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Abstract

Behavioural interventions such are nudges or awareness campaigns are increasingly

used to promote sustainable choices in retail contexts. They usually drive consumers'

attention to environmental qualities in order to raise their willingness to pay. I show,

using a structural model of supply and demand, that this approach might be ine�ective

in supporting sustainable consumption when �rms set their prices strategically. Inter-

ventions making consumers more sensitive to prices perform better because they exert

a downward pressure on prices. My empirical analysis relies on consumer panel data

and focuses on organic egg purchases in French retailers. I also show theoretically that

my �ndings generalize to a wide class of intervention design problems and derive some

su�cient statistics for the price variation. Overall, this work shows that the design and

evaluation of pro-environmental behavioural interventions should pay more attention

to how they shape attitudes towards prices.

1 Introduction

Our day-to-day grocery shopping, however minor it may seem, has major environmental

consequences. Food systems are known to be responsible for roughly 30% of greenhouse gas

emissions globally [1]. They are also major drivers of water use and pollution, deforestation

and biodiversity loss. The transition to more sustainable production modes cannot happen

without dramatic changes in daily consumption choices. For instance, the EU Farm to

Fork strategy [2] has set ambitious targets for the development of organic farming - an

agricultural practice deemed bene�cial for biodiversity - and calls for the reorientation of

advertising towards more sustainable products, the implementation of front-of-pack labelling

and the spread of digital-based environmental information tools to raise the demand for this

industry.
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Such behavioural interventions are increasingly used to promote sustainable consumption

when typical price-based instruments such as taxes and subsidies are o� the table. Yet,

sales of organic food have stalled in France in 2021 after a decade of two-digit growth [3], in

spite of rising advertising budgets [4] and easier access to simple and salient environmental

information thanks to barcode scanner apps. Organic food, just as many green products,

struggles to become more than a niche market. In such situations, the standard remedy

consists in increasing the dose : provide more information on environmental qualities to

further increase consumer willingness to pay. Is it really the change in purchasing behaviour

that behavioural interventions should aim at in order to maximize green consumption ?

In this paper, I argue that pro-environmental behavioural interventions should rather

make consumers more sensitive to prices than more willing to pay for green products. Being

sensitive to prices means that one's consumption of a good varies sharply depending on

whether its price is below or above a reference level. Examples of behavioural interventions

making consumers more sensitive to prices are price advertising [5], making prices more

visible at the point of sales, imposing the display of a reference price [6], providing price

comparison tools or even launching a price-related boycott movement [7].

Two key observations that point towards this approach are that 1) retailers price green

products based on consumer demand and 2) consumers reacting to pro-environmental be-

havioural interventions tend to be few, purchasing green more often [8, 9] and less sensitive

to prices [10] than others. Under perfect competition, prices would be determined by costs

and left una�ected by behavioural interventions. In practice, increasing consumer willing-

ness to pay for environmental qualities is likely to result in higher retail prices. One usually

thinks of pro-environmental interventions as triggering a uniform increase in willingness to

pay in a relatively homogeneous population, which - in spite of the increase in price due to

strategic pricing - would still lead to a rise in green consumption overall. However, since

consumers are actually quite heterogeneous in their willingness to pay for the green good

before and even more so after usual interventions, the direction of the change in demand is

ambiguous. Conversely, making consumer more sensitive to prices might foster competition,

push prices down and make them more a�ordable to consumers that are less willing to pay.

I call "price e�ect" this indirect change in green consumption due to the price response of

the retailer following an intervention.

This paper uses both a theoretical model and simulations based on a structural model

calibrated on consumer panel data to validate the previous rationale. I consider changes

in purchasing behaviour that could result from plausible behavioural interventions and I

investigate which would be most bene�cial to green consumption overall. I �nd that the price

e�ect matters for the design and evaluation of pro-environmental behavioural interventions
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and that making consumers more sensitive to prices can reverse the opportunistic price

response by the retailers, to the bene�t of green consumption.

I �rst introduce a theoretical model of how behavioural interventions a�ect the price

and demand for a green good under monopoly pricing. The behavioural intervention is

introduced as a change in the demand function of a given fraction of the consumers, the

policy choice being the purchasing behaviour adopted by these consumers. I de�ne the price

e�ect formally and I show that it must be non-negative for behavioural interventions that

maximize green consumption. I derive an estimate of the magnitude of the price e�ect for

interventions a�ecting only a small share of consumers, determine an upper bound on the

price e�ect and show that it is the main driver of demand change in any optimal intervention.

The results of the theoretical model are extended to the case of a multi-product monopolist

and symmetrical Nash-Bertrand oligopolists.

The empirical analysis is performed by estimating a structural model of the demand and

supply for eggs at major French retailers in 2012 - with organic eggs as the reference green

product. The demand model is a multinomial logit model with random coe�cients on price

sensitivity and valuation of the organic attribute. It is estimated on home-scanned purchase

data from a consumer panel representative of the French population. Even though organic

eggs enjoy a large utility premium, their even larger prices limit their market share to 10%.

Computing the Bayesian posterior means of the random coe�cients, I obtain household-

level estimates for price-sensitivity and willingness to pay for the organic attribute. I �nd

that consumers willing to pay the most for organic attributes turn out to be also less price-

sensitive than others. The supply model assumes Nash-Bertrand oligopolistic competition

and constant marginal costs. The latter can be retrieved from the �rst-order condition at

the initial equilibrium, knowing prices, demand and demand elasticities. I �nd that retailers

indeed set higher margins on organic eggs than on unlabelled eggs.

Having calibrated my model, I can simulate behavioural interventions by changing the

household-level willingness to pay and price sensitivity parameters for a small subset of the

population in the demand model and computing the new market equilibrium. This allows

me to compare interventions varying in their type (raising consumer willingness to pay or

price sensitivity), targeting (which consumers change their purchasing behaviour) and scale

(how many consumers change their behaviour). Raising willingness to pay for the organic

label among low price-sensitivity consumers - an implicit objective and likely consequence

of current interventions - has a limited e�ect on organic consumption overall, because of

the price e�ect. Conversely, making these consumers more price-sensitive can signi�cantly

increase total organic consumption, even when the population a�ected by the intervention

purchases mostly organic eggs at current prices.
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Related literature

It is common in empirical IO studies of food markets to consider that retailers adapt their

prices to policy interventions. This approach has not only been applied to price-based

policies, but also to behavioural interventions such as mandatory front-of-pack nutritional

labels [11] and a hypothetical ban of advertising for junk food [12]. The usual conclusion is

that the price reaction of the �rms strongly attenuates the intended e�ect of the policy.

The closest related work in this literature might be [13], which measures experimentally

how several nutritional labels change the demand curve and use this to simulate the retailers'

strategic price response if the intervention was implemented at scale. The conclusions of my

paper are much more general: since I abstract from how interventions are implemented to

focus on how they a�ect the demand curve, I can explore a much wider range of interventions,

both theoretically and in simulations.

My theoretical model is in essence very similar to [14]. This other article asks how the

incentives of a �rm vary when the demand curve it faces is modi�ed. Using its terminology,

raising consumer willingness to pay means shifting the demand curve rightwards, whereas

making consumers more sensitive to prices means rotating it anticlockwise. [14] �nds that,

in niche markets, �rms prefer spreading consumer willingness to pay, while in mass market,

they prefer to gather it around a speci�c value. The results of my theoretical model provide a

reinterpretation of this insight: gathering consumer willingness to pay around a well-chosen

price is an optimal way to transition from niche to mass market.

Finally, [7] provides a thorough empirical analysis of a large intervention having made

consumers more sensitive to prices. This article studies a boycott on cottage cheese that took

place in 2011 in Israel and documents the key role of the rise in price sensitivity in explaining

the long-lasting price cuts that followed the boycott. The boycott rule implemented by the

movement turns out to belong to a class of optimal behavioural interventions analyzed in

my theoretical model. While [7] is an ex-post analysis, my article can be understood as

providing theory- and simulation-based methods to predicting ex-ante the price e�ect of

behavioural interventions.

Policy implications

The main message of the paper is that communicating about the merits of a product with-

out mentioning its price or production cost is not the best way to support its consumption

in retail markets. Organic consumption is only one setting out of many where this ratio-

nale applies: the same goes for fruits and vegetables under a "5-a-day"-like public health

campaign, food items with a better Nutriscore or ranked high by barcode scanning apps.
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More generally, the paper has implications for the design and evaluation of behavioural

interventions a�ecting the consumption of a good priced by a strategic agent. The theo-

retical model stresses the importance of thinking beyond experimentally-measured average

treatment e�ects in order to anticipate the �rm price response to the intervention. In partic-

ular, one striking consequence of the theoretical model is that optimal interventions require

that a�ected consumers stop purchasing at current prices, which means that the average

treatment e�ect of the intervention on sustainable consumption at current prices is negative.

Besides, the theoretical upper bound for the magnitude of the price e�ect derived from the

model provides a practical rule of thumb to test the relevance of the price e�ect for a given

market and intervention.

The model also has implications for environmental justice. The widespread use of

consumption-based GHG emissions accounting - based on product-level life cycle assess-

ment - to attribute environmental responsibility to consumers totally ignores the price e�ect.

Therefore, this approach underestimates greatly the extent to which green price-insensitive

consumers could further support green consumption, hence their potential for action. Being

well-informed and careful regarding green product prices could contribute to environmental

objectives more than accepting to pay a disproportionate price for these items. The distri-

bution of sensitivity to prices in the population being quite di�erent from that of income,

this has also implications for the literature linking inequalities and demand-side mitigation

policies.

The rest of the paper is structured as follows. Section 2 introduces a simple theoretical

model that illustrates the mechanisms of the paper, provides some insights on the evaluation

and design of behavioural intervention and yields some su�cient statistics for the magni-

tude of the price e�ect of small-scaled interventions. Section 3 describes the data and the

methodology of the empirical analysis and simulations, while Section 4 presents and com-

ments their results. Finally, Section 5 discusses qualitatively some policy-relevant aspects

that are not accounted for in the previous sections.

