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Appendix A: Description of the Agronomic Trials 

 

A.1 Researcher-designed and farmer-managed trials 
The trials were designed by soil scientists and agronomists of IITA, who provided general 

oversight while the day-to-day management of the trial plots fell to the farmers, according to the 

following division of tasks: All inputs were provided by the research team, with the exception of the local 

maize seed, tested in two out of the six maize subplots (where farmers were asked to apply their own, for 

comparison with treated subplots). A researcher (local expert agronomist) was present and led planting, 

gapping and thinning, all fertilizer applications, and harvesting. In these activities, labor was typically 

provided by the farmers. Planting dates were mostly decided by the researchers to best target the onset of 

rains, also responding to the farmers’ feedback on beginning of rains and availability to schedule the visit 

for planting. The farmers were in charge of land preparation, weeding and other management, with the 

researcher providing guidelines on those practices. Farmers were also asked to inform the contact person 

in case of any pest or disease, in which case the researcher provided the required pesticide or fungicide. 

Finally, farmers provided the land area, that needed to fit the criteria for a trial, including sufficient space 

with reasonably low inclination and no shade. This was rarely a binding factor in the selection of farmers. 

Farmers tended to have many locations that satisfied these criteria, and it was up to them to select which 

location within their parcels they wanted to dedicate to the trials.   

 

A.2 Trial design and inputs tested 

 For each farmer, the trials followed a factorial design of 2x3 subplots as presented in figures A1A 

(for maize) and A1B (for soya). The intercrop trials followed the same factorial design as the soya trials, 

testing the same combination of soya inputs, but tracking performance on both soya and maize yields. We 

refer to the “trial plot” for the entire area dedicated to the trial with IITA, and to subplots to refer to each 

one of the 6 subdivisions where a specific input combination was tested. Each subplot was approximately 

4.5 × 5 m and treatments were randomized between the six subplots. Between subplots, a 1 m buffer of 

sweet potatoes was planted to prevent inter-plot contamination. Plot layout and treatments were 

maintained for three seasons. All the trials aimed to test some of the most viable solutions that an 

integrated soil fertility management combination of inputs can bring to the conditions faced by farmers in 

the region. See Laajaj et al (2020) for details on all inputs and justification for their choices.  
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A1A Maize trial factorial design A1B Soya trial factorial design 

 
 

Figure A1: Visual representation of factorial designs of agronomic trials for the cases of maize and soya trials.  

Each rectangle represents a subplot with a specific set of inputs tested.  In maize trials, where DH04 is indicated, in fact half of 

the maize trials tested KSTP 94 seed and the other half tested DH04 maize seed (randomly allocated at the village level). In soya 

trials, where Biofix is indicated, in fact half of the soya (or intercrop) trials tested Legumefix inoculant and the other half tested 

Biofix inoculant (randomly allocated at the village level).  

 

A.2 Main agronomic Findings from the trials 

 The key findings from the agronomic analysis of the trial data are published in Thuita et al. 

(2018) and (Laajaj et al 2020). Notably, the maize trials showed that the combination of chemical 

(Mavuno planting and Mavuno top dressing) and non-chemical fertilizers (Phymix vermicompost) led to 

large gains in yield and in benefits in all seasons. The yield gains profitability increases over time. There 

were no significant differences between local seeds and the improved seeds (IR, KSTP94 or DH04). The 

soya trials in turn showed that : i) the P-source alone (either Sympal or Minjingu) had a significant 

positive impact on yield and on benefits compared to not using it. ii) One of the P-sources (Sympal) 

consistently outperformed the other (Minjingu). iii) The tested bio-fertilizer (Biofix or Legumefix, 

inoculants with a nitrogen-fixing bacteria) is a cost-saving substitute to traditional nitrogen sources (like 

CAN or Urea); iv) There is a complementarity between the P-source (Sympal or Minjingu) and bio-

fertilizer; and v) The results are conditional on management quality and other production practices.  

 

A3 Yield increments observed from the trials 

 The monitoring data from the agronomic trials include crop cut measures of yield within each 

subplot of the trials. We use this to compute a “yield increment” of the “best bet” package compared to its 

control, following Laajaj et al (2020). These yield increments can be interpreted as the potential of the 
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input package observed when tried in the farmer’s plot. We use it in Table 2 to estimate its effect on the 

farmers’ decisions to purchase the trial inputs. The measures can be noisy measures of the true potential 

of the input (because of the small size of each subplot and various sources of seasonal variation), but it 

reflects well the farmer’s realization and observation that allows her to update her prior about the 

potential of the tested inputs.    

Yield increments for maize are calculated using three pairs of treatment–control plots: T2–T1, i.e. 

subtracting yields in the plot with local seeds and no fertilizer (T1) from yields in the plot with local seeds 

and the full fertilizer package (Mavuno and Phymix). Similarly, calculations are done for hybrid seed 

plots with and without fertilizer (T4–T3), and for IR seeds plots with and without fertilizer (T6–T5).. 

Yield increments for soybean are calculated using two pairs of treatment–control plots: (a) 

subtracting yields in the control plot from yields in plots containing a soybean inoculant and Sympal (T6); 

and (b) subtracting yields in the control plot from yields in plots containing a soybean inoculant and 

Minjingu (T5). Figure A2 shows a relatively large spread in potential realizations of yield increment in 

the different trials. It also shows no systematic differences in yield increment between the trials of the 

LSFs and HSFs for the maize and soya trials, but a more systematic difference in intercrop trials.  

