Phenotypic changes in irradiated endothelial cells and roles in lung injury following radiation therapy

Thesis: Radiation-induced endothelial dysfunction is known to participate to the development of normal tissue damage. PAI- is implicated in the phenotypic changes of irradiated endothelial cells and KOendo mice are protected from radiation damage to the gut. Whole thorax of PAI-1 KOendo and floxed mice were exposed to 17 Gy. Histological analyzes showed that PAI-1 KOendo induces a worsening of injuries at 2 and 13 weeks. Consequently, contrary to the gut no protection from radiation-induced lung damage is observed in PAI-1 KOendo mice. Our second aim was to study the effects of a single high dose stereotactic irradiation on pulmonary tissues. Histological analyzes and scanner imaging show important injuries on the targeted volume. An ipsilateral edema can also be observed 2 weeks after irradiation. Ipsilateral lung is moreover importantly damaged. A thickening of alveolar septa is notably observable. A transcriptomic analysis show important similarities between tissues from the ipsilateral lung and the focal lesion. As really highly damages have been observed in both scanner and histological analyzes, we decided to perform forced physical activity test on treadmill. A drastic decrease of maximal distance traveled has been observed from two weeks. These experiments highlighted a deficiency in respiratory function and all of these results show the importance of non-targeted irradiated pulmonary volume in the development of radiation-induced fibrosis. Effect of an endothelium-specific deletion of HIF-1α has been investigated in this model of stereotactic irradiation. Only few differences have been observed between KOendo and control mice. Experiments are still ongoing.

Author(s)

Jeremy Lavigne

Date of publication
  • 2017
Keywords
  • Lung fibrosis
  • Radiation-induced
  • Endothelium
Issuing body(s)
  • Université Pierre et Marie Curie – Paris VI
Date of defense
  • 16/10/2017
Thesis director(s)
  • François Agnès
Version
  • 1