2 Theory

This section provides a model of how pro-environmental behavioural interventions a�ect the

price and demand for green goods. I �rst introduce the model notations and formalize the

idea of a "price e�ect", the change in green consumption due to the �rm price response to a

behavioural intervention. I focus on the consumption of a green good sold by a monopolist

�rm and introduce the behavioural intervention as a change in the demand function of some

consumers. In this setting, I then study what type of purchasing behavior should be induced
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by behavioural interventions in order to maximize green good consumption. I �nd that, in

optimal interventions, a�ected consumers lower their demand at current price in order to

obtain a price cut, which increases the consumption of the green good among non-a�ected

consumers. Finally, I derive formulas for the magnitude of the price change following small-

scaled interventions and conclude that the price e�ect plays a major role in all optimal

behavioural interventions.

2.1 Notations and mechanisms

I analyze a setting where a monopolist sells at a price p an homogeneous green good, acquired

at a constant marginal cost c. The �rm generates a pro�t Π(p) = D(p)(p − c) where D(p)

is the aggregate demand for the green good.

To keep the model simple, I do not include explicitly brown good consumption and

consider that the policy objective is to maximize green good consumption. Brown good

consumption can be safely ignored when modeling the behaviour of the �rm if the price of

the brown good is �xed - for instance, due to strong competitive pressure. It can also be

ignored from an environmental policy perspective as long as consuming the brown good is

as detrimental to the environment as other plausible outside options external to the market.

The consumer population is split ex ante between the consumers that are a�ected (A)

by the intervention and those that are not (N) - neutral consumers. The aggregate demand

for the green good can thus be decomposed as D(p) = DA(p) +DN (p), with one aggregate

demand function per consumer group.

There are two periods, (1) before and (2) after the intervention. In period i ∈ {1, 2}, the

aggregate demand among a�ected consumers is DA
i (p) and the price pi is set by the �rm to

maximize the pro�t function Πi(p) = Di(p)(p− c) = (DA
i (p)+D

N (p))(p− c). When several

prices yield the same pro�t, I assume that the �rm picks the lowest. I also assume that

all the demand functions are asymptotically dominated by the inverse of the price, so that

the corresponding pro�t functions tend to zero as the price goes to +∞. Thus, equilibrium

prices are always well-de�ned.

The purchasing behaviour of a�ected consumers after the intervention, DA
2 , is the main

policy choice analyzed in the paper. In this theory section, I obtain some results that are

valid for any intervention-induced purchasing behaviors DA
2 , not just for the two speci�c

cases of interventions raising consumer willingness to pay and interventions raising consumer

price sensitivity. The purchasing behaviour of a�ected consumers before the intervention,

DA
1 , depends on the targeting of the intervention.

The policy objective is to maximize the �nal green good consumption D2(p2) - or equiva-

lently, the change in demand, denoted ∆D = D2(p2)−D1(p1). Another interesting outcome
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variable is the change in price, denoted ∆p = p2 − p1.

Figure 1: The e�ects of a non-price policy in the model

The main argument of the paper can be understood from the following accounting iden-

tity :

∆D =
[
DA

2 (p1)−DA
1 (p1)

]︸ ︷︷ ︸
behavioural e�ect

+
[
DN

2 (p2)−DN
1 (p1) +DA

2 (p2)−DA
2 (p1)

]︸ ︷︷ ︸
price e�ect

(1)

The �rst term
[
DA

2 (p1)−DA
1 (p1)

]
captures the demand change taking place in the a�ected

population before the price response of the �rm, which I call the behavioural e�ect. It is the

typical outcome variable used in the experimental evaluation of behavioural interventions.

The second term captures the green consumption change due to the price response of

the �rm to the intervention, which I call the "price e�ect". The term DA
2 (p2) −DA

2 (p1) is

arguably of second order in many interventions because both the a�ected population size and

the corresponding price change are small. However, there is no reason to think that the same

goes for DN
2 (p2)−DN

1 (p1). The main argument of the paper is that DN
2 (p2)−DN

1 (p1) should

not be ignored when designing and evaluating pro-environmental behavioural interventions.

2.2 Optimal induced purchasing behaviour

In this subsection, I ask what purchasing behaviour should be triggered by pro-environmental

behavioural interventions to achieve the policy objective of raising green consumption. I call

"optimal" any induced purchasing behaviour DA
2 such that the equilibrium demand D2(p2)

is maximized. Of course, this question only makes sense if there is somehow a limit to green

consumption in the a�ected population.
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To formalize this idea, let us impose the constraint that 0 ≤ DA
i (p) ≤ ϵ for p ∈ R and

i ∈ {1, 2}. One can interpret ϵ as the share of a�ected consumers, when each of them has

a unit demand. This re�ects both the fact that the behavioural e�ect is limited by the

number of a�ected consumers and the extent to which their demand for the green good is

already saturated.

Formally, the problem of �nding an optimal intervention writes as follows:

Maximize D2(p2) = DA
2 (p2) +DN (p2) over the choice of D

A
2

such that 0 ≤ DA
2 (p) ≤ ϵ for all p > 0

and p2 = argmax
p>0

[
DA

2 (p) +DN (p)
]
(p− c)

I will show that it is optimal that a�ected consumers stop purchasing the green good

when its price is above a given threshold, and always purchase it otherwise. Let me call the

corresponding demand function a cut-o� purchasing behavior.

De�nition 1. A cut-o� purchasing behavior with threshold price pA refers to the function

DA(p) = 1(0,pA] × ϵ

In practice, what sort of behavioural intervention could lead to such a cut-o� purchasing

behavior ? A consumer group or activists from an environmental NGO might decide to

stop consuming a product when its price is deemed too high and they could set a clear

threshold for that, as in the boycott movement analyzed in [7]. Other less radical initiatives

could also generate a dramatic shift in demand around a limit price, such as a large price

advertisement campaign or the display of a recommended retail price on the packaging of

the product.

Theorem 1, the main theoretical result of this subsection, characterizes a threshold price

pA
∗
such that the corresponding cut-o� purchasing behavior is optimal among all possible

purchasing behaviors. In a nutshell, the proof goes as follows. First, Proposition 1 charac-

terizes the optimal threshold price pA
∗
that maximizes total consumption D2(p

2) among all

cut-o� purchasing behaviors. Then, Lemma 1 shows that this outcome is optimal among

all possible demand function DA
2 . The formal proof of these results is available in the ap-

pendix, as well as that of Theorem 2, an extension of Theorem 1 to the case of n symmetrical

oligopolists.

The determination of the optimal threshold price pA
∗
is simple. Notice that when a�ected

consumers adopt a cut-o� purchasing behaviour with a threshold price pA below the initial

price p1, the �rm faces an alternative : either it sets its price p2 at the threshold price pA so

that a�ected consumer purchase the green good, or it sets its price p2 above this threshold

and a�ected consumers will not consume the good. In the latter case, the �rm will set the
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price pN de�ned below.

De�nition 2. The neutral price pN is the price that would be set by the �rm if the a�ected

consumers were absent from the market. Equivalently, it corresponds to the equilibrium price

p2 when DA
2 = DN .

We have shown that the �rm must choose between the prices pA and pN . If the �rm

�nds it strictly more pro�table to set the price pA than the price pN , an intervention with

a slightly lower pA would have increased the consumption of neutral consumers without

changing that of a�ected consumers. This shows that, at the optimal threshold price pA
∗
,

the �rm is indi�erent between setting either of these two prices. Thus, the the optimal

threshold price pA
∗
is characterized by

ΠN (pN ) = ΠN (pA
∗
) + ϵ(pA

∗ − c) , pA
∗ ∈ [c, pN ]

Proposition 1 wraps up these ideas. I assume that ΠN is smooth, single-peaked in pN

and that DN is decreasing on [c, pN ].

Proposition 1. There exists a unique price pA
∗ ∈ [c, pN ] such that the cut-o� demand

function with threshold price pA
∗
makes the �rm indi�erent between (1) setting the price

pN to sell the product to some neutral consumers and (2) setting the price pA
∗
to sell the

products to more neutral consumers and all the a�ected consumers. It is characterized by

ΠN (pN ) = ΠN (pA
∗
) + ϵ(pA

∗ − c) , pA
∗ ∈ [c, pN ]

The equilibrium demand under a cuto� demand with threshold price pA
∗
is

D2(p2) = DN (pA
∗
) + ϵ

So far, we have only considered the case of cut-o� demand functions. Lemma 1 shows

that this class of demand functions is optimal among all possible demand function DA
2

(assumed to be asymptotically dominated by the inverse of the price so that the equilibrium

price is well de�ned). Its proof is available in the appendices and relies mostly on the facts

that DN is decreasing and DA
i is bounded by ϵ for i ∈ {1, 2}. This leads us to the main

Theorem :

Theorem 1 (Optimal purchasing behaviour). The purchasing behaviour DA
2 = 1(−∞,pA∗]

maximizes D2(p2) over all possible choices of DA
2 . Conversely, every optimal purchasing

behaviour DA
2 must be such that p2 = pA

∗
and D2(p2) = DN (pA

∗
) + ϵ
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Note that Theorem 1 does not state that the optimal purchasing behaviour is unique.

Besides, one can easily construct an optimal purchasing behaviour di�erent from a cut-

o� demand function, for instance by starting from a cut-o� function with threshold pA
∗

and decreasing the demand in the (0, pA
∗
) price range. However, any optimal purchasing

behaviour DA
2 must lead to the equilibrium price p2 = pA

∗
and satisfy D2

A(p
A∗

) = ϵ.