  

  
Figure A2 PDFs of yield increments in the agronomic trials 

The figure displays the distribution of yield increment. Its calculation is described above. Yield increments in intercrop trials are 

presented separately since yields in intercropping and monocrop systems are not comparable.  
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Appendix B: Verification of the Randomization 
Table B.1 Balance Test 

  Treatment status p-value of 

difference Variable Control Treatment 

Household head is female 0.24 [0.02] 0.25 [0.02] 0.889 

Age of respondent 45.77 [0.58] 45.29 [0.61] 0.555 

Household size 5.68 [0.11] 5.57[0.12] 0.504 

Number of cattle 2.7 [0.19] 2.89 [0.22] 0.654 

Land Size (log of ha) 0.27 [0.05] 0.26 [0.07] 0.885 

Years of education 5.95 [0.15] 6.16 [0.17] 0.396 

Used any inputs of the trials 0.09 [0.01] 0.09 [0.01] 0.952 

Grew soya (dummy) 0.04 [0.01] 0.03 [0.01] 0.366 

Profit (KES) 5963 [349] 5281 [333] 0.176 

Used soil conservation practice      0.29 [0.02] 0.28 [0.02] 0.596 

Fertilizer (dummy) 0.74 [0.02] 0.81 [0.02] 0.212 

Fertilizer (every year in past 10 years) 0.31 [0.02] 0.3 [0.02] 0.923 

Wealth Index -0.02 [0.04] 0.02 [0.05] 0.647 

p-value of joint significance of all variables to explain treatment: 0.6633 

Total number of observations 472 472 944 
Standard errors of means in brackets   

 
 

Table B2: Attrition rates by season and treatment status 

Attrition rates 

Season Full sample Treatment Control 
p-val of dif 

in attrition 

0 1.7% 1.7% 1.7% 1 

1 2.1% 1.9% 2.3% 0.618 

2 2.6% 2.7% 2.5% 0.834 

3 4.1% 4.8% 3.3% 0.226 

4 4.6% 5.2% 4.0% 0.345 

5 3.5% 3.3% 3.8% 0.707 

All 3.1% 3.3% 2.9% 0.637 
Note: attrition is equal to one if the farmer did not answer the main survey in a given season.  
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Appendix C: Definitions of variables and aggregate indices 

 The breadth of outcomes considered in this paper is part of its contribution. We aggregate 

outcomes by type in a set of standardized indices. Below, we provide explanations about each index and 

references to more detailed sources, starting with an in-depth discussion of the skill measurement, before 

turning to construction and definitions for all the outcome variables.  

 

C.1 The Skill Index 

 The sample, data and index calculation used to measure skills are the same as the ones used in 

Laajaj and Macours 2021, which tests the reliability and validity of the measures and more generally 

provides guidelines for such measures in rural contexts of low- and middle-income countries. The online 

appendix of that article provides detailed lists of items and the replication file available online 

(https://www.openicpsr.org/openicpsr/project/124141/version/V1/view) provides the code for the 

estimation of the indices. This paper uses the exact same measure (applied to the same population using 

the same data). The skill index is a non-weighted average of 3 components: cognitive, noncognitive, and 

technical agronomic skills. Here we provide a brief description of the 3 components.  
The cognitive index is obtained using Item Response Theory (two parameter model) with the 

responses from five cognitive tests: (i) the Raven Colored Progressive matrices, measuring visual 

processing and analytical reasoning; (ii) the digit span forwards and backwards, measuring short-term 

memory and executive functioning; (iii) a written and timed test of basic math skills; (iv) an oral nine-

item test containing short math puzzles relevant for agriculture; and (v) a reading comprehension test.  

The non-cognitive skill measure results from a subset of items from the 44-item Big Five Index (a 

commonly used instrument for the Big Five personality traits) together with commonly used instruments 

for lower-order constructs such as locus of control, self-esteem, perceptions about the causes of poverty, 

attitudes towards change, organization, tenacity, metacognitive ability, optimism, learning orientation and 

self-control. Most of these subscales are derived from a set of questions asking the respondent the level at 

which they agree or disagree with general statements about themselves, with answers on a Likert scale 

from one to five. In addition, we asked a set of locus-of-control questions with visual aids in which 

people are asked to attribute success to effort and good decisions, luck, or endowments. We also included 

the CESD, a commonly used depression scale, validated in many developing countries, as it relates to 

some noncognitive domains captured in other scales (neuroticism and optimism). Factorial analysis 

revealed that the non-cognitive index is multidimensional, hence we use the average of the non-cognitive 

factors to obtain an aggregated non-cognitive skills construct. 

To build the technical agronomic skills items, we started from different types of questions that 

can be found in the literature, and worked closely with the team of agronomists from IITA who were 
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overseeing the trials to identify which knowledge could be the most relevant: questions on the timing at 

which inputs should be used, how to apply the inputs (quantity, location, etc.) and knowledge of both 

basic and more complex practices (spacing, rotation, composting, conservation). The items cover the most 

common practices and inputs in Western Kenya. We use a mix of open questions and multiple-choice 

questions. Some questions allow multiple answers, and a subset of questions had visual aids (for example, 

pictures of inputs). The set of questions covered a relatively broad spectrum of practices, including a set 

of questions on maize, soybean, banana, soil fertility practices, composting, and mineral fertilizer. We 

used Item Response Theory to compute the agronomic technical skill index.  

All skill items were obtained from a baseline skill survey specifically designed for this purpose, 

implemented twice at a three-week interval to evaluate the reliability through test-retest correlations. To 

reduce measurement error for each index, we take the average of the two indexes obtained from the two 

rounds of survey. Extensive tests of reliability and consistency were applied to the data (Laajaj and 

Macours, 2021). The cognitive measure is highly reliable and with limited noise, the technical agronomic 

skills measure is noisier, but still quite reliable. By contrast, the noncognitive skill measure is noisy and 

prone to systematic measurement errors (such as acquiescence bias, which we adjusted for, and social 

desirability bias, harder to correct) and thus requires more caution in its use and interpretation. Despite the 

limitations, this is arguably a very comprehensive effort to obtain in-depth skills measures. 

 
Figure C1 The box plot displays the median (the central line), the 25th percentile (bottom of the box), the 75th percentile (top of 

the box), as well as the lower adjacent value and upper adjacent value of the skill distribution for each possible quintile in the ex-

ante skill index (among randomly selected farmers), and for the community selected farmers (right hand box).  

 

 As treatment stratification was based on the ex-ante skill proxy (described in section 2.3), Figure 

C1 displays the spread of the ex-post skill index for the 5-levels of ex-ante classification and, separately 
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for the community-selected farmers. The ex-post skill measure increases with the ex-ante proxy as 

expected, and the community selected farmers tend to have a skill distribution relatively similar to 

farmers in the 5th quintile of ex-ante skill proxy.   

