Integrated approach of ionizing radiation damage on Caenorhabditis elegans : from DNA to proteins
Thesis: Because of the ubiquitous nature of ionizing radiation, the risk assessment on ecosystems has become a major environmental concern. However, the environmental risk assessment of chronic exposures suffers from a lack of knowledge, especially because the extrapolation of data acquired after acute exposure in order to predict the effects of chronic exposures is not always relevant. Indeed, the effects on the individual parameters, i.e reproduction, differ between these two irradiation modes, suggesting that underlying mechanisms are also different. It is therefore necessary to carry out studies at the individual and at the subcellular level in order to better understand molecular mechanisms governing these differences in the observed effects. Proteins are the functional molecules in organisms, they can be the targets of oxidative damage (i.e carbonylation), and are likely to be relevant and sensitive markers of exposure to ionizing radiation. Thus, the objective of this research project was to improve the understanding of molecular mechanisms of radiotoxicity (acute vs chronic), particularly by studying the proteome contribution, on the biological model Caenorhabditis elegans. The study of the acute and chronic gamma irradiation effects, on a large dose range (between 0.5 and 200Gy, including 4 common doses to both irradiation modes), was performed at the individual level with the reproduction as endpoint, a parameter likely to directly influence the dynamic of populations. In addition, the modulation of protein expression but also their damage (i.e. carbonylation) and their degradation by the proteasome were evaluated. The results showed that acute irradiation induced an effect on hatching success and on total spawning from 30 Gy whereas only total spawning was impacted after chronic irradiation from 3.3 Gy. At the molecular level, the global level of carbonylated proteins was not so modified after chronic or acute exposure to ionizing radiation. The proteasome appears to be involved in the degradation of carbonylated proteins after chronic irradiation whereas after acute irradiation, it seems overtaken, suggesting a possible involvement of other defense mechanisms (autophagy). The protein expression, and particularly proteins involved in apoptosis, DNA repair, replication and reproduction, is differentially modulated after acute and chronic exposure. Thus, the proteins involved in embryonic development are repressed after acute irradiation as soon as 0.5 Gy whereas those involved in the germline development are overexpressed. These results suggest that the radiotoxicity mechanisms between acute and chronic exposures are quite different and that the effects of acute irradiation may be due to an embryogenesis disturbance (via the accumulation of genotoxic damage). Conversely to acute, chronic irradiation induces an effect on gametogenesis, resulting in a decrease of the total spawning without impacting embryogenesis. This research project allowed us to provide knowledge on the molecular cascade events following different gamma irradiation conditions and highlights the need of using an integrated approach to better predict and understand the observed effects on major biological functions. Moreover, this work allowed characterizing more sensitive markers of exposure than the individual ones as the proteasome activity and the protein expression is modulated from 0.5Gy. Ultimately this dataset would help to improve the environmental risk assessment.
Author(s)
Cécile Dubois
Date of publication
- 2017
Keywords
- Gamma irradiation
- Acute vs chronic
- Protein expression
- Carbonylation
- Proteasome
- Caenorhabditis elegans
Issuing body(s)
- Université de Montpellier
Date of defense
- 28/11/2017
Thesis director(s)
- Simon Galas
URL of the HAL notice
Version
- 1