Theorem 1 has a striking implication for behavioural intervention evaluation. Contrary

to the common intuition, all optimal interventions are such that consumers stop right away

to consume at the current price p1 - since it is higher than pA
∗
. A typical experimental

evaluation measuring only the behavioural e�ect - the immediate consumption change before

the price reaction of the �rm - would thus dismiss any optimal intervention as strongly

ine�ective.

The theorem also provides a theoretical upper bound for the price and demand changes

following a behavioural intervention. The next subsection will formalize this idea and derive

tractable expressions related to the market conditions for the intervention e�ects .

2.3 Magnitude of the e�ects

In this subsection, I derive simple formulas for the magnitude of a price change following

an intervention when the a�ected population is small. I focus on two important cases :

optimal interventions - as de�ned in the previous subsection - and interventions that induce

the same purchasing behaviour no matter the size of the a�ected population.

I focus on the case of a small share of a�ected consumers. Indeed, most of the non-

price interventions that are actually implemented have a limited scale as compared to their

relevant market. Marketing practices and nudges are usually decided and implemented by a

single actor, be it a �rm or some local public authority, hence cannot a�ect every consumer.

Advertisements and environmental awareness campaigns on TV, radio or Internet target

their audience to increase their cost e�ectiveness. If one of the most famous food barcode

scanner app in France, Yuka, claims up to 16.5 millions users in France in 2021, this �gure is

likely to drop dramatically if we consider only active users and focus on searches regarding

one speci�c product category. Even mandatory product labelling is unlikely to be noticed,

understood and actually used by more than a small fraction of the consumers.

I will use the parameter ϵ introduced previously to account for the scale of the interven-

tion. In the previous search for an optimal purchasing behaviour, ϵ was an upper bound on

DA that could be interpreted as the share of a�ected consumers. More generally, a purchas-

ing behaviour DA
i can be interpreted as the aggregate demand resulting from the purchasing

behaviour DA
i being adopted by each individual in the mass ϵ of a�ected consumers. This
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leads to the following formula :

Di(p) = DN (p) +DA
i (p) = (1− ϵ)DN (p) + ϵ×DA

i (p)

Here, ϵ is the share of a�ected consumers and 1 − ϵ that of neutral consumers. By

extension, I introduce ΠN := DN (p)(p − c) and ΠA
i := DA

i (p)(p − c) the pro�t functions

associated to one individual in each consumer group. Note that ϵ says nothing of how much

the intervention alters the purchasing behaviour of the a�ected consumers, it only restricts

their number. When ϵ is small, so is the a�ected population as compared to the neutral

population. In the extreme case where ϵ = 0, no consumer is a�ected by the intervention

and the �rm sets the price p1 = p2 = pN - which, by de�nition, is optimal for the neutral

demand DN .

Using a �rst-order approximation of the pro�t function of the pro�t function ΠN in

the neighborhood of pN and the previous characterization of the �nal equilibrium price

p2 = pA
∗
for optimal interventions, one can derive an equivalent of the price change when

the population size is small.

Proposition 2. [Optimal purchasing behaviour] Under an optimal intervention - for in-

stance, when DA
2 is a cut-o� demand function with threshold price pA

∗
(ϵ) - we have

∆p∗ ∼
ϵ→0

√
2(p1 − c)
∂2ΠN

∂p2 (p1)
×
√
ϵ

Proposition 3 shows that the price change - hence the price e�ect - following an optimal

intervention goes as the square root of ϵ, the share of consumers a�ected by the intervention.

Since the behavioural e�ect DA
2 (p2)−DA

2 (p1) ≤ DA
2 (p2) ≤ ϵ is at most linear in ϵ, this means

that the price e�ect dominates. In other words, the most important driver of consumption

change in small optimal interventions is the price e�ect, not the behavioural e�ect.

Moreover, the previous result provides a tractable asymptotic upper bound for the price

and demand change following a small-scaled intervention, which can be used to perform

back-of-the-envelope estimations. In particular, the second-order derivative of the pro�t of

the �rm at current prices and its absolute margin on the green good seem to be the key

determinants of this upper bound.

Proposition 3 (Interventions that induce the same purchasing behaviour DA
2 no matter

the size of the a�ected population). When DA
2 = DA

2 × ϵ and D
A
2 is smooth, we have

∆p ∼
ϵ→0

∂ΠA
1

∂p (p1)− ∂ΠA
2

∂p (p1)

∂2ΠN

∂p2 (p1)
× ϵ
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The case of interventions that induce the same purchasing behaviour DA
2 no matter

the size of the a�ected population is also very relevant for applications. Many behavioural

interventions are designed and evaluated without anticipating the scale at which they will

be deployed or the share of consumers that they will actually be able to reach. Proposition

3 shows that the price change is linear in ϵ and in particular, asymptotically negligible

as compared to the optimal case. This shows that interventions designed or evaluated

independently of the scale of their deployment are inherently limited, as their price e�ect is

bound to be at most linear.

The price change - hence the price e�ect - following such an intervention depends on the

di�erence between the pro�t gradient of the a�ected demand before and after the interven-

tion. This implies that the characteristics of the a�ected population - i.e. DA
1 - can a�ect

signi�cantly the magnitude of the price e�ect. In order to maximize it, the intervention

should target consumers whose corresponding pro�t function is upward-sloping at current

price. Assuming that ΠA
1 is single-peaked, this means that the monopoly price for this

consumer group is higher than the initial equilibrium price. In particular, this suggests that

consumers with either a high willingness to pay for a green product or those with a low

price sensitivity are suitable targets.

In conclusion of this theoretical section, the most e�ective behavioural interventions

induce a positive price e�ect. To do so, it is pro�table to target consumers for which the

pro�t function is the least downward-sloping at current prices - for instance, those with

a high willingness to pay for the green good. The induced purchasing behaviour should

make their demand function steeper at the new equilibrium price. This corresponds to the

informal de�nition of making consumers more sensitive to prices given in introduction. In

the next sections, I will test these ideas using actual market data.

3 Data and methods

The empirical analysis of the paper is based on home-scanned data from a large consumer

panel. It consists in estimating �rst a model for the demand of shell eggs in major French

food retailers, then using it to calibrate a model for the supply and �nally using both to

perform some policy simulations.

3.1 Data and context

My empirical analysis is based on home-scanned egg purchase data for the year 2012 from

a consumer panel (Kantar WorldPanel) representative of French households. The panelists

have to scan the bar-code of the purchased products after each shopping trip, providing
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reliable information of the characteristics of their purchase. In particular, we know the

brand, label, calibre and number of eggs in the box. We distinguish between three egg

labels : battery hens, free-range hens and organic hens. Barn farming did not exist as a

label at the time and the French "Label Rouge" label - slightly more demanding than free-

range but much less than organic - cannot be distinguished from free-range in our data. We

focus on eggs having medium (M) or large (L) calibre, sold under one of top three national

brands or a retailer own brand.

I de�ne a "simpli�ed brand" variable by grouping together retailer own-brands with

a similar range (top range, middle range and low range), and national brands in a forth

group. At the time, the hard-discounters did not sell organic eggs under their own brands

but o�ered some from a national brand.

The panelists must also report what store they went to. We limit the sample to non-

specialized food stores, which accounted for 64% of organic eggs purchases in France in

2019 and more generally half of the sales of organic products in 2012 according to the

French agency for organic food (l'Agence Bio) [15]. Since the central procurement service

can be retrieved from the product barcode, I de�ne a retailer as a pair formed by a central

procurement service and a store format, so as to distinguish for instance convenience stores

and hypermarkets from the same chain. There are four store formats : hypermarkets,

supermarkets, junior department stores and convenience stores. I �nd 14 retailers in total,

which is consistent with previous studies on the French retail industry. [11].

Non-purchasing is considered as a product of utility zero that is always available to the

consumer. The shopping trips that led to no egg purchase are key in the identi�cation of

the utility derived from egg consumption. It is di�cult in all generality to disentangle non-

purchase due to some dissatisfaction with respect to the current o�er from non-purchase

due to an egg stock at home. Making use of the limited time eggs can be stored, the

shopping trips included in the �nal sample are selected as follows. First, I draw randomly

one shopping trip involving the purchase of eggs per four-week period and household, if

any. Then, for periods during which no egg purchase was made, I draw at random one

empty shopping trip during the period. Thus, I make sure that the observed decision not

to purchase egg is never driven by an su�cient stock at home.

The identi�cation of household-speci�c parameters requires a minimal number of obser-

vations. Therefore, I consider only households that have purchased eggs during at least 6

periods out of 13. Moreover, I use two available demographic variables : the quartile of the

household in the distribution of income as well as its position over the life cycle - split in

ten categories, depending on the composition and age of the members of the household .

Finally, estimating a multinomial logit model requires the de�nition of an appropriate
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choice set for each shopping trip. Starting from the set Jrt of products sold by retailer r

during period t, I de�ne the set Jit of products available to household i during period t as

the union of the Jrt for several retailers r. The choice of this retailer list strongly determines

the level of competition assumed in the model. The larger the number of retailers included

in the list, the less captive consumers are, the higher the competitive pressure on retailers.

On the one hand, if we use the union over all retailers, we consider that household i could

have equally chosen to purchase eggs at any other retailer. This assumption ignores the

constraints of limited retailer availability and transportation costs, as it is unlikely that the

choice to visit a given retailer is entirely driven by the price and characteristics of their

eggs only. On the other hand, if Jit = Jir where r is the retailer that was indeed visited at

period t, then we are taking the choice of a visited retailer as entirely independent to the

price and characteristics of their eggs. This may be a strong assumption. In order to build

realistic choice sets, I take the union over all retailers that the household visited during the

year 2012, so as to make sure that retailers in the list could indeed be considered by the

household.