The share of HSFs (according to the ex-post measure) varies from 16% in the lowest (ex-ante) 

quintile, to 70% in the fifth quintile. Among the community-selected group 62% are classified as HSF. 

This confirms that community-selected farmers are closest to the top quintile in the randomly selected 

sample, and that our ex-ante skill proxy is a well correlated but imperfect proxy for the farmers’ skill 

level. Among the 50% randomly selected farmers, the cutoff of the aggregate skill index is at percentile 

62, so that being a HSF is roughly equivalent to being in the top 2 quintiles of the village distribution. 

 

 
Figure C2: distribution of ex-post (top-panel) and ex-ante (bottom-panel) aggregate skill measure 
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Figure C2 further helps understand the relationship between the ex-ante proxy and the ex-post, 

more comprehensive skill measure. The ex-ante proxy captures a reasonable share of the difference in 

skill in each one of the 3 dimensions (bottom panel). As expected, it differentiates less, however, than the 

LSF-HSF contrast that was created by splitting the farmers based on the median of the aggregate skill 

distribution (upper panel).  

Table C1 shows clear systematic differences between LSF and HSF in baseline socio-economic 

variables, as well as agricultural practices and outcomes. Land size, number of cattle and the likelihood to 

grow soya do not differ significantly.  As skills are far from being randomly assigned, we do not attribute 

differences in treatment effects for LSFs and HSFs to the skills themselves. For example, we cannot rule 

out that since our HSFs are wealthier on average, they can take more risk, and that this drives some of the 

differences in treatment effects between the two groups. In a similar way, any other observed or non-

observed differences between LSFs and HSFs could contribute to the differences in treatment effects.  

 

Table C1: Comparison of socio-economic characteristics between LSFs and HSFs.  

  Skill Level p-value of 

difference Variable Low High 

Household head is female 0.33 [0.02] 0.15 [0.02] 0.000 

Age of respondent 47.7 [0.62] 43.38 [0.55] 0.000 

Household size 5.06 [0.11] 6.19 [0.11] 0.000 

Number of cattle 2.71 [0.19] 2.87 [0.22] 0.532 

Land Size (log of ha) 0.28 [0.05] 0.26 [0.07] 0.747 

Years of education 4.03 [0.14] 8.08 [0.12] 0.000 

Used any inputs of the trials 0.07 [0.01] 0.11 [0.01] 0.018 

Grew soya (dummy) 0.03 [0.01] 0.03 [0.01] 0.550 

Profit (KES) 5031 [326] 6221 [355] 0.025 

Used soil conservation practice  0.26 [0.02] 0.31 [0.02] 0.077 

Fertilizer (dummy) 0.69 [0.02] 0.86 [0.02] 0.000 

Fertilizer (every year in past 10 years) 0.24 [0.02] 0.38 [0.02] 0.000 

Wealth Index -0.09 [0.04] 0.09 [0.05] 0.001 

p-value of joint significance of all variables to explain treatment: 0.000 

Total number of observations 472 470 942 

Standard errors of means in brackets   
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C.2 Inputs and practices: adoption and exploration 

The survey instrument includes a section where farmers enumerate their plots, which crops they grow in 

each plot, followed by detailed questions on inputs, practices and production.  To measure input adoption, 

we compare the list of commercial inputs that they mention using on their non-trial plots to the list of 

inputs tested in the trials. We define a dummy equal to one if the farmer used in his own parcels, at least 

one of the inputs tested in the trials, which includes soya fertilizers (Mavuno and Sympal), biofertilizer 

(Biofix) or seed (SB19), or the maize fertilizer (Mavuno planting or top dressing), or seed (IR, KSTP94 

or DH04). 

Regarding practices, we ask about many practices, including intercropping, manure, number of 

weeding, number of seeds sowed per hole, soil conservation practices, etc, which are part of the 

instructions provided by the agronomists in the management of the trials. We then construct an index that 

represents the fraction of these practices adopted by the farmer in at least one plot (not including trials). 

The 10 practices are dummies presented below, with their average across our sample: 

Description of the dummy: equal to one if… Adoption 

rate 

The household used manure in at least one parcel 67% 

The household used a soil conservation practice in at least one parcel 43% 

The household harrowed twice or more at least one parcel 31% 

The household applied weeding twice or more in at least one parcel 59% 

The household used gapping in at least one parcel (filling with a plant that grew 

somewhere else in places where the crop did not germinate) 
35% 

The household used intercropping in at least one parcel 82% 

The household used sweet potato in at least one parcel 12% 

The household grew soya in at least one parcel 8% 

The household used crop rotation in at least one parcel 57% 

The household used only 1 seed per hole in at least one parcel 57% 

The practices adoption index is a non-weighted average of the 10 dummy variables, so a 0.1 increase in 

the index can be interpreted as the adoption of one additional practice out of the 10 practices.  

To measure exploration, both for inputs and practices (separately), we use an index of the 

frequency of changes to reflect the extent to which farmers are exploring and trying new things. For this 

purpose, we generate for each practice or input a dummy equal to 1 if the dummy of use at a given season 

is different from the one of the preceding seasons (the farmer was not using it on any of their plots in the 

prior season and started using it on at least one plot, or the farmer was using it in the prior season and then 

stopped using it), and 0 if it is the same. We then average the index across all inputs and across all 



10 
 

practices to obtain an index of changes in input decisions and in index of changes in practice decisions. 

These indices can be interpreted as the fraction of practices (or inputs) decisions that the farmer changed 

compared to the prior season.   

 Section 5.3 uses two continuous measures of adoption. The first one is the sum of the amount 

spent on trial inputs. For this we simply add across all parcels, input expenditures dedicated to the 

purchase of any input that belongs to the list of inputs tested in the trials. The second measure is the area 

dedicated to soya, which we obtain by summing the area of all parcels in which soya was planted 

(including parcels where soya was intercropped).  

