Characterization of TU games with stable cores by nested balancedness
Article dans une revue: A balanced transferable utility game (N, v) has a stable core if its core is externally stable, that is, if each imputation that is not in the core is dominated by some core element. Given two payoff allocations x and y, we say that x outvotes y via some coalition S of a feasible set if x dominates y via S and x allocates at least v(T) to any feasible T that is not contained in S. It turns out that outvoting is transitive and the set M of maximal elements with respect to outvoting coincides with the core if and only if the game has a stable core. By applying the duality theorem of linear programming twice, it is shown that M coincides with the core if and only if a certain nested balancedness condition holds. Thus, it can be checked in finitely many steps whether a balanced game has a stable core. We say that the game has a super-stable core if each payoff vector that allocates less than v(S) to some coalition S is dominated by some core element and prove that core super-stability is equivalent to vital extendability, requiring that each vital coalition is extendable.
Auteur(s)
Michel Grabisch, Peter Sudhölter
Revue
- Mathematical Programming
Date de publication
- 2024
Mots-clés
- Domination
- Stable set
- Core
- TU game
Pages
- 801-826
URL de la notice HAL
Version
- 1
Volume
- 203