3.2 Demand model

This section introduces the structural model used to estimate consumer demand, providing

details on how it deals with price endogeneity and household heterogeneity. The demand for

eggs is modeled by a multinomial logit with random coe�cients αi for the price sensitivity

and βi for the valuation of the organic attribute. Appendix 6.0.1 gives the general expression

of the likelihood function and the demand elasticities for this class of models. The structural

equation estimated is the following :

Uijt = −αi × pjt + βi × IsOrganicj × BuysOrganici + γ · xj + δ × vjt + uijt (2)

The vector xj stands for egg characteristics (other labels, calibre, simpli�ed brand). BuyOrganici

indicates whether household i has purchased organic eggs at least once in 2012, so that β

can be interpreted as the valuation for organic eggs among those that sometimes purchase

organic eggs. Noise terms uijt follow a standard Gumbel and are mutually independent.

Note that the price is the only product characteristic that depends on the time period.

The term vjt is a control function for the endogeneity of prices [16]. It corrects the

bias induced by the correlation between price variations and unobserved determinants of

purchase decision. For instance, special o�ers are often set in front display, increasing the

probability of purchase. The control function is nonzero only for products that have been
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bought and is equal to the residual of the following regression

pjt = ψ · xj + ϕ · zj + vjt (3)

The purchase price is instrumented - as often in the literature [17, 18] - by the characteristics

of the products and the average price of a similar product at competitors. Thus, in Equation

2, the price variable used is not directly the price pijt paid by the consumer - which is only

available for the purchased product - but its average pjt for the same product at this retailer

during period t. This de�nition applies to all the products available in the choice set.

The random coe�cients αi and βi are random variables with one realization per house-

hold. Because of the factor BuysOrganici in the structural equation, the distribution of

βi is identi�ed only on households that have purchased organic eggs at least once in the

year, and βi is otherwise assumed to be zero. I made this unusual modelling choice for

two reasons. Firstly, because it is di�cult to identify the valuation of an attribute that is

rarely included in consumer consideration set. Secondly, because the method to retrieve

household-level valuation for the organic label presented in the next paragraphs makes little

sense for households that never purchase organic eggs.

The model is estimated assuming a joint normal distribution of the coe�cients αi and βi

in the population. Their means (ᾱ, β̄) are assumed to be income-group-speci�c whereas the

variance covariance matrix Σ is shared across income groups. Hence the following equation,

where wi follows a two-dimensional standard normal distribution

(αi, βi) = (ᾱ, β̄) · di +Σ wi (4)

Estimating the model tells us what the distribution of α and β is at the aggregate level,

but says nothing of its value at the household-level. To do so, I determine αBAYESi (resp.

βBAYESi ), the expectation of the Bayesian posterior mean for α (resp. β) conditionally on

household i's observed purchase decisions achatsi and the parameters θLN = (ᾱ, β̄,Σ) of the

population distribution for (α, β). As mentioned previously, I assume βi = 0 for households

that have never purchased organic eggs in the year, consistently with the estimated demand

model. The general analytical expression for the expectation of the Bayesian posterior mean

is reminded in Appendix 6.0.1.α
BAYES
i = E( αi | di, ᾱ, β̄,Σ, purchase decisions for household i )

βBAYESi = E( βi | di, ᾱ, β̄,Σ, purchase decisions for household i )
(5)

The demand Dij(p) of household i for product j is assumed to be equal to the market
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share as predicted by Equation 2 when the constant αBAYESi has been substituted to the

random variable αi. Therefore, at the household-level, the demand model is assumed to be

multinomial logit - without random coe�cient. The aggregate demand Dj(p) for product j

is just the �nite sum of all the household-level terms Dij(p).

3.3 Supply model

Each retailer r sells a set Jr of products, product j having a marginal cost cj and being sold

at a price pj . Given the vector p of prices and the VAT tax rate τ = 5.5%, its pro�t writes

Πr =
∑
j∈Jr

Dj(p)([1− τ ]pj − cj)

Retailer r's program consists in setting its tax-inclusive prices (pj)j∈Jr so as to maximize its

pro�t Πr. The �rst-order optimality condition with respect to the price of product j ∈ Jr,

denoting Dk(p) the aggregate demand for product k writes

Dj(p
∗) +

∑
k∈Jr

∂Dk

∂pj
(p∗) ([1− τ ]p∗k − ck) = 0 (6)

Matricially, the �rst-order condition for each product can be grouped as

D(p∗) +Ω(p∗)([1− τ ]p∗ − c) = 0 avec Ω =

(
1Jr (k)×

∂Dk

∂pj
(p∗)

)
(j,k)∈J2

(7)

In the previous equation, marginal costs can be identi�ed from the price, demand and

demand elasticities at equilibrium. Once the demand model has been estimated , it is

possible to compute

c = Ω(p∗)−1D(p∗) + [1− τ ]p∗

Since price and demand �uctuate over the year, marginal costs are computed using data

from an arbitrary period - period 11. The demand model is fundamentally a model of variety

choice, but its predictive power regarding quantity is quite limited. In order to focus on the

choice between egg variety, I remove the shopping trips that led to no purchases from the

data and the possibility for households not to purchase during a shopping from the model.

This means that the predicted market shares used here for retrieving marginal costs and

later for simulating non-price interventions are conditional on the fact that the household

purchases.

As explained earlier, the demand modelD used here is a sum of household-speci�c multi-

nomial logit predictions and not the direct predictions from the initial random coe�cient

multinomial logit model. In particular, price elasticities are just the sum of household-
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speci�c elasticities that have a very tractable expression since the model does not involve a

random coe�cient - see Appendix 6.0.1.

3.4 Intervention simulations

Using the previously described demand and supply model, one can perform some policy

simulations. Let me clarify what interventions are considered and how they are simulated.

From the estimation of the demand model, I have retrieved some household-level deter-

minants αi and βi of the purchasing behavior. In order to simulate non-price interventions,

I change the value of these parameters in the a�ected population and compute the new

market equilibrium. In this approach, an intervention can be speci�ed as a set of a�ected

consumers and the transformation that is applied to their parameters αi and βi.

The main claim of the paper is that, for interventions that a�ects mainly consumers

that have either a high willingness to pay for green goods or a low price sensitivity, making

them more price sensitive is more e�ective than making them more willing to pay. In order

to test this statement, I need to de�ne precisely what these interventions correspond to. I

de�ne WTPi the willingness to pay for organic eggs of consumer i as the monetary value of

an organic egg of medium calibre sold under a mid-range retail brand for this consumer. It

is the ratio of the corresponding utility by the utility αi of money and can be interpreted as

the price that makes the consumer indi�erent between purchasing a standard organic egg

and not purchasing.

WTPi =
γStandard egg value + βi

αi

From now on, I will always work on the (αi,WTPi) plane when I describe an intervention.

What I refer to as a change in WTP means a change in βi - holding αi constant - such that

the new WTPi value is reached. In the (αi,WTPi) plane, testing my previous statement

on intervention e�cacy consists in comparing the e�ects of consumer movements to the

right (pure increase in price sensitivity) to consumer movements to the top (pure increase

in consumer WTP). I will also consider "mixed" interventions, that move consumers both

to the top and to the right.

Once the demand from the a�ected population has been changed, a new equilibrium

is computed. To do so, I use a classical iterative algorithm from the literature, detailed

in the appendix. Note that this algorithms makes uses of a �rst -order condition that is

necessary but not su�cient for optimality. Therefore, when the pro�t function of a �rm

has several local maxima, the iteration can get stuck in one of them and may not lead to a

pro�t-maximizing price. As I consider only small changes in the demand function and do

not explore the domain of very high value for the price sensitivity, it is unlikely that such
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numerical issue arise.

4 Results

4.1 Estimated demand

Figure 2 shows the estimated parameter values for the demand model, as well as the pre-

dicted utility attributed by a reference household to each egg characteristic - normalized by

the price sensitivity, so that each value can be interpreted as being expressed in euros. The

sign of the estimated utilities are as expected for calibre, label and consumer own-brand

range. More surprisingly, national brands are barely more valued than bottom-range own-

brands. This could be due to the use by retailers of communication or shelf-�lling practices

that are more favorable to their own products. At the aggregate level, one can also notice

that price sensitivity is logically higher for lower income groups.
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Figure 2: Estimated coe�cients for the demand model

4.2 Household-level heterogeneity

Figure 3 illustrates the joint distribution of the mean Bayesian posteriors in the (αi,WTPi),

highlighting several relevant consumer groups that will be later used as a�ected population

in the intervention. Notice that the curve at the bottom correspond to households that

never purchased organic eggs and have been attributed a value of zero for β. It is not a line

but a curve because we are working with (αi,WTPi) instead of the (αi, βi) plane.
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Figure 3: A�ected consumer groups tested in the simulations

4.3 Retail marginal costs

Figure 4.3 illustrates variations in marginal cost and marginal bene�t across labels, simpli�ed

brands and store format, under di�erent competition assumptions. The marginal costs

estimates vary as could be expected along these categories.
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Figure 4: Calibration of the supply model

The model suggests that retailers enjoy a larger marginal bene�t on organic eggs than

for other labels, validating the niche pricing hypothesis. The di�erence in retrieved retail

marginal costs between organic and free-range are not that far from those for their agricul-

tural production as reported by the ITAVI [19] - the national technical agricultural institute

that produces data on poultry production. However, the large di�erence in marginal costs

between free-range and battery eggs is di�cult to reconcile with this alternative data source.

4.4 Simulations

Using my calibrated model, I simulate behavioural interventions that make consumers more

willing to pay for organic eggs, make them more sensitive to prices or do both. Then, I

check the sensitivity of the results to the way the interventions are speci�ed.

In order to specify a behavioural intervention, one must tell (1) which consumers are

a�ected, (2) how many they are and (3) how their purchasing behaviour changes following

the intervention.