 

C.3 Profits 

Profits are computed by deducting the total cost of inputs from the total value of production 

(using village level prices). These profits incorporate labor costs when hired but do not account for the 

shadow value of household’s labor. Average profits are positive for both LSF and HSF, with seasonal 

profits being negative for 14% of farmers, and profits over all season only negative for 3%. Farmers using 

inputs tested in the trial on their own plots have significantly higher profits. 

 

C.4 Agricultural knowledge index (general, maize and soya) 
To measure technical know-how with respect to the use of the trial inputs, 15 knowledge 

questions were asked ranging from recognizing the inputs to questions on where and when to apply the 

fertilizer or how to store the biofertilizer. These questions (combining open questions and multiple 

choice) were designed together with the agronomists of IITA, with the intention to capture the key 

practical decisions that can affect the profitability of the newly tested inputs. All questions were first 

transformed into binary variables equal to 1 if the farmer provided an answer that the agronomist 

considered correct. Extensive piloting allowed to avoid “ambiguous” answers that would be correct in 

some context but not in others. To combine all these items into one index, we use the 2-parameter model 

of item response theory (IRT).  We also generate sub-indices for maize knowledge and soya knowledge 

by running the 2 parameter IRT model, but in each case limiting the items to the corresponding ones. 

 

C.5 The Willingness to Purchase inputs 

 One of the major limitations of our index on input adoption is that not all inputs are available at 

all retail shops (agrodealers) and also that in some cases farmers may wish to adopt but not have the 

money to do it, which can explain why even though effects on input adoptions are significant, the average 

values remain modest. We therefore also gathered data on an intermediary outcome: whether farmers 

would be willing to purchase the trial inputs when we simply simulate the situation where they want to 
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produce maize (or soya) in one of their plots, then ask them to imagine that they enter the shops and find a 

list of inputs with their real local prices. The list included common inputs sold and used in the region as 

well as the ones tested in the trials. Which ones would they purchase? This allows us to construct a binary 

variable, equal to 1 if at least one of the newly tested inputs is chosen in this fictitious scenario. The WTP 

questions were targeted so that farmers in the treatment were asked about the crop for which they had 

been randomly selected to receive the agronomic trials, with the equivalent number of randomly selected 

farmers in the control villages asked for that crop. 

We also use this set of questions to compare how much farmers prefer using Sympal versus Minjingu 

or IR seed compared to another maize seed, without the answers being affected by input availability.  

 

C.6 The Expectation of Yield Increment with the input package (for maize and soya) 

 Finally, to examine learning about the returns, we estimate impacts on beliefs about expected 

yield increase when using inputs compared to without inputs in either maize or soya production using a 

method similar to Carter et al (2021).1 To do this, after identifying a given plot for each study participant, 

farmers were asked what production she expected if they used the set of inputs that they had chosen on 

this parcel (as per the WTP section described in appendix section C4) in (i) a normal year, (ii) a good 

year, and (iii) a bad year.  The same set of questions was asked for a scenario in which they did not use 

any input in the same parcel and conditions. We then asked the farmer to say, on average, out of 10 years, 

how many are good years, bad years, and normal years. This set of questions allows us to calculate the 

expected yield when using the technology package and the expected yield when not using the technology 

package and accounting for the stochastic nature of yield. We then transform the expected yield values in 

inverse hyperbolic sine transformations. And then we take the difference between expected yield increase 

with the input package compared to expected yield increase without the input package. This index can be 

interpreted as the relative increment in yield that the farmer expects when using the selected input 

package compared to when not using it. If the treatment allowed farmers to learn that the fertilizer 

package can allow them to reach higher yield than what they were able to reach before knowing about 

these inputs, then we would expect a positive effect on this subjective expectation about yield increment. 

The variables are computed separately for maize and for soya.    

 
1 Carter et al (2021) estimate the expected yield with the input packaged whereas we estimate the expected yield 
increment by subtracting expected yield without the input package to the expected yield with the input package, 
which is arguably closer to what really matters economically for the farmer.   
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Appendix D: Robustness Checks and Additional Results 

Figure D.1 Pooling seasons since treatment started and with robustness checks 

  

   

  
Note: Figure D1 presents the results of the estimation of equation 1, where the treatment effects are separated by LSF versus HSF but pooling all seasons 
together, with 95% confidence intervals in brackets. It then presents the same specification but using the ex-ante proxy (and level of treatment stratification) 
to classify farmers into high skill or low skill. And the third specification maintains the ex-post skill measure of the main specification, but controls for the 
treatment interacted by whether the farmer comes from the community selected process (rather than the random selection). The outcomes presented in the 
figures include the ones used throughout the article, slightly re-organized, to pool together the ones that share the same unit.   
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Table D1: Regressions pooling seasons and LSF with HSF, with Treatment interacted with skill index 
  (1) (2) (3) (4) (5) (6) (7) 

VARIABLES 

Practices 
Adoption 

Index (avg of 
dummies) 

Used any 
inputs of the 

trials (dummy) 

Grew soya 
(dummy) 

 
Profit  
(KES) 

Production 
Value (KES) 

Input Cost 
(KES) 

Agricultural 
know-how (IRT 

index) 

        
 

      
Treatment  0.028*** 0.050*** 0.066*** -431.550 -385.745 -32.338 0.340***  

(0.007) (0.014) (0.012) (309.061) (347.340) (139.402) (0.024) 
Treatment * 
skill index 

0.005 0.009 0.029** -34.495 299.657 329.636* 0.116*** 
(0.010) (0.016) (0.014) (415.708) (503.328) (191.054) (0.032) 

        
Observations 4,541 4,655 4,541 4,534 4,518 4,531 4,548 
Baseline value 
control YES YES YES 

YES YES YES 
NO 

        
  (8) (9) (10) (11) (12) (13) (14) 

VARIABLES 

Discussed ag 
with other vlg 

member in 
last 3 months 

(avg of 
dummies) 

Expected yield 
increment with 
the maize input 
package (IHST 

dif) 

Expected 
yield 

increment 
with the soya 
input package 

(IHST dif) 

