", 1990:1991, "mean"),
list("black", 1990:1992, "mean"),
list("perc1519", 1990, "mean")),

dependent = "bmprison",
unit.variable = "statefip",
unit.names.variable = "state",
time.variable = "year",
treatment.identifier = 48, #Texas is the 48 state in the list "statefip"
controls.identifier = c(1,2,4:6,8:13,15:42,44:47,49:51,53:56),
time.optimize.ssr = 1985:1993,
time.plot = 1985:2000

)
# Now we can run the synth command
synth_out <- synth(data.prep.obj = dataprep_out)
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What I expect in the end

Results of the Synth estimation

# Get result tables
synth_tables <- synth.tab(dataprep.res = dataprep_out, synth.res = synth_out)

• Only 3 US states were picked by the algorithm to be used in
the synthetic Texas: California, Florida, Louisiana.

• Let’s plot the weights given to the predictor and see what was
picked and how much importance was given:
Vs2 <- cbind(v.weights = unlist(synth_tables$tab.v), keyName = unlist(labels(synth_tables[["tab.v"]])[1])) %>%

as.data.frame(.) %>%
mutate(v.weights = as.numeric(v.weights), keyName = as.factor(keyName))

# plot weights
plotweights2 <- ggplot(Vs2) + geom_col(aes(x = keyName, y = v.weights, fill = v.weights)) +

coord_flip() + theme(legend.position = "none") + xlab("Predictors")
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What I expect in the end

What happened inside the function
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Figure 9: Weights of the predictors
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What I expect in the end
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Figure 10: Observed and doppelgänger Texas black male incarceration
rate per 10 000 inhabitants.
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What I expect in the end
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Figure 11: Effect of building prisons on black male incarceration rate
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What I expect in the end

Interpretations
• The algorithm uses data before 1992 to choose two sets of weights for

states and predictors from a pool of control states to compute an average
black male incerceration rate ”as close as” possible as the observed one
for Texas region before 1992.

• This model is then used to predict counterfactual for Texas in the
absence of massive prison construction.

• This prediction is out of sample, we use parameters obtained from past
data to predict post 1992 Y0.

• As with Dif-in-Dif, the causal interpretation relies on the parallel trend
assumption.

• Here, the argument is that it is not plausible that factors that produce a
tight fit before would diverge afterwards

• Now, let’s estimate placebo models on other states and make the plot.
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What I expect in the end
• You need to load

library("SCtools")

to use the function generate.placebos
###### Inference on synthetic control relies on the estimation of the same
###### model on placebo states and compare the ratio between pre/post MSPE
###### (for instance)

placebosBM <- generate.placebos(dataprep_out, synth_out, Sigf.ipop = 3, strategy = "multicore")
placeboplotsBM <- plot_placebos(placebosBM)
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Context and motivations
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Figure 12: Placebo estimates of the synth model on other control states
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Context and motivations
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What I expect in the end

Interpretations
• The placebo estimations show that Texas is a clear outlier. Out of all the

permutation there’s only one placebo estimation whose root mean square
prediction error is smaller.

• From our analysis, it seems plausible that the building of prisons from
1992 in Texas dramatically and causaly increased the incarceration of
black males.

• That’s it. That’s what we just showed.
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