I consider two consumer groups that could be a�ected by the intervention : those with a

high WTP for organic eggs and those with a low price sensitivity. Figure 3 is an illustration

of where these consumers are located in the (αi,WTPi) plane for a population size of 1%.
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Consumers that react to pro-environmental interventions are known to be of this type.

How should the a�ected population size be chosen ? The behavioural e�ect cannot

increase the organic market share by more than the share ϵ of a�ected consumers - more

precisely, ϵ times the average probability of non-organic egg purchase among them. Since

consumers are polarized with respect to organic consumption, most consume organic less

than 10% of the time, while some do so more than 90% of the time. Thus, the potential

behavioural e�ect is roughly ϵ for general consumer groups and rather ϵ/10 for frequent

organic consumers.

I consider three types of interventions, which can be understood as transformations of

the (αi,WTPi) plane. I distinguish between interventions that (A) raise consumer WTP for

organic eggs, those that (B) raise consumer price sensitivity and those that (AB) raise both.

For each of these three categories, I focus on two possible implementations : either (Shift)

the household-speci�c parameters are uniformly shifted - as in equation 8 - or (Target)

they are increased until they reach a target level - as in equation 9. Figure 7 provides an

illustration of what these transformations mean when the a�ected consumers are the 1%

most frequent organic consumers.WTPAfter = WTPBefore +∆WTP

αAfter = αBefore +∆α

(8)

WTPAfter = max (WTPBefore,WTPTarget)

αAfter = max (αBefore, αTarget)

(9)

Figure 5 gives some simulation results for the previously described a�ected consumer

groups. I use a (Target) transformation. with parameter values αTarget = 40 andWTPTarget =

0.6. A price sensitivity of α = 40 correspond to the top of the initial price sensitivity distri-

bution, where the median price sensitivity in the population is α = 23. To understand what

a willingness to pay for organic eggs of 60 cents implies, consider the case of a consumer

that has the choice between purchasing organic eggs at 41 cents and free-range eggs at 29

cents (the average market prices). Given my estimated demand model, with a WTP of 60

cents for organic eggs, this consumer would favour them more than 99% of the time. These

parameter choices might seem extreme, but I will later perform similar simulations with any

willingness to pay between 0 and 60 cents and any price sensitivity between 0 and 40.

For the simulated interventions, it is clear that what performs best is (AB) a raise in both

price sensitivity and in willingness to pay for the organic label, followed by (B) a pure raise

in price sensitivity. In order to analyze the results, notice that the price e�ect corresponds

to the darker bars on the �gure. When the simulated intervention is (A) a raise in WTP,
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Figure 5: Simulations results : change in demand depending on intervention type
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the price e�ect is negative. Even if the overall e�ect on green consumption is positive, it

happens only through an increase in consumption among a�ected consumers and causes an

almost comparable decrease among una�ected consumers. In contrast, the price e�ect is

positive for the two other interventions types (B) and (AB).

The di�erence in results between the two consumer segments is also instructive. Increas-

ing consumer WTP (A) seems to perform better when the intervention targets consumers

with a low price sensitivity. Since those consumers rarely purchase organic eggs before the

intervention, there is more room for improvement among a�ected consumers. However, due

to their low price sensitivity, their increased WTP for organic eggs leads to higher organic

prices that with the other consumer segment, which magni�es the negative price e�ect. Al-

though (A) might be slightly more e�ective at increasing organic consumption than (B) in

some settings, its distributional consequences are more controversial. It contributes to the

polarization of organic consumption - higher for a�ected consumers, lower for others - by

pushing prices up.

The magnitude of the price e�ect is half that of the intervention when it a�ects consumers

with a high WTP for the green good, and a fourth of it when it a�ects consumers with a low

price sensitivity. Therefore, it cannot be ignored when designing or evaluating interventions

that are likely to a�ect mostly one of these two consumer segments.

The presence of a positive behavioural e�ect for (B) pure raises in price sensitivity might

seem surprising. This is due to the way "holding willingness to pay" constant has been

de�ned in section 3.4. When the price sensitivity is increased, I also increase the valuation

of the organic attribute so that the willingness to pay for a medium organic egg remains

constant. Since no such increase in valuation happens for non-organic eggs, the willingness

to pay for them is reduced and this makes a�ected consumer more likely to choose organic

eggs over other types of eggs. Still, this behavioural e�ect cannot be larger than size of the

a�ected population times the market share of non-organic eggs among a�ected consumers

before the intervention.

Therefore, the most important message from the �gure is not that the total demand

change is always higher when raising price sensitivity (since its behavioural part is debatable

as it depends on technicalities on how the intervention is modeled) but rather that the price

e�ect can be of comparable magnitude to the upper bound of the behavioural e�ect (which

depends only upon the a�ected population, regardless of the simulated intervention). For

the interventions considered in Figure 5, the ratio of the positive price e�ect to the upper

bound for the behavioural e�ect in interventions (B) and (AB) varies between one to two

and one to four.

Since Figure 5 contains the simulation results for only a few values of the intervention
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parameters, I could have missed an interesting parameter value. I will perform the same

simulation with a wide range of parameter values. Before moving to the results in Figure 6,

let me discuss how the range of tested parameters has been chosen.

First, notice that above a certain level, raising consumer WTP makes no di�erence in

terms of a�ected demand and translate only into higher prices, hence a lower total demand.

In particular, this is the case once the market share of organic products among consumers

after the intervention is close from 100%. This criterion is met with the parameter value

tested above. Therefore, there is no need to consider higher WTP parameter values.

Second, it would be indeed highly interesting to test the case of extremely price-sensitive

consumers. However, if the shape of the demand curve changes brutally, �rst-order condi-

tion in the algorithm that computed the price equilibrium may face some numerical issues.

Using alternative algorithms could cope with this issue, but would be very computationally

demanding. Therefore, I do not consider interventions that bring consumer price sensitivity

higher than 40 (utility loss per euro). As mentioned above, a price sensitivity of 40 is already

slightly above the highest price sensitivity observed in the data.

Third, it makes no sense to consider negative parameter values. In the "Shift" case,

this amounts to reducing - as opposed to raising - consumer WTP and price sensitivity. In

the "Target" case, this means that the transformation has no e�ect on a�ected consumers.

Overall, we have restricted our analysis to a bounded set of intervention parameter values.

Figure 6 displays the simulation results as heat maps in the space of parameter values in

the "Target" case when the a�ected population is the 1% most frequent organic consumers.

On the heat maps, the lighter the tile, the more e�ective the intervention. It is clear

than the best results in terms of total demand change are obtained with the highest price

sensitivity targets. This is consistent with the theoretical model, as a higher price sensitivity

means a steeper demand curve. In contrast, increasing further consumer WTP when it is

already above the initial market price (roughly 0.4) does not seem to have any e�ect.

The heat map showing the change in passive demand illustrates a phenomenon that

cannot be observed if we focus on the total price e�ect : the higher the WTP in the a�ected

population, the smaller the change in consumption among non a�ected consumers. Our

previous remark that total consumption stops raising with a�ected raising consumer WTP

above a certain level can be explained by two compensating forces : while a�ected consumers

get closer to consuming organic all the time, they also push prices up, which discourage

organic consumption among passive consumers. Therefore, raising consumer WTP might

just push some consumer groups to consume more often organic at the expense of other

consumer groups.

In the appendices, I perform some robustness checks with the "Shift" speci�cation of the
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Figure 6: Sensitivity to intervention parameters αTarget and βTarget
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change in demand due to the intervention. I replicate Figure 5 and 6 in this setting.

To summarize, I have performed simulations with various speci�cations of the behavioural

interventions and considered plausible consumer segments that could be a�ected. I have

found that making consumer willing to pay more induces a negative price e�ect and can

be quite ine�cient in increasing green consumption, in particular when a�ected consumers

already have a high willingness to pay for the green good. In comparison, making consumers

more sensitive to prices work much better. The e�ect is always at least as good when the

two policies are combined, as the increased price sensitivity prevents any opportunistic price

raise on the retailer side.

5 Discussion

This section analyzes qualitatively three important aspects of the policy that have not

been explicitly modeled in this paper : possible upstream e�ects of raising consumer price

sensitivity, the geographical scope of the model and �nally the time dimension of the main

mechanisms

5.1 Upstream e�ects

One of the assumption in our rationale is that only a limited share of the price premium on

green products goes to their producers, to the bene�t of retailers. If that higher margin was

captured by the green product industry, it may help it expand or invest, inducing positive

supply-side e�ects that might exceed the negative demand-side e�ects of a lower green

consumption. In the case of organic eggs, as for most standardized food products involving

few processing steps, there are reasons to believe that retailers, not producers, gain the upper

hand. Major retailers group together to form even larger central procurement services that

have a high market power and are able to purchase food products at a lower price [20].

Thus, in absence of strong brands - as for the soda industry - or a highly concentrated

upstream industry - as for the French milk product industry [21], it can be expected that

most of the margin will be captured by retailers. For instance, publicly available data on

prices paid to producers for organic vegetables suggests that retail margins are higher than

for non-organic vegetables [22].

Still, agricultural revenue is a burning political issue in France and the risk that raising

consumer price sensitivity harms it cannot be ignored in the conception of the intervention.

Two elements may limit this risk. First, the recent EGalim bills have imposed that upstream

prices be set contractually between farmers and retailers on the basis of industry-speci�c cost

indices. The objective is that the price of agricultural products "move forward", meaning
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that agricultural prices should follow the evolution of agricultural costs more than that of

the demand. If this policy succeeds, then we should not expect a less price-elastic consumers

demand to translate into lower agricultural prices. Second, the intervention could suggest

di�erent purchasing behaviour depending on the available information on upstream prices.

The second EGalim bill has authorized �ve years of experimentation with the display of

prices paid to farmers. Besides, a mandatory display had been implemented in France in

1999 for a few months by the Ministry for Agriculture, although the policy was limited

to a few fruit categories [23]. It should be noted that some brands available in French

supermarket already provide such information for their food products [24].

