- Food systems responsible for $30 \%$ of the world greenhouse gas emissions
- Major drivers of water use and pollution, deforestation and biodiversity loss.
- Behavioural interventions (advertisement, marketing, nudges, labelling, boycotts) can shift consumption to greener alternatives, but :


## demand saturates among green consumers

 new consumer segments are hard to reachHypotheses

## Empirical strategy

## Data home-scanned egg consumption at French generalist food stores

(14 retailers, 111 products) in 2012 from a representative panel of 3000 households,

## Demand model

Multinomial logit with random coefficients $\alpha$ and $\beta$

- Price sensitivity = $\alpha$
- Valuation of organic eggs = $\beta$
- Willingness to Pay (WTP) $=\frac{\beta}{\alpha}$

1. Estimate the population-level distribution of $\alpha$ and $\beta$ (assumed to be jointly normal)
2. Compute the household-level bayesian mean for $\alpha$ and $\beta$
3. Simulate household-level demand functions

- Behavioural interventions change not only consumption choices at current prices but also consumers' demand function
- Consumers affected by pro-environmental interventions often have a low price sensitivity and are already willing to pay a lot for green products
- Retailers set their prices strategically, taking consumer demand into account
- Higher retail margins are unlikely to benefit upstream green industries, since large generalist food stores enjoy a tremendous market power as buyers


## Outline

1. I ask theoretically what purchasing behaviour should be induced by interventions to support green consumption 2. I compare several intervention formats using simulations



## Supply model

- Nash-Bertrand competition
- Marginal costs identified from current prices and elasticites


## Policy Simulations

|  | Affected consumers' demand | INTERVENTION RAISING WILLINGNESS TO PAY WITH CONSTANT PRICE SENSITIVITY |
| :---: | :---: | :---: |
|  |  | Price of organic eggs |
|  | (A) | $\operatorname{wip}_{2}$ <br> Same price sensitivity |


(B) Same willingness to pay $\quad$ Price sensitivity $a_{1}$


A monopolist sells a green good with constant marginal cost c to heterogeneous consumers

1. the intervention affects the demand function of a fraction $\varepsilon$ of the consumers.
2. the firm sets a new price
3. consumption is realized

## Theorem

$D_{2}\left(p_{2}\right)$ is maximized when $D_{2}^{A}$ is
$1_{\left.\text {]- } \infty, p^{A}\right]}$ for a well-chosen $p^{A}$


## Intuition

$\left[D^{N}\left(p^{A}\right)+\varepsilon\right] \times\left[p^{A}-\mathrm{c}\right]=D^{N}\left(p^{N}\right) \times\left[p^{N}-\mathrm{c}\right]$
"Affected consumers can trade the value of their consumption for a lower price, which benefits non-affected consumers"


PRICE $p^{A}$

## Methods

1. Change WTP and/or price sensitivity for affected consumers
2. Compute the new equilibrium in price
3. Deduce the new consumption in each consumer group

## Main results

Price effects matter (see darker bars)

- Raising WTP (A) may be counterproductive
- Raising price sensitivity (B) (AB) has positive spillovers on passive consumers



## Implications

## Intervention design

- Encouraging green consumption no matter its price is a bad idea
- NGOs could suggest indicative prices for green products

Policy evaluation

Experiments should measure how interventions affect the full demand curve

ATE overestimates future consumption

The price effect (in $\sqrt{\epsilon}$ ) dominates the behavioural effect (bounded by $\varepsilon$ )
$\Delta p^{*} \underset{\epsilon \rightarrow 0}{\sim} \sqrt{\frac{2\left(p_{1}-c\right)}{\frac{\partial^{2} \Pi^{N}}{\partial p^{2}}\left(p_{1}\right)}} \times \sqrt{\epsilon}$
Optimal intervention

- The theorem extends to multiproduct monopolist or symmetrical Nash-Bertrand oligopolists.
- With an optimal intervention, affected consumers would stop consuming at current price


## Sufficient statistics

$\Delta p \underset{\epsilon \rightarrow 0}{\sim} \frac{\frac{\partial \Pi_{1}^{A}}{\partial p}\left(p_{1}\right)-\frac{\partial \Pi_{2}^{A}}{\partial p}\left(p_{1}\right)}{\frac{\partial^{2} \Pi^{N}}{\partial p^{2}}\left(p_{1}\right)} \times \epsilon$
Any smooth intervention

