Modélisation dynamique de la (bio)disponibilité des radionucléides dans les sols : approche comparative modèles-expériences appliquée au transfert de césium dans la rhizosphère
Thèse: Ce travail vise à développer un modèle générique capable de mieux rendre compte et de prédire les transferts de radionucléides dans le système sol/solution du sol/plante. La première partie de ce travail a été consacrée à l’analyse critique des modèles disponibles dans la littérature pour décrire l’adsorption du césium par les minéraux argileux (principal processus contrôlant sa disponibilité dans les sols). Cette analyse a débouché sur la formulation d’un nouveau modèle mécaniste combinant deux approches: la complexation de surface et l’échange d’ions. Cette approche, a été testée afin de modéliser l’adsorption du Cs sur plusieurs substrats argileux naturels. Ce travail a permis de valider le modèle proposé et de démontrer qu’il constitue un avantage majeur par rapport aux différents modèles existants. La deuxième partie a été consacrée, à la réalisation d’une série d’expérimentations, conduite en milieux contrôlés sur des systèmes dynamiques, et la modélisation de la (bio)disponibilité du Cs dans ces systèmes. A la suite de ces essais, les interactions entre solide et solution observées ont pu être correctement reproduites à partir du modèle proposé en prenant en compte la fraction argileuse du sol uniquement. Ces simulations ont également été comparées aux simulations obtenues à partir des modèles empirique (Kd) et cinétique (EK). Enfin, le développement d’un outil numérique permettant de coupler la description des interactions géochimiques au transfert vers la plante (approche cinétique) a permis de reproduire correctement les essais réalisés en Rhizotests couplant sol, solution et plante et de mieux caractériser la fraction du Cs disponible pour les plantes.
Auteur(s)
Mohamed Amine Cherif
Date de publication
- 2017
Mots-clés
- Césium
- Modélisation dynamique
- Biodisponibilité
- Subtarts agileux naturels
- Plante
Organisme(s) de délivrance
- Aix-Marseille Université
Date de soutenance
- 18/12/2017
Directeur(s) de thèse
- Frédéric Gérard
- Olivier Bildstein
URL de la notice HAL
Version
- 1