5.2 The risks of a local price response

In intervention simulations, the consumer sample and average prices per product and re-

tailer were representative of the national level. Of course, there can be signi�cant varia-

tions at a more local level : for instance, city boroughs inhabited mostly by high-income

price-insensitive consumers, or some stores having higher retail prices because of higher

commercial lease prices in the area. Should we worry that this may impede our argument

? If retailers were to set prices based on local demand and a�ected consumers were concen-

trated in speci�c geographical areas, then the price drop following the intervention might

be stronger but local. According to Proposition 2, the magnitude of the maximal price

e�ect goes as the square root of the share of a�ected consumers. Therefore, by concavity of

the square root function, it is preferable that a�ected consumers are geographically evenly

distributed. Besides, there is no environmental gain from obtaining a price decrease in areas

were there is already a vast majority of green consumers. Therefore, the actual e�ect of the

intervention might be weaker if prices were set based on local demand conditions.

However, most available evidence goes in the opposite direction. Some hard-discounters

are known to set a unique price at the national level and use it as a promotional argument in

their commercials. More generally, a recent literature has noted that retail prices are mostly

uniform and react little to local demand shocks - see Section 2 in [25] for an overview. For

instance, [26] notice that most US retail food chains set nearly uniform price, although there

are huge discrepancies in price sensitivity across markets. Moreover, if the intervention is

publicly announced and has a national scale, we might expect retailer head o�ces to take on

the issue and design a coordinated price reaction because of reputational concerns. Overall,

it seems more likely that the intervention produces nation-wide level, which con�rms the

methodology followed in our simulations.
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5.3 Temporal dimension of the mechanisms

Our model considers an intervention that a�ects the purchasing behaviour of some con-

sumers, which entails a price response from the retailers, and �nally leads to a change in

consumption in a wider population. These phenomena have various characteristic times, a

dimension that is not accounted for in the model.

Let me start by describing an illustrative empirical case analyzed [7] whose nature is very

similar to the type of intervention studied in this paper. The article discusses a boycott

movement related to the price of cottage cheese that took place in 2011 in Israel. The

authors relate that "a Facebook event calling for a boycott of cottage cheese was created on

June 14, 2011, demanding a price reduction from about 7 New Israeli Shekel (NIS) to 5 NIS

per 250-gram container. The Facebook event was an instant success: a day after it started,

nearly 30,000 Facebook users joined it; by June 30, the number surpassed 105,000.". On

this speci�c example, it seems that the change in demand due to an intervention took place

in a few days.

Following the aforementioned literature on �rm response to demand shocks, one may

wonder whether retailers would react to the new purchasing behaviour among a�ected con-

sumers and how fast. For instance, [27] argues that the rather unforeseeable nature of

hurricanes generates demand shocks that are very di�erent from those observed during hol-

idays, which explains why retailers tend to react more to the later. Thus, the intervention

may be more likely to induce a price response if it is announced in advance and the size

of the a�ected population can be forecast. As these conditions where met in the cottage

cheese boycott, we should not be surprised that "the average price of cottage dropped by

24% virtually overnight". Still, other type of interventions might take longer to pay o�.

How long can a�ected consumer stick to a purchasing behaviour that is unusual to them -

in that it can involve refraining from consuming green products - before the price adjustment

takes place ? Of course, they might be able to visit other retailers that o�er the same green

product at a better price, but they certainly occur some other monetary, transportation or

cognitive cost by doing so. This leads to the question of the duration in which intervention-

induced demand shocks can be sustained. Empirical studies of boycott movements typically

observe substantial several weeks of demand shocks followed by a complete return to the

normal in one month or two [28]. Consistent with these �ndings, "sales at the start of the

[cottage cheese] boycott would have been 30% higher, but for the boycott. [...] After about

six weeks, however, sales recovered and matched the expected demand at observed prices.".

However, the cottage cheese boycott di�ers from usual examples in that its boycott rule was

directly related to the price of the product. Bringing public attention on prices has durably

a�ected price elasticities, so much that it had had a long-lasting impact on demand still
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observable six years after the boycott took place.

The last mechanism to discuss is the e�ect of the price decrease on non-a�ected con-

sumers' green product purchase . As observed in our panel, the organic label is quite

polarizing : most consumers (70%) never purchase organic, some rarely do so (20%), and

a small number does so almost always (3%). While those who sometimes purchase organic

eggs are likely to do so more often right after the price decrease, it might take longer before

those who never purchase organic eggs react. As of today, they might not even include

organic eggs in their consideration set or use heuristically the organic label as a proxy for

expensiveness. The evolution of their representation of the organic label and the adaptation

of the mental processes involved in the purchase decision might take years.

To summarize, a well-planned intervention may obtain substantial short-term e�ects

on a�ected demand and green product prices. As compared to nudges or usual boycott

movements studied in the literature, it is more likely that we observe long-lasting e�ects - on

demand and prices - from an intervention aimed at increasing consumer price sensitivity. The

price decrease will certainly increase green product share among occasional green consumers,

but it is unlikely that the intervention changes anything on the short-run for those that never

purchase green products. Thus, the bene�ts of the intervention might span over years, but

could be estimated from elasticity changes observed after a few months.

6 Conclusion

In this paper, I argue that prices matter for the design and evaluation of non-price interven-

tions - labelling schemes, environmental information campaigns - promoting the purchase of

greener goods in imperfectly competitive retail markets. Raising consumer price sensitivity

on green products could greatly contribute to the rise in environmental-friendly consump-

tion on retail markets. The main mechanism is that making some green consumers more

price-sensitive will constrain retailers to revise their margins on green products downwards,

which in turn will increase sustainable consumption in general.

Similarly, lab and �eld experiments evaluating the potential of a behavioural intervention

should anticipate the e�ect of the intervention on a�ected consumers attitude towards prices.

Neglecting this aspect might lead to large prediction errors when the policy is implemented

at scale. Overall, my results show that retailer price response matter and call for a more

systematic investigation of the price-dependency in the purchasing behaviour that such

interventions induce.

The main policy conclusion is that it is often better not to blindly raise consumer will-

ingness to pay for green attributes. Instead, one might prefer to convey a sense of what a
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reasonable price for green product might be. Additional evaluation of past policies raising

consumer price sensitivity would be interesting in order to put in perspective the results of

the simulations.

Appendix

Formal statements, proofs and extensions of the theoretical results

6.0.1 Proof of Lemma 1

Lemma 1. Whatever DA
2 , the market price p2 is higher than pA

∗
and the demand cannot

exceed DN (pA
∗
) + ϵ

p2 ≥ pA
∗
and DA

2 (p2) ≤ ϵ+DN (pA)

Let me prove that the cut-o� demand function with threshold price pA
∗
is optimal. I

want to show that the demand DN (pA
∗
) + ϵ cannot be exceeded, whatever the purchasing

behaviour DA
2 in the a�ected population. Since DN is decreasing and DA

2 is bounded by ϵ,

it is su�cient to show that the optimal threshold price pA
∗
is always smaller than the �nal

equilibrium price p2.

D2(p2) = DN (p2) +DA
2 (p2) ≤ DN (p2) + ϵ

?
≤ DN (pA

∗
) + ϵ

Whatever DA
2 , the option of setting the price pN is always available to the �rm and

generates a pro�t at least equal to ΠN (pN ) - the maximal achievable pro�t in the absence

of a�ected consumers. Thus, no intervention can induce a pro�t lower that this level.

ΠN (pN ) ≤ ΠN (p2) + ΠA
2 (p2) ≤ ΠN (p2) + ϵ(p2 − c)

From this inequality, I will show that pA
∗ ≤ p2, which implies our conclusion D2(p

2) ≤

D2(p
A∗

). First, by construction of pA
∗
, we have another expression for the leftmost term

ΠN (pN ) in the previous inequality

ΠN (pA
∗
) + ϵ(pA

∗ − c) ≤ ΠN (p2) + ϵ(p2 − c)

Second, notice that the function x 7−→ ΠN (x) + ϵ(x− c) is increasing on [c, pN ] since ΠN is

single-peaked in pN . This concludes the proof in the case where p2 ≤ pN . In the remaining

case, pN ≤ p2, hence pA
∗ ≤ p2. We have proved Lemma 1.
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Proof of Proposition 4

One can generalize some of the results to the case of a multi-product �rm. This is interesting,

for instance, to anticipate the e�ect of an intervention targeting a green product on the price

of a closely-related brown product.

Let bold letters denote vector objects, such as prices p and demands D, where each

dimension corresponds to one of the K product sold by the monopolist. Then, Proposition

3 can be generalized in this setting.

Proposition 4 (Multi-product price e�ect of a marginal intervention).

∆p ∼
ϵ→0

(Hess Π(p1))
−1 (∇ΠA

1 (p1)−∇ΠA
2 (p1)

)
Since Proposition 4 implies Proposition 3 (case of one product), I will prove only the

former. Assume that ΠN , ΠA
1 and ΠA

2 are C2. Assume further that ΠN has a unique

maximum p∗, that Hess ΠN (p∗) is de�nite negative and ∇ΠA
2 (p

∗) ̸= ∇ΠA
1 (p

∗). I want to

prove that

∆p ∼
ϵ→0

(
Hess ΠN (p∗)

)−1 (∇ΠA
2 (p

∗)−∇ΠA
1 (p

∗)
)

We can write the �rst-order conditions that translate the facts that the �rm sets (1) p1 in

order to maximize Π1(p1) before the intervention and (2) p2 in order to maximize Π2(p2)

after the intervention.∇Π1(p1) = ∇ΠN (p1) +∇ΠA
1 (p1) = ∇ΠN (p1) +∇ΠA

1 (p2)× ϵ = 0 (1)

∇Π2(p2) = ∇ΠN (p2) +∇ΠA
2 (p2) = ∇ΠN (p2) +∇ΠA

2 (p2)× ϵ = 0 (2)

Notice that in both cases, when ϵ = 0, the program of the �rm consists in setting p in

order to maximize ΠN (p). It has been previously assumed that this problem had a unique

solution p∗. Thus, one can see these two program as mere perturbations parameterized by

ϵ of this optimization problem. Since the pro�t functions Π1 and Π2 are C1 with respect to

ϵ and Hess ΠN (p) is de�nite negative, then for ϵ small enough equation (1) (resp. (2)) has

locally a unique solution p1 (resp. p2). When ϵ goes to zero, both p1 and p2 tend to p∗.