Changes in 
practices with 

respect to 
prior season 

(avg of 
dummies) 

Changes in 
input use with 

respect to 
prior season 

(avg of 
dummies) 

Willingness to 
purchase IR 
seeds if high 

striga minus low 
striga (dif in 
dummies) 

Willingness to 
purchase 

Sympal versus 
Minjingu (dif in 

dummies) 

                
Treatment  0.083*** 0.018 0.031 0.025*** 0.009*** 0.158*** 0.037*  

(0.016) (0.038) (0.024) (0.005) (0.002) (0.021) (0.019) 

Treatment * 
skill index 

0.019 0.055 0.018 0.015* -0.000 0.071*** 0.051** 
(0.020) (0.057) (0.032) (0.008) (0.004) (0.025) (0.022) 

        
Observations 4,655 3,689 3,267 4,529 4,529 3,742 2,893 
Baseline value 
control YES NO NO NO NO NO NO 

        
  (15) (16) (17) (18) (19) (20) (21) 

VARIABLES 
Used hybrid 
and one seed 

per hole 

used both 
commercial 

and homemade 
fertilizer on at 
least one plot 

=1 if reports 
using hybrid 
maize seed 
from own 
production 

Used any 
maize inputs 
of the trials 
(dummy) 

Used any soya 
inputs of the 

trials (dummy) 

Maize 
cultivation 

know-how (IRT 
index) 

Soya 
cultivation 

know-how (IRT 
index) 

                
Treatment  0.047** -0.046** 0.032*** 0.039*** 0.019** 0.091*** 0.259***  

(0.020) (0.018) (0.010) (0.013) (0.008) (0.018) (0.024) 

Treatment * 
skill index 

0.009 0.021 -0.001 -0.000 0.007 -0.036 0.093*** 
(0.024) (0.027) (0.017) (0.015) (0.010) (0.026) (0.029) 

        
Observations 4,431 4,552 4,431 4,655 4,655 4,548 4,548 
Baseline value 
control NO NO NO YES YES NO NO 

Note: Table reports the effects of Treatment alone, pooling all seasons and without separating LSF and HSF. It also includes the Treatment interacted 
with the continuous skill index to assess heterogenous effects by skill. The estimation is ran for the outcomes that appear throughout the article. 
Because the skill index has a 0 mean, the coefficient of the Treatment dummy can be interpreted as the average treatment effect in the entire sample, 
over the different periods. Robust standard errors in parentheses, *** p<0.01, ** p<0.05, * p<0.1 
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Figure D2 Adoption of trial inputs and soya cultivation on the intensive margin 
Treatment effects by skills and number of seasons since treated on continuous measures of adoption. The figure replicates the 
methodology of Figure 4, displaying the results from the estimation of equation (2). Blue squares represent the average among 
control farmers in the corresponding season and skill level. Red diamonds represent the expected value in the corresponding 
treatment group (average value in control group + treatment effect), and the value that appears above each red diamond is the 
corresponding treatment effect.   
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Figure D3:  Distribution of continuous measures of technology adoption.  
To graph this distribution, all 0 were transformed into missing values, so that it should be interpreted as a descriptive 
representation of the evolution of the distribution at the intensive margin. The sample is restricted to the treatment group.  
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Figure D4: Household trajectories in area dedicated to soya among adopters  
Each blue line connects a given household across the 5 seasons of the study. Only treated farmers are included (and only the ones 
with a strictly positive value of soya area in the last 2 seasons), in order to observe variations in the intensive margin among 
adopters.  
  

Table D2: Regressions of treatment effect on key outcomes in a spillover sample  
  (1) (2) (3) (4) (5) (6) 

VARIABLES know-how 
(IRT) 

Practices 
Adoption 

Index (avg 
of 

dummies) 

Used any 
inputs of 
the trials 
(dummy) 

WTP 
maize prog 

inputs 

WTP soya 
prog inputs 

Can 
identify 

input 
names 

Spillover * LSF (ex ante proxy) 0.021 0.010 0.019 0.001 -0.000 0.031**  
(0.046) (0.012) (0.015) (0.006) (0.007) (0.016) 

Spillover * HSF (ex ante proxy) 0.097 0.007 0.018 0.020* -0.005 0.003  
(0.091) (0.030) (0.028) (0.011) (0.012) (0.047) 

       
Observations 942 942 956 942 932 942 
Avg outcome in LSF control  -0.129 0.399 0.0234 0.0505 0.0667 0.0962 
Avg outcome in HSF control  -0.113 0.428 0.0319 0.0370 0.0724 0.205 
P-val of Treat. (LSF & HSF) 0.202 0.595 0.216 0.0896 0.738 0.489 
P-val of T * LSF = T * HSF 0.500 0.931 0.975 0.125 0.717 0.573 

 Estimates with spillover sample, consisting of an additional 480 farmers, i.e. 5 randomly selected farmers within each village, 
(after excluding the 10 farmers already selected to take part of the study). We administrated follow-up surveys to this additional 
sample during the last 2 rounds of the study. “Spillover” refers to belonging to a treatment village (where another 10 farmers 
were assigned to participate to the agronomic trials). The LSF and HSF categorization of these farmers uses the ex-ante proxy 
measure of skill described in the main text since we do not have detailed skills measures on this sample. These farmers were not 
actively involved in the trials, nor in discussions or field days throughout the study.   



17 
 

D.4 Treatment effects on soil quality 

A possible explanation for the continued adoption, despite negative effects on profits could be 

that farmers perceived that the trial inputs contribute to improvements in soil quality which will be 

reflected in future profits. To test this, we assess whether the treatment affected soil quality. In every 

season, the farmers were asked the soil quality of each parcel on a 5 step scale (1 being very poor and 5 

being very fertile). We take the average of the response over all parcels to create an index of the farmers 

perception of soil quality. Figure D4 displays the effects of the treatment on this outcome variable, 

separating the treatment effects by skill type and number of seasons since the beginning of the treatment 

and shows no significant effect. Because some coefficients appear to be marginally significant, we show 

in table D4, the treatment effects when pooling all seasons together and conclude that there is no 

significant effect of the treatment on the farmers’ perception of the soil quality of their parcels.  

We must note, however that the soil quality variable suffers from a high number of missing 

observations: 20.9% of observations were missing in the control group and 22.7% in the treatment group 

(p-value of the difference 0.097). This is due to many farmers answering that they don’t know about the 

quality of their parcels. Hence the results are slightly prone to a selection bias if those more likely to 

answer tend to differ between the treatment and control group, and they are only indicative of no major 

change in the perception about soil quality that occurred with the treatment.  

Finally, one may be concerned that the perception of soil quality may not reflect well actual soil 

quality. Since we are trying to understand what can explain the increase in adoption decisions despite the 

negative profits, however, we are interested in the farmers’ perception of soil quality rather than the soil 

quality per se, hence this is not a primary issue.  

 
Figure D5 Treatment effects by skills and number of seasons on the perception of soil quality.  
This figure displays the results from the estimation of equation (2). Blue squares represent the average among control farmers in 
the corresponding season and skill level. Red diamonds represent the expected value in the corresponding treatment group 
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(average value in control group + treatment effect), and the value that appears above each red diamond is the corresponding 
treatment effect.  

 

Table D3: Regressions of treatment effect on Soil Quality  

  (29) 
VARIABLES Soil quality (self-assessment index) 
    
Treatment * low skill 0.017 

 (0.026) 
Treatment * high skill 0.044 

 (0.087) 
 

 

Observations 4,470 
p-val average skill 0.508 
p-val low skill treat=high skill treat 0.770 
Robust standard errors in parentheses, *** p<0.01, ** p<0.05, * p<0.1 
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Appendix E: Why would HSF learn with higher precision? A behavioral inattention 

explanation 

 This section provides a minor extension to the theoretical model to provide behavioral 

foundations for why HSFs would learn faster than LSFs in the form of observing realizations with more 

precision and thus less noise. However, this noise is not due to additional randomness (or risk exposures) 

in their realizations. Any farmer faces the same profit function: 

𝜋 = 𝑓(𝑋) + 𝜖!" 

We assume that the randomness of profit can be modeled as 𝑘 random shocks such as weather, 

bug infestation or weeds: 

𝜖!" = 𝜂#" + 𝜂$" +⋯+ 𝜂%" 

These random shocks can be observed, but this requires attention, which itself requires the 

allocation of scarce cognitive resources. We assume that farmers have a limited bandwidth, which limits 

the number of random shocks that they are able to observe. Importantly, a farmers’ skill determines the 

number of random shocks that she can observe, hence HSFs can observe more shocks than LSFs. When a 

shock is observed then the noise of that shock does not affect the precision of the Bayesian update, only 

the variance of unobserved shocks enters in the calculation of the precision (which is given by the inverse 

of the total variance). Since farmers are rational, they will observe the shocks with the highest variance 

until they reach the maximum number of shocks that they can observe. Because the HSFs are left with a 

smaller number of unobserved shocks, they face less noise in their Bayesian update and can update their 

beliefs with more precision at each round. This is one possible model where behavioral inattention and 

differences in attention capacity can drive the difference in learning capacity. Among the possible 

alternatives, the LSFs could observe the decision variables X or the outcome variable Y with some noise 

(larger than the one of the HSFs), because they are less able to pay attention. This would also result in 

differences in precision of the signals between LSFs and HSFs.    
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Appendix F: Propositions and their proofs 

 

Proposition 1: With T high enough, all farmers converge to a stationary point that is a local maximum.  

First, because the distribution of the beliefs at any 𝑋 is normal, its expected value and variance of the 

beliefs ( 𝑓"&(𝑋) and 𝑉"&(𝑋)) are sufficient statistics to describe the distribution at each point. Hence, we 

can re-write equation 5 as:  

𝐴𝐹"/𝑓"& , 𝑉"&1 = 𝐸𝑢𝜋	/𝑓"& , 𝑉"&1566676668
'()*+!","!+-	/,!-

+ 𝛼0":𝑓"& + λ	𝑉"&<56666766668
'()*+1,"!+-	/,!-

	 

where 𝐸𝑢𝜋	/𝑓"& , 𝑉"&1 is a function that describes the expected utility derived from the profit of a random 

variable that follows a normal distribution ℵ/𝑓"& , 𝑉"&1. Even though 𝑓"& and 𝑉"& are functions of 𝑋, here we 

omit the 𝑋 to focus on the effects of changes in these variables (as if they were exogenous), before 

looking at how they vary depending on 𝑋. 

 Notice that 𝑓"& increases the value of both exploitation and exploration gains. By contrast 𝑉"& only 

increases the exploration gain but reduces the exploitation gain. This tradeoff in the variance will play a 

key role in the farmer’s arbitrage. Hence, we describe the behavior of the function 𝐴𝐹" >𝑓"&(𝑋)????????, 𝑉"&(𝑋)@, 

i.e. when keeping 𝑓"&(𝑋) fixed and varying only 𝑉"&(𝑋).  

𝑑𝐴𝐹">𝑓"&????, 𝑉"&@

𝑑𝑉"&
=
𝑑𝐸𝑢𝜋>𝑓"&????, 𝑉"&@

𝑑𝑉"&
+ 𝛼0"λ 

Given that the utility function exerts increasing absolute risk aversion, we know that: 

1.   
2'3456!"

7777,9!":

29!
"  is negative and concave (in other terms the absolute utility cost of variance is 

convex) 

2. 
2'3456!"

7777,;:

29!
" = 0 

3. lim
9!"→∞

2'3456!"
7777,9!":

29!
" = −∞   

Taking these elements together with the fact that 𝛼"λ is a positive constant, we know that 

𝐴𝐹" >𝑓"&(𝑋)????????, 𝑉"&(𝑋)@ is single-peaked, first increasing G
2=0!56!"

7777,9!":

29!
" > 0I and then decreasing 

G
2=0!56!"