Since ΠN is assumed to be C2, then ∇ΠN is C1 and we can write its �rst-order Taylor

expansion 
∇ΠN (p1) =

ϵ→0
∇ΠN (p∗) +Hess ΠN (p∗) (p1 − p∗) + o(1)

∇ΠN (p2) =
ϵ→0
∇ΠN (p∗) +Hess ΠN (p∗) (p2 − p∗) + o(1)

We can invert Hess ΠN (p∗) as it is de�nitive negative. Thus, we can isolate p2 − p2 in the

previous equation and use equation (1) and (2) to conclude.
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p2 − p1 =
ϵ→0

Hess ΠN (p∗)−1
(
∇ΠN (p2)−∇ΠN (p1)

)
+ o(1)

=
ϵ→0

Hess ΠN (p∗)−1
(
∇ΠA

1 (p1)−∇ΠA
2 (p2)

)
+ o(1)

=
ϵ→0

Hess ΠN (p∗)−1
(
∇ΠA

1 (p
∗)−∇ΠA

2 (p
∗)
)
+ o(1)

(since ΠA
2 is C1,∇ΠA

2 (p1) →
ϵ→0
∇ΠA

2 (p
∗) and ∇ΠA

2 (p2) →
ϵ→0
∇ΠA

2 (p
∗) )

Statement and proof of Theorem 2

Let me show that the results of section 2 can be extended to the case of symmetrical Nash-

Bertrand oligopolists. I will start by introducing the notations, then state the main result

- Theorem 2 - and �nally prove it. Note that Theorem 2 implies Theorem 1.

Consider n symmetrical oligopolists with identical marginal cost c competing in prices.

I will assume that the demand (DN , DA
1 and DA

2 ) that they face before and after the

intervention are symmetrical, meaning that two �rms setting the same price also face the

same demand and generate the same pro�t. When a �rm sets a price p and all the others

set a price p′, I will denote the demand it faces by D(p, p′) and the pro�t it generates by

Π(p, p′) = (p − c)D(p, p′). Partial derivatives with respect to p refer to the �rst argument,

the �rm own price.

I focus on pure symmetrical price equilibria, that is to say prices p∗ such that Π(p∗, p∗) =

maxp∈R Π(p, p∗). I assume that DN and DA
1 are smooth and that there exists before the

intervention a unique symmetrical price equilibrium p1. The fact that the size of the a�ected

population is ϵ and the symmetry assumption implies that DA(p, p) ≤ ϵ/n and ΠA(p, p) ≤

(p− c)ϵ/n for every price p.

Theorem 2 provides a lower bound for potential equilibrium prices following an interven-

tion and shows that this optimum can be reached by inducing a speci�c purchasing behavior.

I de�ne the cut-o� demand with threshold price pA as

DA(p, p′) =
1(−∞,pA](p)

1 + (n− 1)1(−∞,pA](p′)
× ϵ

This is a mere generalization of the one-dimensional cut-o� function, in which the demand

is split equally between all �rms below the threshold price. Since we focus on the analysis

of pure symmetrical equilibria, specifying D(p, p′) is su�cient - there is no need to de�ne

this function for every price vector p.

I assume that for all p′ ∈ R+, p 7→ ΠN (p, p′) is single-peaked and I refer to the peak as

pN (p′). The second-order optimality condition entails that ∂2ΠN

∂p2 (p, p′)must be non-positive,
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and I further assume that this quantity is negative for all p′, so that pN (p′) is continuous

is p′. Finally, I assume that the following equation - which will be motivated later - has at

most one solution pA
∗
:

ΠN (pN (pA
∗
), pA

∗
) = ΠN (pA

∗
, pA

∗
) + (pA

∗ − c)× ϵ/n (∗)

There is no need to assume the existence of a solution to this equation, as this can easily be

shown using the intermediate value theorem - noting that for pA
∗
= c the left-hand side of

the equation is non-negative and the right-hand side null, while for pA
∗
= pN the right-hand

side is larger than the left-hand side. We are now able to state theorem 2.

Theorem 2. For all symmetrical purchasing behaviour DA
2 such that there exists a pure

symmetrical price equilibrium p2, then p2 ≥ pA
∗
and D2(p2) ≤ DN (pA

∗
) + ϵ.

Moreover, if DA
2 is a cut-o� demand with threshold price pA

∗
, then pA

∗
is a pure sym-

metrical price equilibrium and D2(p2) = DN (pA) + ϵ

I will start the proof by studying the case of the cut-o� demand, and then prove that it

is impossible to do better. Let me show that the price pA
∗
introduced previously is indeed

a symmetrical equilibrium price when DA
2 is a cut-o� demand with threshold price pA

∗
.

When a �rm faces a cut-o� demand with threshold pA
∗
from the a�ected population, the

�rm either sets the price pA
∗
, or sets a price that is optimal when ignoring the a�ected

population. In the �rst case, it generates a pro�t

ΠN (pA
∗
, pA

∗
) + ΠA

2 (p
A∗
, pA

∗
) = ΠN (pA

∗
, pA

∗
) +

ϵ

n
(pA

∗ − c)

In the second case, it sets a price p that maximizes ΠN (p, pA
∗
), which by de�nition must

be pN (pA
∗
). Therefore, the �rm generates in the second case a pro�t

ΠN (pN (pA
∗
), pA

∗
)

By equation (*) that de�nes pA
∗
, the �rm has no interest to deviate from pA

∗
to pN as both

generate the same pro�t. Therefore, pA
∗
is indeed a pure symmetrical price equilibrium and

the corresponding demand is DN (pA) + ϵ.

What remains to be shown is that these price and demand cannot be improved. Consider

any symmetrical purchasing behaviour DA
2 such that there exists a symmetrical equilibrium

price p2. Since no �rm has any interest to deviate from p2,

ΠN (p2, p2) + ΠA(p2, p2) ≥ ΠN (pN (p2), p2) + ΠA(pN (p2), p2)
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I will show that the same price equilibrium can be obtained with a cut-o� demand with

threshold price p2. As previously, it is su�cient to show that no �rm has an interest to

deviate to pN (p2), that is to say

ΠN (p2, p2) +
ϵ

n
(p2 − c) ≥ ΠN (pN (p2), p2)

This comes directly by combining the previous inequality, the fact that ϵ
n (p2−c) ≥ ΠA(p2, p2)

and that ΠA(pN (p2), p2) ≥ 0. Thus, the same price could have been obtained under a cut-

o� demand with threshold price p2 in the a�ected population. Moreover, the equilibrium

demand cannot be smaller with the cut-o� demand than with DA
2 since

DN
2 (p2, p2) + ϵ ≥ DN

2 (p2, p2) +DA
2 (p2, p2)

It is now su�cient to compare cut-o� demand functions with one another and �nd the

lowest threshold price for which there exists a symmetrical equilibrium. De�ne T as the set

of prices p such that p is a symmetrical equilibrium in presence of a cut-o� demand function

with threshold price p. Using the no-deviation condition found earlier, we have

T = {p ∈ R+ | ΠN (p, p) +
ϵ

n
(p− c) ≥ ΠN (pN (p), p)}

By continuity of ΠN and pN , T is a closed set, and since it has bounded from below inf T ∈ T .

Moreover, for the same reason, inf T satis�es the equation

ΠN (inf T, inf T ) +
ϵ

n
(inf T − c) ≥ ΠN (pN (inf T ), inf T )

By uniqueness of pA
∗
, it must be that inf T = pA

∗
. In particular, for all p ∈ T , pA∗ ≤ p

hence the �nal demand at the equilibrium pA
∗
is higher than that at the equilibrium p. This

concludes the proof.

Let me summarize quickly the rationale. For any purchasing behaviour DA
2 that leads to

a symmetrical equilibrium price p2, then the cut-o� demand with threshold p2 leads also to

a symmetrical equilibrium price p2 and the corresponding equilibrium demand is no lower

than with DA
2 . Then, it su�ces to ask what threshold price pA generates the lowest price -

hence, the highest demand. It has been shown that pA = pA
∗
is the best possibility.
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Likelihood and price sensitivities in a multinomial logit model with

random coe�cient

Let me start by providing formulas valid at the individual level, where αi can be considered

as a given constant. Denoting Ũijt the product-speci�c non-stochastic term in equation 2 -

that can be directly computed from data and parameter values.

Ũijt = αi × pjt + β · xj + γ × vijt (10)

Since Ũijt = Uijt + uijt and the stochastic noise terms uijt are independent and follow a

Gumbel distribution, then the probability sj that product j ∈ Jit yields that highest utility

as a function of the Ũijt writes

sijt =
déf

P

(
Uijt = max

k∈Jit

Uikt

)
=

exp(Ũijt)∑
k exp(Ũikt)

(11)

The derivative of sj with respect to the price pkt of product k ∈ Jit has a simple expression,

that will later be used in computing the Ω matrix.