7777,9!":

29!
" < 0I. If 𝑓"&(𝑋) was constant, the 𝑋 at which this maximum is located is the location of the 

best next step (that maximizes the 𝐴𝐹"). When  𝑓"&(𝑋) is increasing, this optimal step will be located 

further away from 𝑋"># where the loss due to the increase in the variance exactly compensates the gain in 

𝐴𝐹 due to the increase in 𝑓"&(𝑋). 
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 We first show that any point 𝑋K  that is not a local maximum cannot be a stationary point. Assume 

that 𝑋K  has a strictly positive expected gradient when varying 𝑋 in a given direction ∆𝑋?@ , then 

2=0!56!",9!"
7777:

26!
" > 0 and, as shown in the preambule, if the variance is sufficiently low at the vicinity of 𝑋K  then 

2=0!56!"
7777,9!":

29!
" > 0, and if it is not sufficiently low, then being a stationary point would require the farmer to 

remain at this position, but as the farmer does so, the variance would be reduced until the point where 

2=0!56!"
7777,9!":

29!
" > 0 . Once this condition satisfied, then if 𝜖 is small enough, a step 𝜖	∆𝑋?@  can only lead to an 

increase in 𝐴𝐹" and thus will always be preferred to remaining at 𝑋K , hence 𝑋K  cannot be a stationary point. 

As a result, with enough time, any farmer will continue exploring until a local maximum is reached. A 

local maximum is not necessarily a stationary point, but if it not a stationary point, then the exploration 

continues until a local maximum that is high enough to be a stationary point (because it provides a higher 

𝐴𝐹" than jumping into the wild or any alternative previously explored), hence with 𝑇 high enough any 

farmer converges to a stationary point that is a local maximum.  

 

Proposition 2: Under the same conditions, HSFs are expected to converge to a (weakly) higher local 

maximum than LSFs 

 Assume a local maximum 𝑋N. For this local maximum to be a stationary point, 𝐴𝐹"(	𝑋N), it needs to 

exceed the 𝐴𝐹" associated to jumping into the wild. The expected benefit of exploiting 𝑋N is given by 

𝐸[𝑢(𝜋(𝑋))] (the exploitation gain in equation 5, in the case where the variance is only driven by the 

randomness of the profit function, but not variance in the beliefs) and is independent of the skill level of 

the farmer. By contrast the 𝐴𝐹" of jumping into the wild is strictly higher for HSFs than LSFs since 

𝛼AB0	"> 𝛼CB0	". Hence the minimum value of 𝑓/𝑋N1 required for 𝑋N to be a stationary point is strictly higher 

for HSFs than LSFs.  

 

Proposition 3: The curse of dimensionality results from complementarities and substitutabilities between 

inputs. 

The curse of dimensionality refers to the fact that the area to explore increases exponentially with 

the number of dimensions of 𝑋. To simplify it, assume that each dimension of 𝑋 is defined over a finite 

segment of size 𝑠. The Hilbert space over which 𝑓(𝑋) is define is then a hypercube with an n-dimensional 

volume of 𝑠-. Hence the area to be explored grows exponentially with 𝑛 (the number of dimensions of 

𝑋).   
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In the absence of complementarities (and substituabilities) 2
#6(E)
2($2(%

= 0		∀𝑖, 𝑗 𝑖, 𝑗	 ∈ 	1, … , 𝑛  and 

𝑖 ≠ 𝑗. As a result, any lesson about  26(($,(&$)
2($

 would be relevant independently of 𝑥>! and each dimension 

can be explored separately. In this setting, each additional 𝑛"G dimension adds 𝑠 to the area that needs to 

be explored but is not multiplied by the previous 𝑛 − 1 hypercube.  

This can be understood more easily if, for illustration, we assume that each dimension 𝑥! is 

discrete (of size 𝑠 ≥ 2) rather than continuous. In the presence of complementarities, the total number of 

combinations of inputs and thus parameters to learn about is 𝑠-. In the absence of complementarities, 

however, it is sufficient to know the effect of each possible variation in 𝑥! (for any other inputs 𝑥>!) to 

figure out the entire distribution, (because one can perfectly extrapolate to other combinations of 𝑥>!, 

hence the number of parameters to learn about is 𝑠𝑛.)  

  

The next set of propositions describe the reaction to an unexpected source of information, coming from 

the observation of an exogenous realization of 𝜋(𝑋). This mimics the effect of exposure to the trials, or 

the effect of observing the input decision and profit of other farmers. For simplicity, our model considers 

such info as exogenous and does not incorporate strategic actions such as the delaying of one’s 

exploration to wait for information from others (farmers or external intervention).  

 

Proposition 4: A new signal can trigger a “jump in the wild” if its precision is sufficiently high and if it 

reveals profits that are sufficiently above the prior at that point. 

 We model the effect of a new information such as the one coming from the trials as a new signal 

that occurs at an unexplored part of the production function. Let �̇� be the location of the new signal and 

𝜋"H#/�̇�1 be the new signal observed with precision �̇�. The fact that 	𝑋N is a stationary point before the 

signal implies that: 

𝐴𝐹"/	𝑋N1 ≥ 𝐴𝐹"(	�̇�) 

And using our re-writing: 

𝐴𝐹" >𝑓"&/𝑋N1, 𝑉"&/𝑋N1@ ≥ 𝐴𝐹" >𝑓"&/�̇�1, 𝑉"&/�̇�1@ 

We first describe how the signal is expected to affect 𝐴𝐹"(	�̇�) through 𝑓"&/�̇�1 and then describe how it 

affects 𝐴𝐹"(	�̇�) through 𝑉"&/�̇�1. The proposition requires that the realization of profit at the newly 

explored point exceeds the prior: 𝜋"H#/�̇�1 > 𝑓"&/�̇�1. In Bayesian update the posterior is a weighted 

average of the prior and the new signal, where the weights are proportional to the precisions of the 
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signals. Hence the adjustment of 𝑓"&/�̇�1 is upward and increasing in �̇�. We also know that 𝐴𝐹"(	�̇�) is 

increasing in 𝑓"&/�̇�1,  hence more precision increases 𝐴𝐹"(	�̇�) through its positive effect on 𝑓"&/�̇�1.  