∂sijt
∂pkt

= (δji − sijt)sikt (12)

The likelihood of the purchase choices at the household level, assuming α is known and

product j(i, t) ∈ Jit has been chosen by household i at period t

L =
∏
i∈I

∫
R+

(∏
t

exp(Ũij(i,t)t)∑
k exp(Ũikt)

)
f(αi | θLN ) dα (13)

Estimating the demand model consists in �nding the values for the parameters β, γ and θLN

that maximize this llikelihood. Numerically, we make use of the apollo_estimate function

from the R apollo library. This function approximates the integral by a quasi Monte Carlo

method, using 200 Halton points. More information are available in section 4.6 of the library

user manual [29].

Bayesian posterior expectations at the household level

Estimating a multinomial logit model with random coe�cient yields population-wide pa-

rameters estimates θLN for the price sensitivity αi. Denoting f(α | θLN) the corresponding

density, Bayes rule gives the density g(α | θLN , achatsi) of the posterior distribution of the α

coe�cient conditionally on the estimated parameters θα of the population-wide distribution
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and the purchase choices achatsi made by household i.

g(α | θLN , achatsi) =
L(achatsi | α) f(α | θLN)∫

R+ L(achatsi | α′) f(α′ | θLN) dα′ (14)

The coe�cient αBAYESi is then de�ned as the expectation of this conditional distribution

g(α | θLN , achatsi)

αBAYESi =

∫
R+ α L(achatsi | α) f(α | θLN) dα∫
R+ L(achatsi | α′) f(α′ | θLN) dα′ (15)

As for the likelihood function, These integrals are numerically approximated by quasi Monte

Carlo using 200 Halton points, using the function conditionals from the apollo library. More

information is available in section 9.14.1 from the apollo library manual [29].

Equilibrium search algorithm

Starting from u0 = p1 the equilibrium price before the intervention, the algorithm iterates

the rule

uk+1 ←−
1

1− τ
[
c−Ω(uk)

−1D(uk)
]

By continuity, if the sequence converges to u∞ ∈ RK , then the �rst-order condition is

satis�ed by u∞

Ω(u∞) [(1− τ)u∞ − c] +D(u∞) = 0

In practice, the algorithm is stopped once the step of an iteration ∥uk+1 − uk∥∞ is smaller

than 10−7 euros.

6.1 Illustration of the transformations

6.2 Robustness checks

The parameter values tested are ∆α ∈ {5, 20}, ∆WTP ∈ {0.1, 0.4}, αTarget = {−20,−30}

and WTPTarget = {0.4, 0.6}.

Please note that in the �gure, dark and light colors in bars that are next to another

correspond to the same type of intervention simulated twice, with the low version of the

intervention parameters in the leftwards lighter one and the high version of the intervention

parameters in the rightwards darker one. When it comes to two bars overlaid on each other,

the darker bar represents the change in passive consumer demand while the lighter bar is

the total demand change. This distinction allows to visually compare the the �nal demand

change that is not driven by the demand from a�ected consumers. One can note that the

price e�ect can account for nearly one half of the intervention e�ect in some settings.
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Figure 7: Comparing di�erent non-price interventions
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Figure 8: Simulation results for a chosen set of intervention parameters
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The magnitude of the demand change following an intervention seems rather in line with

the number of a�ected consumers : interventions involving 1% (resp. 3%) of the consumers

can increase total demand by roughly 1% (resp. 3%). What is more surprising is that this

increase is possible even when the a�ected population was almost consuming organic all

the time. The visible part of the lighter bar in the high parameter case corresponds to the

fact that the demand is fully saturated in the a�ected population. Of course, this leads

to di�erent bars depending on the a�ected population considered. In particular, the least

price-sensitive consumers are also less prone to organic consumption than the two other

groups before the intervention, hence their larger intervention e�ects.

40



References

[1] Walter Willett, Johan Rockström, Brent Loken, Marco Springmann, Tim Lang, Sonja

Vermeulen, Tara Garnett, David Tilman, Fabrice DeClerck, Amanda Wood, Malin

Jonell, Michael Clark, Line J. Gordon, Jessica Fanzo, Corinna Hawkes, Rami Zurayk,

Juan A. Rivera, Wim De Vries, Lindiwe Majele Sibanda, Ashkan Afshin, Abhishek

Chaudhary, Mario Herrero, Rina Agustina, Francesco Branca, Anna Lartey, Shenggen

Fan, Beatrice Crona, Elizabeth Fox, Victoria Bignet, Max Troell, Therese Lindahl,

Sudhvir Singh, Sarah E. Cornell, K. Srinath Reddy, Sunita Narain, Sania Nishtar, and

Christopher J. L. Murray. Food in the Anthropocene: The EAT�Lancet Commission on

healthy diets from sustainable food systems. The Lancet, 393(10170):447�492, February

2019.

[2] European Commission. Farm to Fork Strategy. Technical report, 2020.

[3] Agence BIO. Le Marché Alimentaire Bio en 2021 - Estimation de la consommation des

ménages en produits alimentaires biologiques en 2021. Technical report, 2022.

[4] LSA Conso. Pour se démocratiser, le bio mise sur la publicité à la télé. February 2022.

[5] Anil Kaul and Dick R. Wittink. Empirical Generalizations About the Impact of Ad-

vertising on Price Sensitivity and Price. Marketing Science, 14(3_supplement):G151�

G160, August 1995.

[6] Itai Ater and Or Avishay-Rizi. Price Saliency and Fairness: Evidence from Regulatory

Shaming, March 2022.

[7] Igal Hendel, Saul Lach, and Yossi Spiegel. Consumers' activism: The cottage cheese

boycott. The RAND Journal of Economics, 48(4):972�1003, 2017.

[8] Lindsey Smith Taillie, Carmen E. Prestemon, Marissa G. Hall, Anna H. Grummon, An-

namaria Vesely, and Lindsay M. Jaacks. Developing health and environmental warning

messages about red meat: An online experiment. PLOS ONE, 17(6):e0268121, June

2022.

[9] Paul M. Lohmann, Elisabeth Gsottbauer, Anya Doherty, and Andreas Kontoleon. Do

carbon footprint labels promote climatarian diets? Evidence from a large-scale �eld

experiment. Journal of Environmental Economics and Management, 114:102693, July

2022.

[10] Beibei Yue, Guanghua Sheng, Shengxiang She, and Jiaqi Xu. Impact of Consumer

Environmental Responsibility on Green Consumption Behavior in China: The Role of

Environmental Concern and Price Sensitivity. Sustainability, 12(5):2074, January 2020.

41



[11] Olivier Allais, Fabrice Etilé, and Sébastien Lecocq. Mandatory labels, taxes and market

forces: An empirical evaluation of fat policies. Journal of Health Economics, 43:27�44,

September 2015.

[12] Pierre Dubois, Rachel Gri�th, and Martin O'Connell. The E�ects of Banning Adver-

tising in Junk Food Markets. The Review of Economic Studies, 85(1):396�436, January

2018.

[13] So�a B. Villas-Boas, Kristin Kiesel, Joshua P. Berning, Hayley H. Chouinard, and

Jill J. McCluskey. Consumer and Strategic Firm Response to Nutrition Shelf Labels.

American Journal of Agricultural Economics, 102(2):458�479, 2020.

[14] Justin P. Johnson and David P. Myatt. On the Simple Economics of Advertising,

Marketing, and Product Design. American Economic Review, 96(3):756�784, June

2006.

[15] Agence Bio. Les chi�res 2019 du secteur bio. Technical report, July 2020.

[16] Kenneth Train. Discrete Choice Methods with Simulation. Cambridge University Press,

Cambridge ; New York, 2nd ed edition, 2009.

[17] Aviv Nevo. Mergers with Di�erentiated Products: The Case of the Ready-to-Eat Cereal

Industry. The RAND Journal of Economics, 31(3):395�421, 2000.

[18] Olivier Allais, Fabrice Etilé, and Sébastien Lecocq. Mandatory labels, taxes and market

forces: An empirical evaluation of fat policies. Journal of Health Economics, 43(C):27�

44, 2015.

[19] ITAVI. Performance technique et coûts de production, November 2017.

[20] Hugo Molina. Buyer Alliances in Vertically Related Markets. Technical Report hal-

03340176, HAL, September 2021.

[21] Céline Bonnet and Zohra Bouamra-Mechemache. Organic Label, Bargaining Power,

and Pro�t-sharing in the French Fluid Milk Market. American Journal of Agricultural

Economics, 98(1):113�133, January 2016.

[22] Cour des Comptes. Le soutien à l'agriculture biologique. Technical report, Cour des

comptes, 2022.

[23] Arrêté du 13 août 1999 instaurant l'a�chage simultané du prix d'achat au producteur

et du prix de vente au consommateur pour les pêches, nectarines, abricots, melons et

poires - Légifrance, August 1999.

42



[24] Marie-Josée Cougard. Quand le lait équitable de C'est qui le patron ? ! fait école dans

les rayons. Les Echos, March 2021.

[25] R. Andrew Butters, Daniel W. Sacks, and Boyoung Seo. How Do National Firms

Respond to Local Cost Shocks? American Economic Review, 112(5):1737�1772, May

2022.

[26] Stefano DellaVigna and Matthew Gentzkow. Uniform Pricing in U.S. Retail Chains*.

The Quarterly Journal of Economics, 134(4):2011�2084, November 2019.

[27] Etienne Gagnon and David López-Salido. Small Price Responses to Large Demand

Shocks. Journal of the European Economic Association, 18(2):792�828, April 2020.

[28] Jura Liaukonyte, Anna Tuchman, and Xinrong Zhu. Spilling the Beans on Political

Consumerism: Do Social Media Boycotts and Buycotts Translate to Real Sales Im-

pact? SSRN Scholarly Paper 4006546, Social Science Research Network, Rochester,

NY, January 2022.

[29] Stephane Hess and David Palma. Apollo: A �exible, powerful and customisable free-

ware package for choice model estimation and application. Journal of Choice Modelling,

32:100170, September 2019.

43