 We now look at how �̇� affects 𝐴𝐹"(	�̇�) through 𝑉"&/�̇�1. In Bayesian update, the variance of the 

posterior is decreasing in the precision of the signal, hence 29!
"(Ė)
J̇

> 0. Additionally, because �̇� is located 

in the unknown area, it is in the area with high variance and a negative effect of variance on 𝐴𝐹" (because 

of the dominating effect of risk reduction – see proof of proposition 1), hence 
2=0!56!"(Ė),9!"(Ė):

29!
"(Ė)

< 0. 

Putting these 2 elements together, the higher the precision, the higher the reduction of variance, which 

contributes to more increase in 𝐴𝐹"(	�̇�). 

 The last two paragraph can be summarized by the following equation: 

𝑑𝐴𝐹"H# >𝑓"H#& /�̇�1, 𝑉"H#& /�̇�1@
𝑑�̇�

=
𝑑𝐴𝐹"H# >𝑓"H#& /�̇�1, 𝑉"H#& /�̇�1@

𝑑𝑓"H#& /�̇�156666666766666668
K;

𝑑𝑓"H#& /�̇�1
�̇�5667668
K;

+
𝑑𝐴𝐹"H# >𝑓"H#& /�̇�1, 𝑉"H#& /�̇�1@

𝑑𝑉"H#& /�̇�156666666766666668
L;

𝑑𝑉"H#& /�̇�1
�̇�5667668
L;

 

 Conditional on 𝜋"H#/�̇�1 > 𝑓"&/�̇�1 an increase in �̇� increases 𝑓"&/�̇�1 and reduces 𝑉"&/�̇�1 and both 

of these effects increase 𝐴𝐹"(	�̇�). Hence 𝐴𝐹"(	�̇�) is increasing in �̇�. Finally, conditional on the realization 

of 𝜋"H#/�̇�1, being high enough, when �̇� is high enough then 𝐴𝐹"/	𝑋N1 < 𝐴𝐹"(	�̇�) and the farmer switches 

from exploiting 	𝑋N to exploring �̇�.   

 

Proposition 5: When jumping into the wild, short-term losses in expected utility can be tolerated, and even 

more so for a HSF than a LSF. 

 If a farmer decides to jump from exploiting 	𝑋N to exploring �̇�, it must be the case that 𝐴𝐹"/𝑋N1 <

𝐴𝐹"(	�̇�). Since 𝑋N is a stationary point its gain does not include any gain from information. Hence we 

have:  

𝐴𝐹"/�̇�1 = 𝐸:𝑢(𝜋(�̇�))<5667668
'()*+!","!+-	/,!-

+ 𝛼0":𝑓"&/�̇�1 + λ	𝑉"&/�̇�1<566666676666668
'()*+1,"!+-	/,!-

 

 

𝐴𝐹"/𝑋N1 = 𝐸:𝑢(𝜋(𝑋N))<5667668
'()*+!","!+-	/,!-

 

 And thus:  

𝐸:𝑢(𝜋(�̇�))<5667668
'()*+!","!+-	/,!-	,"	Ė

+ 𝛼0":𝑓"&/�̇�1 + λ	𝑉"&/�̇�1<566666676666668
'()*+1,"!+-	/,!-	,"	Ė

> 𝐸:𝑢(𝜋(𝑋N))<5667668
'()*+!","!+-	/,!-	,"	EM

 



24 
 

Which is totally consistent with  

𝐸:𝑢(𝜋(�̇�))<5667668
'()*+!","!+-	/,!-	,"	Ė

< 𝐸:𝑢(𝜋(𝑋N))<5667668
'()*+!","!+-	/,!-	,"	EM

 

To the extent that: 

 

𝛼0":𝑓"&/�̇�1 + λ	𝑉"&/�̇�1<566666676666668
'()*+1,"!+-	/,!-	,"	Ė

> 𝐸:𝑢(𝜋(𝑋N))<5667668
'()*+!","!+-	/,!-	,"	EM

− 𝐸:𝑢(𝜋(�̇�))<5667668
'()*+!","!+-	/,!-	,"	Ė

 

 In plain English, a farmer is willing to accept a drop in her profit to the extent that the loss in 

expected utility is at least compensated by the gain in utility from the information acquired.  

 Finally, since 𝛼AB0	" > 𝛼CB0	" the first term is greater for a HSF than a LSF and thus the 

acceptable loss in expected utility is greater for a HSF than a LSF. In simple terms, since a HSF acquires 

more information when exploring, her acceptable loss is higher.  

Proposition 6: When exploring a new area, the belief about profit with the new package can, in 

expectation, move in a non-monotonic way.  

 We model the adoption a new input package as a switch from 𝑋N to �̇� and the vicinity of �̇�. It is 

possible that as the farmer explores the vicinity of �̇� it reaches a new local maximum �̈�. In the case where 

�̇� < 𝑋N < �̈�, then the beliefs would in expectation move first down and then up, and the farmer can 

continue exploring the new area despite �̇� < 𝑋N because of proposition 5.   

To put it in words, assume that a farmer starts using a new input package. The immediate return may be 

relatively low, because the farmer still needs to explore further the profit function to reach the global max. 

Hence the adjustment of expectations follows a moving target. In this case,	 the expected beliefs about the 

returns with the new inputs first decrease and then increase.  

 The proposition is relatively weak in the sense that it simply states that it is a possible scenario (as 

opposed to alternative standard models).  

 

Proposition 7: A LSF can obtain more valuable information from observing a HSF than a LSF. 

 Again, the proposition is relatively weak because it simply states a possibility, making its proof 

very simple in such a broad model where a wide range of scenarios are possible. Homogamy among LSFs 

has 2 consequences: first similar farmers tend to have values of the input vector 𝑋 that are more similar 

(including perhaps some values that are not malleable because the ability to execute them depends on 

skills). Second, because this other farmer is also a LSF, this other farmer would explore new areas less 

than a HSF (proposition 5). Which effect dominates is an empirical question. The more LSFs value 

“finding new equilibria” over exploring in the vicinity of their current practice, the more they are likely to 

value observing HSFs than LSFs.  


